
Research Article
A Novel Framework of Modelling, Control, and Simulation for
Autonomous Quadrotor UAVs Utilizing Arduino Mega

Hoang T. Tran,1,2 Dong L. T. Tran,1 Vinh Q. Nguyen,3 Hai T. Do,4 and Minh T. Nguyen 4

1Center of Electrical Engineering, Duy Tan University, Danang, 550000, Vietnam
2Faculty of Electrical-Electronic Engineering, Duy Tan University, Danang, 550000, Vietnam
3Academy of Military Science and Technology, Hanoi 100000, Vietnam
4Thai Nguyen University of Technology, Thainguyen, 240000, Vietnam

Correspondence should be addressed to Minh T. Nguyen; tuanminh.nguyen@okstate.edu

Received 2 March 2022; Revised 4 August 2022; Accepted 8 August 2022; Published 19 August 2022

Academic Editor: Fuliang Li

Copyright © 2022 Hoang T. Tran et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In recent decades, there has been a constant increase in the use of unmanned aerial vehicles (UAVs). There has also been a huge
growth in the number of control algorithms to support the many applications embodied by the vehicles, including challenges and
open issues to develop. This paper focuses on three major classes of control methods applied to quadrotors in order to create an
open-source model based on the Arduino Mega that allows for the derivation and design of quadrotor control strategies. We
consider the perspective classes, including linear, nonlinear, and intelligent methods representing in details with applications in
developing an open-source controller for the quadrotor using the Arduino Mega and the BNO055 9 DOF sensor. We propose
Proportional Integral Derivative (PID), backstepping integrator, and model predictive control (MPC) to track a generated
Lissajous curve for surveillance. Simulations in the Matlab–Simulink environment with 3D visualization of a developed
quadrotor model using CAD software, with robustness and performance discussion, are provided. Our experimental work is
developed with an extensive illustration of the hardware and algorithm design and by demonstrating the effectiveness of the
proposed architectures. The results show promise in practical and in intelligent applications.

1. Introduction

In recent years, unmanned aerial vehicles (UAVs) have been
facilitating many different applications in both military and
civilian fields [1, 2]. The domain has received countless
research for academic work. Different kinds of tasks, such as
monitoring, detecting and collecting data, relaying data, and
carrying goods, are suitable for UAVs, especially quadrotor
UAVs [3–6]. The use of UAVs has become a sort of indispens-
able task in many sectors, leading to a massive investment of
time, money, and technology to develop algorithms and strat-
egies for sophisticated systems of control [7, 8].

Quadrotor UAVs are good platforms for control systems
research because of their nonlinear nature and under-
actuated designs, which make them suitable for the synthesis
and analysis of control algorithms. A quadrotor is a complete
manoeuvrable underactuated UAV with six degrees of free-

dom (DOF) [9]. It is energized by four rotors with fixed pitch
propellers that rotate at different controlled speeds. In addi-
tion, the quadrotor dynamics are highly nonlinear regardless
of the uncertainties of modelling, identification, and design
parameterization, and despite neglecting the disturbance of
the environment and noise of actuators and sensors. To
address the control challenge, diverse approaches have been
considered in the literature and research about the control
philosophy of quadrotors [10].

Advanced control theory contributed significantly to
overcoming the difficulties in a variety of designs of autono-
mous vehicles. Adaptive designs and platforms were more
developed for the aspects of specific tasks and applications.
Early works about quadrotor development focused just on
a reliable control [11]. Conversely, recent papers present a
deeper sight of tasks and control performance such as 3D
mapping [12], simultaneously localization and mapping

Hindawi
Wireless Communications and Mobile Computing
Volume 2022, Article ID 3044520, 17 pages
https://doi.org/10.1155/2022/3044520

https://orcid.org/0000-0002-7034-5544
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/3044520

(SLAM) [13], trajectory generation, tracking [14–17], sparse
and swarm control [18, 19], augmented and hybrid systems,
and autonomous landing [20, 21].

Generally, the control of quadrotors was streamed in
three main axes linear, nonlinear, and intelligent methods.
For the linear methods, PID controller was the essential
quadrotor control approach [22]. Miranda-Colorado and
Aguilar presented a novel robust PID control methodology
for controlling a quadrotor UAV with a procedure for
reducing the power [23]. LQR for stability and tracking
was proven functional and robust to perturbation in [24].
Another type of linear control was represented in H infinite,
which assured robustness to the uncertainties of modelling
[25]. Nonlinear approaches were alternated between many
topologies, and a model inversion strategy was applied for
a quadrotor with a suspended load in [26]. The hybrid con-
trol philosophy was opted by creating two nested control
loops. Inner loop for load position control and an outer loop
for quadrotor general position control, feedback lineariza-
tion was opted by many researchers as its simplest approach,
although it can show instability in many cases due to nonin-
vertibility. In [27], the simulation proved the applicability of
the dynamic inversion model for the control. The backstep-
ping method was used in a variety of papers as it is not that
complicated in implementation on hardware. Bhargavapuri
et al. proceeded with a flip manoeuvre of a quadrotor using
the backstepping approach with a gain update [28]. The
backstepping method was also used by Koksal et al. to guar-
antee UAV’s trajectory tracking [29]. The sliding mode was
subjected by many researchers and showed a robust control
and tracking, as demonstrated in [30]. Another approach
was based on using diagonal recurrent neural network
(DRNN) for updating PID gains in [22].

The majority of quadrotors designs take advantage of
the extended Kalman filter (EKF) for optimal full state
vector estimation from measurements, especially in auton-
omous navigation under disturbance or in the presence of
white Gaussian noise, as shown in [31, 32]. Guo et al.
experimented with an EKF observer to enhance PID based
H infinity control of multiple quadrotors [20], an evolu-
tionary algorithm with principles of KF to tune unknown
noises was optimized in [33], and other researchers have
used virtual sensing based on EKF observer to develop a
quadrotor controller [22]. Trajectory tracking and obstacle
avoidance were tackled by many quadrotor projects. Pérez-
Alcocer and Moreno-Valenzuela considered a model-based
optimization of trajectory. The performance of the pro-
posed method was compared with respect to three differ-
ent classical known trajectory tracking controllers [15].
Tracking of trajectory subject to uncertain inertial and
mass parameters was considered in [14]. Other researchers
opted for a trajectory generation first using quadratic pro-
gramming with linear constraints. Then, the control of
tracking was decided in a closed-loop scheme with double
integrator Lyapunov control, following minimal SNAP (4th
derivative) and minimal JERK (3rd derivative) [16]. Back-
stepping also was developed for trajectory tracking with
avoidance of singularities by emphasizing the quaternion
model [17]. The path following problem is defined when

implementing a controller that tracks trajectory without time
referencing. Those controllers discuss more the feasibility of
the realization of stable following along the generated path.
Thanh et al. demonstrated the realizability of optimal trajec-
tory tracking of nonlinear dynamical systems [34].

