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Benefiting from the development of big data, edge computing, and deep learning, splendid breakthroughs have been made in
automatic speech recognition (ASR) in recent years. Since then, more and more smart products have chosen speech as the
interface for human-computer interaction, which causes popularity of edge intelligence (EI) enhanced automatic speech
recognition. While people are enjoying the social changes brought by speech recognition technology, a factor of instability
quietly emerged called audio adversarial example which is a type of audio deliberately generated by attackers via adding subtle
perturbations to the original audio signal. The added perturbations which sound like certain noise that cannot be precepted by
human but will cause ASR system make wrong transcription. Three detection algorithms for audio adversarial examples are
proposed in this thesis, namely, the robust detection algorithm based on WER (word error rate), the feature detection
algorithm based on ADR (adversarial ratio), and the collaborative detection algorithm based on neural network. The
experiment results show that three detection algorithms proposed in this thesis have a great discrimination on audio
adversarial examples and achieve high AUC scores. Among them, the cooperative detection is the best and the feature
detection is the worst. In addition, we found that robust detection algorithm tends to have a higher accuracy score but a lower
recall score, while feature detection algorithm tends to have the converse performance. Moreover, since the proposed
collaborative detection method combines the advantages of the robust detection and feature detection methods, it presents a
better performance with respect to accuracy, recall, and F1 score.

1. Introduction

With the evolution of deep learning, big data, and cloud
computing technologies, the accuracy of speech recognition
has improved substantially. The hardware cost of speech
data storage is also continually dropping. These two trends
have led to more and more smart products using speech as
the interface of human-computer interaction, which has
resulted in more opportunities for the intelligent speech
industry [1]. According to statistics from Frost and Sullivan,
the market for China’s intelligent speech industry has gone
from only 2.87 billion yuan in 2014 to 21.65 billion yuan
in 2019, at a compound annual growth rate of 53.2%.
Sullivan forecasts that China’s intelligent speech market
will reach 65.51 billion yuan in 2023.

With the merge of edge computing and artificial intelli-
gence, intelligent speech applications enhanced by EI are
now used in scenarios such as smart homes, smart cars,
smart medical devices, and smart customer service [2].
Internet companies, intelligent speech technology compa-
nies, and smart speech start-ups are all players in the global
market for intelligent speech products.

The increased availability of intelligent speech devices
has helped users realize the value of instinctive expression
when it comes to productivity, and consequently, users’
lifestyles are changing. However, speech adversarial samples
have emerged as a stumbling block. The adversarial sample
in speech recognition is defined as a type of audio gener-
ated by an attacker in order to deliberately add subtle dis-
turbances to the original audio. In terms of acoustic
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characteristics, the speech adversarial sample has slightly
more noise than the original audio, which the human
ear is not sensitive to. However, it will cause an automatic
speech recognition (ASR) system to transcribe errors. The
widespread use of ASR systems in intelligent speech
devices gives attackers more opportunities to do this. For
example, attackers can generate adversarial samples against
a certain type of ASR system in advance and then use
social media to disseminate the adversarial samples.
Adversarial samples could be input into the speech inter-
face of a smart car, and then transcribed into a series of
altered driving instructions, posing great danger to life
and property. Therefore, it is very important to study the
adversarial examples and defense mechanisms in speech
recognition.

Nilaksh Das and Madhuri Shanbhogue et al. in [3]
implemented the first interactive experimental tool, called
Adagio, for audio adversarial samples, which can attack
and defend the end-to-end Deep Speech model in real time
visually and auditorily. In [4], Iustina Andronic et al. also
discussed the possibility of MP3 compression as a defense
against adversarial samples. Krishan Rajaratnam et al. [5]
discussed the effect of combining audio preprocessing
methods on speech classification models, using six prepro-
cessing methods, including MP3 compression, AAC com-
pression, bandpass filtering, and audio translation. Zhuolin
Yang et al. [6] pointed out that speech is a time-domain sig-
nal with inherent time-dependent characteristics and that
the introduction of antinoise can lead to the destruction of
this dependence. Based on this assumption, we propose the
concept of using temporal dependency (TD) for detection,
which uses the ratio of the longest common prefix of partial
and full transcription to the length of the entire text as a
detection indicator. Tejas Jayashankar et al. [7] first pro-
posed applying the concept of dropout [8] to the detection
of audio adversarial samples. Victor Akinwande and Celia
Cintas [9] introduced a novel idea, which regards the detec-
tion of adversarial samples as anomalous pattern (AP) detec-
tion in the ASR model space. The author assumes that the
adversarial sample will cause abnormal activation of some
nodes in the neural network. Based on this, the author uses
the subset scan method to search for the most abnormal
subset of data observations and then uses nonparametric
scan statistics. This method quantifies the abnormality of
the subset as a numerical score between 0 and 1, specifically
the Berk–Jones test statistics [10] method. Qiang Zeng et al.
[11] combined the fact that different ASR systems use differ-
ent architectures, parameters, and training datasets to cause
differences in the same audio transcription with the idea of
multiversion programming [12], and proposed a novel
method of adversarial sample detection, called MVP-EARS.
This method uses ready-made ASR algorithms to determine
whether the audio is an adversarial sample. Saeid Samizade
et al. [13] proposed for the first time that the detection of
adversarial samples is a binary classification problem. Based
on this, this paper proposes to convolutional neural network
(CNN) detection, which involves using the CNN model to
train the detection method of adversarial samples and
benign samples.

The main work of this paper in voice adversarial sample
defense is as follows:

(1) We propose a robust detection algorithm based on
word error rate (WER) which is based on the fact
that adversarial samples are obtained by adding a
small amount of noise to a normal sample. The algo-
rithm detects the audio using spectral subtraction for
noise reduction, then uses the WER to measure the
impact of noise reduction on the audio, and then
trains a classifier to differentiate adversarial samples
from benign samples. The proposed approach is
superior to other approach in theory and experimen-
tal results

(2) We propose a feature detection algorithm based on
adversarial effect derived from the fake sample to
improve the method of directly using the entire
speech feature for detection. In order to characterize
the adversarial nature of a certain frame and a
certain speech, the proposed approach attempts to
incorporate the characteristic of voice sample into
neural networks, and finally, a classifier is trained
to distinguish adversarial samples from the normal
samples

(3) Aware of the single and linear characteristics of the
above two methods, we pro-pose a neural network-
based collaborative detection algorithm and intro-
duce a binary neural