Trajectory optimization had another research area where
researchers worked on control of multiple and swarm of
quadrotors. The problem of distributed finite-time formation
tracking control with collision avoidance was investigated for
multiple quadrotor UAVs subject to external disturbances by
Huang et al. focus was on mounting a challenge of distur-
bance estimation with a sliding mode control (SMC) to
follow the desired trajectory generated by optimal control
problem (OCP) as they proved Lyapunov stability [33].
Borkar et al. exploited Lissajous curves for preplanning of
trajectories for reconfigurable formations of quadrotors for
surveillance applications [19]. Another group of researchers
tackled the zone search optimization of a quadrotor’s flock
by adhering to a bioinspired methodology and considering
the interaction between quadcopters to avoid obstacles and
collision using PID control applied to the swarm algorithm.
The authors proved the advantage of multiobject navigation
optimization of a dynamic model with other techniques
[18]. Others regarded the multiple quadrotor cooperative
control as subject to aerodynamics drag and position devia-
tions. The paper written by Yue et al. suggested a leader
drone to be followed based on adaptive SMC [35]. The same
leader-followers philosophy was maintained by Liu et al. in
[36], where they opted for visually serving formation tracking
control for quadrotor UAV team. The authors studied the
following patterns, cooperative work, and a sudden change
of leader process.

Navigation in an unknown environment for quadrotors
was studied and well-referred as guidance, navigation, and
control (GNC) algorithms. GNC got some research contribu-
tions, vision-based localization was used as well as an option
for 3D positioning [36], building a 3Dmaps using SLAMwas
also simulated by Jiang et al. for a quadrotor in Gazebo data
set combined by robot operating system (ROS) [12], and
SLAM combined with state estimation through inertial nav-
igation system (INS) was also researched, for bioinspired
autonomous landing using a Kinect camera [13]. Another
study was about the stereovision for a quadrotor to avoid sin-
gle and multiple obstacles defined in the ellipsoidal bounding
box. The stereotype vision was about detecting and localizing
obstacles, and an ellipsoid bounding was generated to
envelop the obstacles. The cone of possible contact was then
calculated with consideration of minimal distance to the
ellipsoid to avoid contact. Convex optimization later was
designed to generate optimal trajectory [37].

Recently, the neural network (NN) methods have been
used in quadrotors for identification and obstacle avoidance.
Structure from motion (SFM) with SLAM enabled by rein-
forcement learning-based approaches considering a CNN
scheme for obstacle avoidance was studied in [13], and
DRNN for updating PID gains strategy was implemented
successfully in [22].

Different from the previous work, in this paper, we focus
more on practical approaches in controlling the UAVs. Our

2 Wireless Communications and Mobile Computing

methods can be considered as a combination of different
techniques to support the UAVs. We present the mathe-
matic models, consider all the motion of the UAVs, apply
advanced techniques, formulate and design controllers, build
experimental work, and collect/adjust data from real UAVs.
Noise and disturbance are considered by the high and low
sampling times of white Gaussian noise to simulate the sen-
sor’s noise and wind gusts. The existing papers consider or
implement some points separately, such as PID control [8,
22], 3D mapping [12], obstacle avoidance [13, 20], tracking
trajectories [14–17], and surveillance optimization [19, 21].
Compared to existing work, we do not focus on only one
or two charateristics but almost major problems to be able
to support UAVs in real applications. In short, our contribu-
tions are addressed as follows.

(1) Detailed derivation of the quadrotor modelling and
development of three methods of control with all
schemes, algorithms, and simulations in the presence
of wind disturbance and actuators and sensors noises

(2) Implementation and realization of quadrotor model
with some algorithms

(3) Development of a 3D simulation environment to
visualize the quadrotor flight results to ease the per-
ception of control effectiveness

(4) Codes, Simulink models, and programs are publicly
available for researchers to be exploited as a bench-
mark for the studies

The rest of the paper is organized as follows. The
dynamics of UAVs are modelled in Section 2 with both math
models and illustrations. Simulation processes are presented
in Section 3. Some developments are provided with details in
Section 4. Finally, conclusions and future developments are
presented in Section 5.

2. Modelling of Dynamics

In this section, the mathematical model of the quadrotor is
developed utilizing the Newton Euler formalism. Hubb
forces or ground effects are not considered due to the valida-
tion of the model by many researchers. Used symbols are
defined in Table 1.

2.1. Reference Frame and Coordinate System Transformation
Matrix. To describe the movements of the UAVs, the follow-
ing two reference frames are used as follows.

Inertial reference frame fEg is a frame of reference with-
out acceleration in which Newton’s laws are satisfied. The
coordinate system associated with this frame has the origin

of coordinates (symbolized by OE) attached to an object that
is fixed relative to Earth. The position of the centre of gravity
of the drone in the inertial coordinate system is represented
by vector ξE = ðx, y, zÞ. The vector ΘE = ðϕ, θ, ψÞ describes
the direction of the device. The vector Φ is used to describe
the position and orientation of the device in the inertial

coordinate system: Φ = ½ξEΘE�T .
The reference system attached to the drone [38] is a fixed

frame of reference which moves along with the drone. The
origin OB of the coordinate system attached to the object
is taken to coincide with the centre of gravity of the device.
The coordinate axes are denoted by xB, yB, zB. The vector
vB = ½u v w�T and ωB = ½p q r�T describe the linear
and angular velocity vectors of the device, respectively. The
dimensional convention of reference systems is shown in
Figure 1.

Rotation matrix E
BRðϕ, ψ, θÞ converts from an object–

mounted coordinate system to inertial coordinate system
[39]:

Table 1: Symbol definition.

Symbol Definition

ϕ Roll

θ Pitch

ψ Yaw

JTP Inertia

B Thrust coef

D Drag coef

M Mass

I3×3 Identity matrix

Ti Motor torque ith

€T
E Acceleration

FE Forces

RΘ Rotation matrix

TΘ Transformation matrix

Ω Rotor speed

l Lever

g Gravity

I Inertia matrix

03×3 3 × 3 zero matrix

_V
B Linear accel

Ixx, Iyy , Izz Diagonal inertia

E
B
R f , θ,Ψð Þ = RZ Ψð ÞRY θð ÞR ϕð Þ =

cos θ cos Ψ sin ϕ sin θ cos Ψ − cos ϕ sin Ψ cos ϕ sin θ cos Ψ + sin ϕ sin Ψ

cos θ sin Ψ sin ϕ sin θ sin Ψ + cos ϕ cos Ψ cos ϕ sin θ sin Ψ − sin ϕ cos Ψ
−sin θ sin ϕ cos θ cos ϕ cos θ

2
664

3
775: ð1Þ

3Wireless Communications and Mobile Computing

Note: the coordinate transformation matrix is orthogo-

nal, so E
BR

−1 = B
ER = E

BR
T
.

2.2. Description of Device Movement. The drone is designed
with two pairs of reversible propellers, of which two propel-
lers rotating on the same side are arranged opposite each
other. By adjusting the speeds of these four propellers rea-
sonably, the drone will make the movements and navigation
as required. The thrust of propellers is calculated as follows.

Fi = ctω
2
i , ð2Þ

where ct is the thrust coefficient of the propellers (Ns2);
ωi is the angular velocity of the ith propeller (rad/s). The
movements of the UAVs are divided into the following
motions.

2.2.1. Suspension Motion (Keeping Balance at a Certain
Height) or Height Rise/Fall. To perform suspension motion,
the vehicle must control the propellers to rotate at the same
speed in order to create a thrust balanced with gravity and,
at the same time, suppresses the moments causing rotation.
Increasing or decreasing the rotational speed creates
height-based up and down movements. Note that the pro-
pellers must rotate at the same speed so that the torque gen-
erated by four propellers cancels each other out, thus
keeping the direction of the vehicle unchanged.

The combined thrust generated by the four propellers on
the device-mounted frame of reference:

U1 = F1 + F2 + F3 + F4 = ct ω2
1 + ω2

2 + ω2
3 + ω2

4
� �

: ð3Þ

2.2.2. Roll Motion (Rotation around the Oxb Axis). To per-
form roll rotation around the Oxb axis, it is necessary to
adjust the speeds of the propellers 2 and 4 while the veloci-
ties of the propellers 1 and 3 remain constant. If the speed
of propeller 2 (left) is higher than that of propeller 4 (right),
the device will rotate in a clockwise direction around the xb
axis, otherwise, it reverses the rotation. This rotation occurs
because of the moment difference between two sides of the
propellers of the device. Equation (4) represents the value

of the total moment on the reference frame mounted on
the device.

U2 = −τ1 + τ2 + τ3 − τ4 = ctl cos 45ð Þ −ω2
1 + ω2

2 + ω2
3 − ω2

4
� �

:

ð4Þ

Along with the rotation, the device will move accord-
ingly. The device moves to the right with clockwise rotation
(shown in Figure 2) and to the left with counter-clockwise
rotation.

2.2.3. Pitch Motion (Rotation around the yb Axis). To per-
form a pitch rotation around the yb axis, it is necessary to
adjust the speeds of the propellers 1 and 3 while the veloci-
ties of the propellers 2 and 4 are kept constant. If the speed
of propeller 1 (front) is higher than that of propeller 3 (rear),
the device will rotate right around the yb axis, otherwise, it
will rotate left. This rotation occurs because of the moment
difference between the two sides of the propellers of the
device. Equation (5) represents the value of the moment
on the reference frame mounted on the device:

U3 = −τ1 − τ2 + τ3 + τ4 = ctl cos 45ð Þ −ω2
1 − ω2

2 + ω2
3 + ω2

4
� �

:

ð5Þ

Along with the rotation, the device will move accord-
ingly. The device moves forward with a right rotation
(Figure 2) and backward with a left rotation around the yb
axis.

2.2.4. Yaw Motion (Rotation around the zb Axis). To make
yaw motion clockwise on the zb axis, it is necessary to adjust
the speeds of the propellers 2, 4 to increase by Δω, and the
speeds of the propellers 1, 3 to decrease by Δω. Increasing
and decreasing by the same amount of Δω ensure the same
height of the device when making yaw movement.

To make yaw movement counterclockwise on the zb
axis, it is necessary to adjust the speeds of the propellers 2,
4 to decrease by a Δω, and the speeds of the propellers 1, 3
to increase by Δω.

ZE

YE

Yb

Zb

Xb

XE

Figure 1: Inertial reference frame and reference system attached to the drone.

4 Wireless Communications and Mobile Computing

Equation (6) describes the relationship between the total
torque around the yaw axis with the speeds of the four pro-
pellers on the frame of reference attached to the object,
where cq is the coefficient of the ratio of the moment to
the rotational velocity.

U4 = cq −ω2
1 + ω2

2 − ω2
3 + ω2

4
� �

: ð6Þ

From (3) to (6), the force and torque generated from the
rotational speed of the propellers are summed up as follows:

U1 = ct ω2
1 + ω2

2 + ω2
3 + ω2

4
� �

,

U2 = ctl cos 45ð Þ −ω2
1 + ω2

2 + ω2
3 − ω2

4
� �

,

U3 = ctl cos 45ð Þ −ω2
1 − ω2

2 + ω2
3 + ω2

4
� �

,

U4 = cq −ω2
1 + ω2

2 − ω2
3 + ω2

4
� �

:

8>>>>>><
>>>>>>:

ð7Þ

2.3. Kinematic Model. The kinematic model describes the
device’s motion in reference frames through velocity equa-
tions, thereby determining the position and orientation of
the object.

2.3.1. Linear Velocity. The relationship between the linear
velocity of the device in the inertial frame of reference and
the reference frame on the body is as follows.

_ξ
E = E

BR ϕ, ψ, θð Þ × vB: ð8Þ

2.3.2. Angular Velocity. The matrix converting from the

angular velocity _Θ
E = ð _ϕ, _θ, _ψÞ in the inertial reference

frame to the angular velocity ωB = ðp, q, rÞ in the reference
frame on the object is as follows.

ωB = B
ET _Θ

E
: ð9Þ

B
ET =

1 0 −sin θ

0 cos ϕ sin ϕ cos θ
0 −sin ϕ cos ϕ cos θ

2
664

3
775: ð10Þ

From (8) to (10), the kinematic model of the device is as
follows [1]:

Xb

Yb

𝜔2 𝜔1

𝜔3
𝜔4

(a) Suspension (b) Height rise

Figure 2: Movements of the device along the zb axis.

_x =w sin ϕ sin ψ + cos ϕ cos ψ sin θ½ � − v cos φ sin ψ − cos φ sin ψ sin θ½ � + u cos ψ cos θ½ �,
_y = v cos ϕ cos ψ + sin φ sin ψ sin θ½ � −w cos ψ sin φ − cos ψ sin ψ sin θ½ � + u cos θ sin ψ½ �,
_z =w cos ϕ cos − θ½ � − u sin θ½ � + v cos θ sin φ½ �,
_ϕ = p + r cos ϕ tan θ½ � + q sin φ tan θ½ �,
_θ = q cos ϕ − r sin ϕ,

_ψ = q
cos ϕ
sin θ

+ r
cos ϕ
cos θ :

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

ð11Þ

5Wireless Communications and Mobile Computing

3. Simulation

In this section, PID and backstepping integrator will be
derived and demonstrated to control the quadrotor model
in Simulink subjected to trajectory tracking with noise and
disturbance consideration.

3.1. Trajectory Design. A 3D quadrotor model software was
used for real-time visualization, as shown in Figure 3.
The known validated mathematical model was considered,
and disturbance and noise were added as Gaussian white
noises to the model. Therefore, a low feeding rate Gauss-
ian noise was added as a perturbation to reproduce gust
wind effects on Cartesian positions. On the other side, a
very high feeding rate Gaussian noise was added to emu-
late the noise of sensors readings and to simulate the
unmodeled dynamics.

The 3D visualization model uses a multibody configura-
tion developed in Simmechanic, with all parts attached in
the same environment with 9 DOF. The drawings are
imported from Creo Parametric to constitute the complete
quadrotor. The 3D visualization is controlled online by the
control part of Simulink that executes mathematical simula-
tion of each control theory in the final synthesis of the Sim-
mechanic model.

A path tracking challenge has been raised. Lissajous
curves, which describe complex harmonic motion, were cho-
sen as a base trajectory to be followed with variable altitude
for surveillance. We generate the desired trajectory in
Matlab as Algorithm 1 as follows.

Figure 4 illustrates the 3D desired trajectory to be
followed in time reference. The horizontal motion of the
quadrotor was designed to cover a large surface of surveil-
lance, and the altitude was planned to follow an exponential
convergence to the desired height.

Another depth of challenge to the trajectory tracking was
given by assigning different initial positions for the quadro-
tor and the desired trajectory at time zero.

Nested loops are found to be a practical design strategy
to execute control approaches, as shown in Figure 5.

3.2. Calculation of Desired Roll and Pitch Angles

3.2.1. First Method. The first method is based on the calcula-
tion of those desired angles ϕd and θd from the desired posi-
tion while considering an instantaneous small ψ angle.
However, this function generates desired angles with more
discontinuities than tolerated for the needed derivative con-
tributions.

ux = cos ϕ sin θ cos ψ + sin ϕsinψ: ð12Þ

uy = cos ϕ sin θ sin ψ − sin ϕ cos ψ: ð13Þ

ψ<<1,
ϕ = arcsin −uy

� �
,

θ = arcsin ux/cos ϕð Þ:

8>><
>>: ð14Þ

3.2.2. Second Method. A second solution which is widely
used came trivially by solving the equations analytically:

ϕd tð Þ = arcsin sin ψ tð Þux − cos ψd tð Þð Þ
u2x tð Þ + u2y tð Þ : ð15Þ

θd tð Þ = arcsin ux tð Þ − sin ψd tð Þ sin ϕd tð Þð Þ
cos ψd tð Þ cos ϕd tð Þ : ð16Þ

Nonetheless, this method is related just to the dynamics
considered and limited toward more added consideration of
unmodeled dynamics.

3.2.3. Third Method. A third smoother method with a more
expensive calculation cost is based on direct nonlinear solv-
ing of the angles system.

The benefits of this third method can be hidden behind
the simplification and assumptions made while modelling.
In complicated modelling cases where we consider more
accurate modelling with no neglecting of minimal nonlinear
contribution, this method is more reliable and precise. Fsolve
has been used in Simulink as an interpreted function due to

Y

XZ

Figure 3: Euler 3D simulation of the quadrotor in Matlab Simmechanic environment.

6 Wireless Communications and Mobile Computing

the fact that fsolve is not among the functions supported for
code-generation in Embedded MATLAB function blocks.

3.3. Quadrotor PID Control. A design of multiple PID con-
trollers was approached for each position’s state. A tuning
of six PIDs parameters was performed in the Matlab-
Simulink environment. The objective of this PIDs strategy
is to stabilize the attitude based on inner looping that con-
trols angles (orientations) and their derivatives and then to
minimize linear position errors as a second-order stable
dynamics applied in the outer loop to ensure path following.
From a trivial perspective, the PID correction made for atti-
tude should be much quicker than the outer loops PID cor-
rections attributed for translation positions.

As shown in Figure 6, the simulation used several blocks.
PIDs are used for each linear and rotational position, a man-
ual tuning was proceeded to get desired responses, and
parameters for each PID can be done separately. For track-
ing a trajectory, a tracking error vector e of six components
ei is formulated with the objective to converge them expo-
nentially to zero. Each of these tracking errors is assigned
for one of the six-position states. For each control, we want
the state xi to follow the desired xid , we define

ei = xid − xi: ð17Þ

The derivation of this error ei is calculated as

_e1 = _ϕd − p: ð18Þ

To formulate an exponential stable error that converges
to zero, we may consider this dynamic:

€xid − €xi + Kd _ei + Kpei + Ki

ðt
0
ei τð Þdτ = 0: ð19Þ

€xi = €xid + Kd _ei + Kpei + Ki

ðt
0
ei τð Þdτ: ð20Þ

This methodology will be followed to generate all control
inputs for each PID loop.

3.3.1. PID Control of Quadrotor Results. The PID control has
been applied for all linear and angular positions. The simu-
lation demonstrated very satisfying following dynamics as
shown in Figure 7, the quadrotor trajectory in red, following
the blue desired reference while starting initially from differ-
ent spots. Figure 7 shows the result of the simulation using
the validated quadrotor model with PID control strategy to

follow the Lissajous desired trajectory with an acceptable
error considering the different initial positions.

Linear position tracking showed minimal error, and
wind gust simulation effect thru the low-rate Gaussian noise
is clear on quadrotor position, with a quick correction to
track. The angle tracking was also very efficient, observing
the noise introduced on the sensor by the high-rate white
Gaussian noise. Obtained results of the simulation were sat-
isfactory regarding the simple synthesis approach of PID
control.

3.4. Quadrotor Control by Integrator Backstepping. Integra-
tor backstepping (IBS) is a nonlinear approach that contrib-
utes to the integral benefits of the backstepping design. This
approach may ensure the asymptotic stability with attenua-
tion of steady-state errors with the help of the integral effect.
Its robustness was simulated for tracking in the presence of
external disturbance and internal noise. Control design will
be based on four IBS controllers. In fact, the four controllers
result from the under-actuation nature of the quadrotor,
which is based on just four actuators’ capabilities. The deri-
vation of those controllers is similar for both attitude angles
and altitude. X and Y control will be done systematically as
we ensure a validated tracking of desired ϕd and θd angles.
Thus, only one control will be derived in this paper. Once
we calculate Ui, we apply them to the next block to calculate
the voltages and control rotation of each motor.

3.4.1. Altitude. The first step in the IBS control strategy is to
define the tracking error for each rotation. Let us consider
the error for ϕ angle around Xb axes by derivation of this
error:

e1 = ϕd − ϕ, ð21Þ

_e1 = _ϕd − p, ð22Þ
where p is the angular rate around Xb. We need to control
the dynamics of p to converge to _ϕd . For that, the desired
tracking dynamic is calculated as

pd = c1e1 + _ϕd + α1

ðt
0
e1 τð Þdτ: ð23Þ

Hence, α1
Ð t
0e1ðτÞdτ represents the integral contribution

to cancelling the steady error. Let _e2 consider:

_e2 = pd − p: ð24Þ

By derivation of (24) and using of (22) and (23) and ϕ
dynamics, we can get:

_e2 = c1 _ϕd − p
� �

+ €ϕd + α1e1 − _θψa1 − _ϕa2Ωr − b1U2, ð25Þ

where an appearance of a control input U2 is shown. By
assuming a stable dynamic:

_e2 + c2e2 + e1 = 0: ð26Þ

1. t =0 : 0.2 : 30∗pi;
2. a =5; a =5; B =10; b =4; C =8; c =5; coef =0.07;
3. x =A∗cos(a∗coef∗t); y = B∗sin(b∗coef∗t);
4. z =C∗(1-exp(-5∗coef∗t));
5. plot3(x,y,z,'b’)
6. Grid on

Algorithm 1: Desired trajectory generation in Matlab.

7Wireless Communications and Mobile Computing

8

7

6

5

4

3

2

1

0
10

5

0

−5

−5

0

5

−10

Figure 4: Desired trajectory to be tracked by quadrotor for surveillance aim.

Outer loop higher control

Inner loop for attitude control

Generation
of desired

angles

QUADROTOR
DYNAMICS

non-linear
VisualizationAttitude

Control

Linear
position
control

Trajectory
generation

Figure 5: Nested control loops for a quadrotor.

Ui & wi
calculation QUADROTOR

DYNAMICS

Visualization
simmechanic

model
w2

w3
w4

U1
U2

U3
U4

Motors
dynamics

refAngles
finder

Noise of sensors

Perturbation

PID

PID

PID

PID

PID

PID
x ref

w1Trajectory
generation

y ref

z ref

𝜓 ref

 𝜃 ref

ϕ

Figure 6: PID control of quadrotor design.

8 Wireless Communications and Mobile Computing

6
4
2
0

0 10 20 30 40 50 60

Time (set)

x position tracking

70 80 90

−2X&
X 4 [m

]

−4
−6

X quadrotor
X desired

(a) X tracking

Time (set)

15
10

5
0

0 10 20 30 40 50 60

Y position tracking

70 80 90

−5Y&
Y 4 [m

]

−10
−15

Y quadrotor
Y desired

(b) Y tracking

Z quadrotor
Z desired

Time (set)

9
8
7
6

0 10 20 30 40 50 60

Z position tracking

70 80 90

5

Z&
Z 4 [m

]

4
3
2
1
0

(c) Altitude tracking

14

12

10

8

6

4

2

0
6

4
2 0

15

10

5

0

−2
−4X (m)

Z
(m

)

Y (m)

−6

−5

−10

−15

−8

3D position tracking of the quadrotor

Quadrotor position
Desired trajectory

(d) 3D tracking

Phi quadrotor
Phi desired

0 10

0.4
Phi tracking

Time (set)

0.3
0.2
0.1

−0.1

Ph
i &

 P
hi

d (r
ad

)

−0.2
−0.3
−0.4
−0.5

0

20 30 40 50 60 70 80 90

(e) Roll tracking

Phi quadrotor
Phi desired

0 10

0.02
Phi tracking

Time (set)

0.015

0.01

0.005

−0.005

−0.001

−0.015

0

20 30 40 50 60 70 80 90

Ph
i &

 P
hi

d (r
ad

)

(f) Yaw tracking

Figure 7: Continued.

9Wireless Communications and Mobile Computing

With c2 > 0, a control input that satisfies this assumption
can be calculated as follows:

U2 =
1
Ixx

1 − c21 + α1
� �

e1 + c1 + c2ð Þe2 − c1α1

ðt
0
e1 τð Þdτ

�

+ €ϕd −
_ϕ Iyy − Izz
� �

Ixx
− _θΩr

JTP
Ixx

#
:

ð27Þ

Systematically, the other control inputs derived from θ
and ψ errors are given by

U3 =
1
Iyy

1 − c23 + α2
� �

e3 + c3 + c4ð Þe4 − c3α2

ðt
0
e3 τð Þdτ + €θd

�

−
_ϕ _ψ Izz − Ixxð Þ

Iyy
−

_ϕJTP
IyyΩr

#
,

ð28Þ

U4 =
1
Izz

1 − c25 + α3
� �

e5 + c5 + c6ð Þe6
�

− c5α3

ðt
0
e5 τð Þdτ

�
  c3, c4, c5, c6, α2, α3ð Þ > 0:

ð29Þ

3.4.2. Altitude and Planar Position Control. Similarly, an alti-
tude tracking error is defined as

e7 = zd − z, ð30Þ

e8 = c7e7 + _zd + α4

ðt
0
e4 τð Þdτ: ð31Þ

Theta quadrotor
Theta desired

0 10

0.4
Treta tracking

Time (set)

0.3

0.1
0.2

0

−0.2
−0.1

Th
et

a
&

 T
he

ta
d(r

ad
)

−0.3
−0.4
−0.5

20 30 40 50 60 70 80 90

(g) Pitch tracking

Figure 7: PID trajectory tracking.

QUADROTOR
DYNAMICS

Visualization
simmechanic

model

w1
w2

w3
w4

U1
U2

U3
U4

Motors
dynamics

ref

𝜃 ref

Angles
finder

Noise of sensors

Perturbation

PID

PID

PID

PID

PIDTrajectory
generation

PID

Ui & wi
calculation

x ref

y ref

𝜓 ref

ϕ

z ref

Figure 8: IBS control design of quadrotor.

1. Require coefficients of correction
2. Read trajectory states
3. Read/call for the sensor’s reading/state estimations
4. Calculate errors, their derivatives & their summations
5. Calculate Ui by (28) to (30) & (33).
6. Calculate each rotor input

Algorithm 2: Algorithm integrator backstepping.

10 Wireless Communications and Mobile Computing

6
4
2
0

−2

X&
X d [m

]

−4

−8
−6

(a) X tracking (b) Y tracking

(c) Altitude tracking

14

12

10

8

6

4

2

0
6

4
2 0

15

10

5

0

−2
−4X (m)

Z
(m

)

Y (m)

−6

−5

−10

−15

−8

3D position tracking of the quadrotor

Quadrotor position
Desired trajectory

(d) 3D tracking

(e) Roll tracking (f) Pitch tracking

(g) Yaw tracking

Figure 9: IBS trajectory tracking.

11Wireless Communications and Mobile Computing

Its error dynamics can be tracked as

e8 = c7e7 + _zd + α4

ðt
0
e4 τð Þdτ − _z: ð32Þ

By derivation of this error:

U1 =
m

cos ϕ cos θ

� 	
g + 1 − c27 + α4

� �
e7 + c7 + c8ð Þ − c7α4

ðt
0
e4 τð Þdτ

� �
:

ð33Þ

ESC

ESC

ESC

ESC

Figure 10: Hardware architecture.

1. A. Include needed libraries;
2. B. Define PID coefficients values for roll, yaw & Pitch;
3. C. Declaration of variables:
4. + channels;
5. + counters;
6. + control Ui;
7. + battery level;
8. + calibration of gyro reading;
9. + PID intermediate variables, ...
10. D. Setup of the program:
11. + define microcontroller as I2C master for communication;
12. + define inputs & outputs with readiness led signs;
13. + communicate w/GYRO and calibrate readings with a function. (during calibration, silent the ESC by zero Ui);
14. + enable “PCICR” & define masks register for pins;
15. + keep zero Ui command while waiting;
16. + define state of launch.
17. E. the loop:
18. + call FCT of gyro reading;
19. + filter the noise of reading and transfer to deg/sec;
20. + define SATRT/STOP sequence by joystick, (using moor machine);
21. + reset all PID for new cycle for roll yaw pitch;
22. + recalculate the setpoint from channels;
23. + calculate the PID FCT;
24. + define led warning and state-dependent;
25. + limit max throttle (Ui);
26. + calculate signals of ESCs;
27. + compensate the control by battery discharge ranging of ESCs signal [min-max];
28. + keep motors always with zero Ui in case of waiting for the state;
29. +wait to complete 4ms, (250 hz).

Algorithm 3: Algorithm of PID control.

12 Wireless Communications and Mobile Computing

For both X and Y control, a simple stable second-order
tracking dynamics had been defined by a PID, then desired
angles were generated by direct calculation continuously to
energize the IBS block, shown in Figure 8, in order to calcu-
late the Ui control inputs using equations (28) to (30) and
(33).

3.4.3. Integrator Backstepping Algorithm. During the simula-
tion process, twelve coefficients were defined of IBS to the
eight errors dynamics and their integral actions (ϕ, θ, ψ,
and z). Errors should be calculated first at each step of sim-
ulation based on desired states and the measured outputs
and their derivatives. Then, Ui control inputs should be cal-
culated to excite the other blocks prior quadrotor nonlinear
model block. Algorithm 2 can summarize the IBS method is
illustrated as follows.

3.4.4. Quadrotor Control by Backstepping Integrator Result.
The simulation of IBS control showed an excellent stabiliza-
tion and very good tracking of the desired trajectory despite
the initial position difference, refer to Figure 9. The quadro-
tor tries quickly to catch the desired trajectory and follow it
with a tolerated error. IBS was validated as an approach for
quadrotor control to track the desired Lissajous curves. The
rejection of perturbation was well attributed relatively to
introduced noise and initial conditions.

At initial tracking, the quadrotor hardly caught the
desired trajectory, but once done, a very good tracking was
observed. Desired angle tracking was also excellent despite
all noise and disturbance. During implementation, coeffi-
cients should be wisely chosen to not excite the Ui to satura-
tion threshold. Nonrealizable control inputs will disastrously
deteriorate the performance of IBS.

The position tracking showed minimal tracking error.
The wind gust effect by low-rate Gaussian noise is observ-
able on quadrotor position, with the quick correction to
track. Angle tracking was also excellent and better than
PID attitude results, all observing the noise effect introduced
on the sensor by the high-frequency Gaussian noise.

4. Developments of the Quadrotor Model

In this section, the discussion will be made on building a
quadrotor model. The hardware/software architecture for
the quadrotor UAV will be detailed. The developed platform
was made for research and educational purposes. All UAVs
are equipped with a flight control unit (FCU) to ease the
exploitation of the inertial measurement unit (IMU) [33]
and other sensors.

4.1. Hardware Design. A basic design for a low-cost quadro-
tor solution is based on:

(i) DIY Mechanical Frame CEE-v22. It is used to fix all
components; a smaller and lighter body frame
ensures better stability

(ii) SunnySky V3058 high-efficiency brush-less motor

(iii) Electronic Speed Controller (ESC) 25-35 amp. They
use the energy from the battery to supply the

motors with variated voltage to control the motors’
speed via PWM generated from the CPU/RC
receiver (it is important to use fast-reacting ESCs
within the max current possible)

(iv) Propellers 8045 (304 × 114mm). The chosen pro-
pellers should generate enough thrust at a rela-
tively low RPM

(v) Processing Unit. Such as Arduino Mega 2560
which is a microcontroller board based on the
AT-mega2560 at 16MHz crystal oscillator. It has
54 digital input/output pins where we essentially
use 15 of them as PWM connections in parallel
with UARTS (serial communication ports). It has
a mission to execute the flight control program
and manage the communication between elec-
tronic parts

(vi) IMU. BNO055 (9 DOF sensor) is a system in pack-
age (SiP), integrating a triaxial 14-bit accelerome-
ter, a triaxial 16-bit gyroscope with a range of
±2000 degrees per second, a triaxial geomagnetic
sensor, and a 32-bit cortex M0+ microcontroller
running Bosch Sensortec sensor fusion software,
in a single package

(vii) The Battery. As an energy source, a LiPo battery of
2000 to 5000mAh with a high C factor of 30+
ensures an endurance of more than ten minutes
and a good reaction of motors

(viii) Transmitter and Receiver That Will Be Used by Pin
Change Interrupt Mode. A need for at least four
channels to control (height, pitch, yaw, and roll).

1. Calculate error between gyro reading & set point;
2. Calculate integration contribution for RYP w/max value;
3. Calculate: PID =min≤PIDi + p ∗ error + d ∗ (error
− exError)≤maxforRYP;
4. Update ex-error;
5. Send back values.

Algorithm 4: PID calling FCT.

1. Once PCI is called by pin voltage change.
2. If (last value == 0) then
3. If (new reading == 1) then
4. Last value =1;
5. Start timer;
6. Else
7. If (new reading == 0) then
8. Last value =0;
9. Receiver = time – Timer;
10. Send back the time of the pulse

Algorithm 5: ISR: interrupt subroutine.

13Wireless Communications and Mobile Computing

The complete drone is approximately 1.2 kg. An extra
power distribution card is added for a better setup.

4.1.1. Architecture. The connection between parts is shown
in Figure 10.

It is important to mount the gyro sensor with orientation
as mentioned in the sensor datasheet. For the microcontrol-
ler, it should be set the way it is easy to access to periphery
and sensors.

The battery should be fixed but never connected till a
confirmed use.

A tension divider is crucial to watch the battery level
from being discharged during the flight, once batteries are
discharged, the rotation of motors are directly affected, and
stability may be altered as well.

For the ESCs, it is sufficient to switch two cables to
change the rotation direction of the propeller.

The receiver channel outputs are connected to digital pins
to read the PWM generated by the receiver with PCI mode.

4.2. Software Architecture. The control code is developed in
an IDE environment in C language, and it is available to
be downloaded. The program should make the calibration
of the sensors first, then ensure a routine of a refresh rate
of 250Hz loop of the control, which makes a 4ms time for
each loop, since the ESCs are 1000 to 2000 microsecond con-
trollable, only 2ms are available time to read the sensor data
and calculate the control outputs.

Refresh rate is limited by the max refresh rate of RC con-
troller, by the min time of full program (reading, corrections,
and sending PWM) processing time.

Pin change interrupts routine is the way we interrupt the
running program to execute a special task as reading the new
2.4GHz receiver signal on the PWM ports.

It is always judicious to make a gyro calibration in a
static state to have a good reference. For the magnetometer,
a calibration for the soft and hard iron distortion is crucial.
The GYRO is connected just by CLK and SDA, where care
should be made about getting two correct bytes from the

Figure 11: Self-developed drone.

Figure 12: The designed quadrotor during flight.

14 Wireless Communications and Mobile Computing

same time sample and for the correct axis. For both the
accelerometer and gyroscope, we use a complementary filter
to smooth the reading data via the I2C protocol.

The gyro and the accelerometer each provide two bytes
of data for each axe in every iteration.

A PID correction should be set for possible rotation. The
values of the PID command are calculated based on the
length of the square signals of ESCs.

It is trivial that the PID of roll and pitch is similar. How-
ever, the yaw angle and height PID’s may be chosen as a slow
response for better attitude control. The PID output should
always keep the motor running as it does not exceed max
of 2000 microseconds (1800ms).

Use the proportional to rapid answer the error, the
derivative as a dumper, and the integral to kill the static
error. The battery voltage drop-down should be considered
and compensated.

4.2.1. The PID Based Control Algorithm. Algorithms 3, 4,
and 5 with functions of controlling are addressed as follows.

4.3. Experiments of the Quadrotor Model Flight. Obtained
experimental results with the designed platform showed that
the hovering mode was stable, but we observed a little drift
from the position due to gyro drift and level correction by
the accelerometer. No GPS was mounted to correct the
global position. The aim of the hovering mode experiment
was to prove the stability of the design without pilot control
and under normal conditions. Figure 11 shows the quadro-
tor on the ground and then during hovering flight.

Figure 12. demonstrates the control of the quadrotor
during flight with limited tilt angles. The quadrotor was agile
and responsive to the transmitted control inputs.

The test results show that our approaches proved more
effective in a number of aspects such as:

(i) A 9 DOF IMU is potentially better than a 6 DOF
IMU in the article [16] because it can use sensor
fusion (mixing the data from different sensors) in
order to improve the quality of the final output

(ii) We have added to the model both low feeding rate
and high-frequency Gaussian white noise instead
of only high feeding rate as in the test of the article
[40]. This increased the accuracy of the test results

(iii) The multi-PID control algorithm deployed on
Arduino Mega proves to be effective and simple,
making it easier and faster to approach research
on UAV technology than AR Drone 2.0 Quadcopter
Embedded Coder in the article [24]. Our methodol-
ogy allows users to deploy customizations and per-
form tests quickly and directly on the UAVs

4.4. Practical Depth of PID Implementation. Implementation
of such a method on microcontrollers is the easiest com-
pared to other approaches. Criteria of running speed of the
control loop and input saturation should be considered,
and this latter justifies the use of saturation over the control
Ui used for simulation. A control loop frequency at less than

50Hz may induce enough delay to destabilize the system
and may create too much oscillation that deteriorates even
IMU measurement quality.

Although the high-rate frequency of IMU readings, an
appropriate loop of execution should be wisely chosen to
not waste data from motion measurement.

An integral action should be considered to kill the
steady-state error. Nevertheless, a reset of integral contribu-
tion should be integrated with the process so as not to
diverge the summation of errors. The fast response actuation
of the electronic speed controller (ESC) over the brushless
motors is a key factor in stabilization. A delay from the exe-
cution loop or from ESC response will tremendously break
down the attitude performance. In the case of implementa-
tion, accelerometer data should be used to stabilize the quad-
rotor horizontally and define the zero level due to the
electronic drift of the gyro.

5. Conclusions and Future Developments

This paper presents three methods of quadrotor control:
PID, MPC, and IBS, which are all derived and simulated
on the validated nonlinear model of the quadrotor. The per-
formance and robustness are studied based on the trajectory
tracking and the implementation of curves used for surveil-
lance. Simulation considered adding white noise at a low
sample rate to contribute to the disturbance effect of wind
gusts and at a high sample rate for actuator noise despite set-
ting the quadrotor far away from the desired initial position
to simulate and analyze the response time. The experimental
work includes an application of developing an open-source
quadrotor model based on the Arduino Mega microcontrol-
ler. This model is stable and can be considered a develop-
ment study model. All the results show promising points
to support UAVs in practical applications.

In future work, the proposed algorithm would be
exploited with other control methods to be able to provide
more results, including comparison and correctness for fur-
ther developments. Deep learning and reinforcement learn-
ing techniques could be integrated into the algorithm to
provide more effectiveness for the UAVs.

Data Availability

All the data used to support the findings of this study are
included within the article as shown in the references.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

The authors would like to thank Thai Nguyen University of
Technology (TNUT), Ministry of Education and Training
(MOET), Vietnam, for the support.

15Wireless Communications and Mobile Computing

References

[1] T. Q. Duong, K. J. Kim, Z. Kaleem, M.-P. Bui, and N.-S. Vo,
“UAV caching in 6G networks: a survey on models, tech-
niques, and applications,” Physical Communication, vol. 51,
article 101532, 2022.

[2] M. T. Nguyen, C. V. Nguyen, H. T. Do et al., “UAV-assisted
data collection in wireless sensor networks: a comprehensive
survey,” Electronics, vol. 10, no. 21, p. 2603, 2021.

[3] H. T. Do, H. T. Hua, M. T. Nguyen et al., “Formation control
algorithms for multiple-UAVs: a comprehensive survey,” EAI
Endorsed Transactions on Industrial Networks and Intelligent
Systems, vol. 8, no. 27, article e3, 2021.

[4] H. T. Do, L. H. Truong, M. T. Nguyen et al., “Energy-efficient
unmanned aerial vehicle (UAV) surveillance utilizing artificial
intelligence (AI),”Wireless Communications and Mobile Com-
puting, vol. 2021, Article ID 8615367, 11 pages, 2021.

[5] L. Zhang, H. Zhao, S. Hou et al., “A survey on 5G millimeter
wave communications for UAV-assisted wireless networks,”
IEEE Access, vol. 7, pp. 117460–117504, 2019.

[6] M. T. Nguyen, L. H. Truong, and T. T. H. Le, “Video surveil-
lance processing algorithms utilizing artificial intelligent (AI)
for unmanned autonomous vehicles (UAVs),” MethodsX,
vol. 8, article 101472, 2021.

[7] H. T. Do, H. T. Hua, H. T. T. Nguyen, M. T. Nguyen, and
H. T. Tran, “Cooperative tracking framework for multiple
unmanned aerial vehicles (UAVs),” in International Confer-
ence on Engineering Research and Applications, pp. 276–285,
Cham, 2022.

[8] O. Bouaiss, R. Mechgoug, and R. Ajgou, “Modeling, control
and simulation of quadrotor UAV,” in 2020 1st Interna-
tional Conference on Communications, Control Systems and
Signal Processing (CCSSP), pp. 340–345, El Oued, Algeria,
2020.

[9] O. Mofid, S. Mobayen, and W.-K. Wong, “Adaptive terminal
sliding mode control for attitude and position tracking control
of quadrotor UAVs in the existence of external disturbance,”
IEEE Access, vol. 9, pp. 3428–3440, 2021.

[10] S. Musa, “Techniques for quadcopter modelling and design: a
review,” Journal of unmanned system Technology, vol. 5, no. 3,
pp. 66–75, 2018.

[11] D. H. Lyon, “A military perspective on small unmanned aerial
vehicles,” IEEE Instrumentation & Measurement Magazine,
vol. 7, no. 3, pp. 27–31, 2004.

[12] Z. Jiang, J. Zhu, Z. Lin, Z. Li, and R. Guo, “3D mapping of out-
door environments by scan matching and motion averaging,”
Neurocomputing, vol. 372, pp. 17–32, 2020.

[13] X. Dai, Y. Mao, T. Huang, N. Qin, D. Huang, and Y. Li, “Auto-
matic obstacle avoidance of quadrotor UAV via CNN-based
learning,” Neurocomputing, vol. 402, pp. 346–358, 2020.

[14] Y. Zou and B. Zhu, “Adaptive trajectory tracking controller for
quadrotor systems subject to parametric uncertainties,” Jour-
nal of the Franklin Institute, vol. 354, no. 15, pp. 6724–6746,
2017.

[15] R. Pérez-Alcocer and J. Moreno-Valenzuela, “A novel
Lyapunov-based trajectory tracking controller for a quadrotor:
experimental analysis by using two motion tasks,” Mechatro-
nics, vol. 61, pp. 58–68, 2019.

[16] O. Mofid and S. Mobayen, “Adaptive finite-time backstepping
global sliding mode tracker of quad-rotor UAVs under model
uncertainty, wind perturbation, and input saturation,” IEEE

Transactions on Aerospace and Electronic Systems, vol. 58,
no. 1, pp. 140–151, 2022.

[17] R. Wang and J. Liu, “Trajectory tracking control of a 6-DOF
quadrotor UAV with input saturation via backstepping,” Jour-
nal of the Franklin Institute, vol. 355, no. 7, pp. 3288–3309,
2018.

[18] L. A. Márquez-Vega, M. Aguilera-Ruiz, and L. M. Torres-
Treviño, “Multi-objective optimization of a quadrotor flock
performing target zone search,” Swarm and Evolutionary
Computation, vol. 60, article 100733, 2021.

[19] A. V. Borkar, S. Hangal, H. Arya, A. Sinha, and L. Vachhani,
“Reconfigurable formations of quadrotors on Lissajous curves
for surveillance applications,” European Journal of Control,
vol. 56, pp. 274–288, 2020.

[20] K. Guo, J. Jia, X. Yu, L. Guo, and L. Xie, “Multiple observers
based anti-disturbance control for a quadrotor UAV against
payload and wind disturbances,” Control Engineering Practice,
vol. 102, article 104560, 2020.

[21] N. Q. Vinh, “INS/GPS integration system using street return
algorithm and compass sensor,” Procedia Computer Science,
vol. 103, pp. 475–482, 2017.

[22] M. T. Nguyen and H. R. Boveiri, “Energy-efficient sensing in
robotic networks,” Measurement, vol. 158, article 107708,
2020.

[23] R. Miranda-Colorado and L. T. Aguilar, “Robust PID control
of quadrotors with power reduction analysis,” ISA Transac-
tions, vol. 98, pp. 47–62, 2020.

[24] L. Martins, C. Cardeira, and P. Oliveira, “Linear quadratic reg-
ulator for trajectory tracking of a quadrotor,” IFAC-PapersOn-
Line, vol. 52, no. 12, pp. 176–181, 2019.

[25] J. S. Shamma and J. R. Cloutier, “Gain-scheduled missile auto-
pilot design using linear parameter varying transformations,”
Journal of Guidance, Control, and Dynamics, vol. 16, no. 2,
pp. 256–263, 1993.

[26] H. Das, “Dynamic inversion control of quadrotor with a sus-
pended load,” IFAC-PapersOnLine, vol. 51, no. 1, pp. 172–
177, 2018.

[27] E. Altug, J. P. Ostrowski, and R. Mahony, “Control of a quad-
rotor helicopter using visual feedback,” in Proceedings 2002
IEEE international conference on robotics and automation
(cat. No. 02CH37292), vol. 1, pp. 72–77, Washington, DC,
USA, 2002.

[28] O. García, P. Ordaz, O. J. Santos-Sánchez, S. Salazar, and
R. Lozano, “Backstepping and Robust Control for a Quadrotor
in Outdoors Environments: An Experimental Approach,”
IEEE Access, vol. 7, pp. 40636–40648, 2019.

[29] N. Koksal, H. An, and B. Fidan, “Backstepping-based adaptive
control of a quadrotor UAV with guaranteed tracking perfor-
mance,” ISA Transactions, vol. 105, pp. 98–110, 2020.

[30] Y. Huang, W. Liu, B. Li, Y. Yang, and B. Xiao, “Finite-time for-
mation tracking control with collision avoidance for quadrotor
UAVs,” Journal of the Franklin Institute, vol. 357, no. 7,
pp. 4034–4058, 2020.

[31] J.-J. Xiong and E.-H. Zheng, “Optimal Kalman filter for state
estimation of a quadrotor UAV,” Optik, vol. 126, no. 21,
pp. 2862–2868, 2015.

[32] O. Mofid, S. Mobayen, C. Zhang, and B. Esakki, “Desired
tracking of delayed quadrotor UAV under model uncertainty
and wind disturbance using adaptive super-twisting terminal
sliding mode control,” ISA Transactions, vol. 123, pp. 455–
471, 2022.

16 Wireless Communications and Mobile Computing

[33] A. Kaba and E. Kyak, “Optimizing a Kalman filter with an evo-
lutionary algorithm for nonlinear quadrotor attitude dynam-
ics,” Journal of Computational Science, vol. 39, article 101051,
2020.

[34] V. C. Thanh, N. N. A. Quan, T. L. Thang Dong, T. T. Hoang,
andM. T. Nguyen, “Fusion of inertial andmagnetic sensors for
autonomous vehicle navigation and freight in distinctive envi-
ronment,” in International Conference on Engineering
Research and Applications, pp. 431–439, Cham, 2022.

[35] Y. Yue, H. Yang, F. Liu, and H. Zang, “Cooperative control for
multiple quadrotors under position deviations and aerody-
namic drag,” Mechanical Systems and Signal Processing,
vol. 147, article 107096, 2021.

[36] H. Liu, Y. Lyu, and W. Zhao, “Robust visual servoing for-
mation tracking control for quadrotor UAV team,” Aero-
space Science and Technology, vol. 106, article 106061, 2020.

[37] J. Park and H. Baek, “Stereo vision based obstacle collision
avoidance for a quadrotor using ellipsoidal bounding box
and hierarchical clustering,” Aerospace Science and Technol-
ogy, vol. 103, article 105882, 2020.

[38] M. Bhargavapuri, S. R. Sahoo, and M. Kothari, “Robust non-
linear control of a variable-pitch quadrotor with the flip
maneuver,” Control Engineering Practice, vol. 87, pp. 26–42,
2019.

[39] A. Khalifa and M. Fanni, “Experimental implementation of a
new non-redundant 6-DOF quadrotor manipulation system,”
ISA Transactions, vol. 104, pp. 345–355, 2020.

[40] M. N. Shauqee, P. Rajendran, and N. M. Suhadis, “Propor-
tional double derivative linear quadratic regulator controller
using improvised grey wolf optimization technique to control
quadcopter,” Applied Sciences, vol. 11, no. 6, p. 2699, 2021.

17Wireless Communications and Mobile Computing

	A Novel Framework of Modelling, Control, and Simulation for Autonomous Quadrotor UAVs Utilizing Arduino Mega
	1. Introduction
	2. Modelling of Dynamics
	2.1. Reference Frame and Coordinate System Transformation Matrix
	2.2. Description of Device Movement
	2.2.1. Suspension Motion (Keeping Balance at a Certain Height) or Height Rise/Fall
	2.2.2. Roll Motion (Rotation around the Oxb Axis)
	2.2.3. Pitch Motion (Rotation around the yb Axis)
	2.2.4. Yaw Motion (Rotation around the zb Axis)

	2.3. Kinematic Model
	2.3.1. Linear Velocity
	2.3.2. Angular Velocity

	3. Simulation
	3.1. Trajectory Design
	3.2. Calculation of Desired Roll and Pitch Angles
	3.2.1. First Method
	3.2.2. Second Method
	3.2.3. Third Method

	3.3. Quadrotor PID Control
	3.3.1. PID Control of Quadrotor Results

	3.4. Quadrotor Control by Integrator Backstepping
	3.4.1. Altitude
	3.4.2. Altitude and Planar Position Control
	3.4.3. Integrator Backstepping Algorithm
	3.4.4. Quadrotor Control by Backstepping Integrator Result

	4. Developments of the Quadrotor Model
	4.1. Hardware Design
	4.1.1. Architecture

	4.2. Software Architecture
	4.2.1. The PID Based Control Algorithm

	4.3. Experiments of the Quadrotor Model Flight
	4.4. Practical Depth of PID Implementation

	5. Conclusions and Future Developments
	Data Availability
	Conflicts of Interest
	Acknowledgments

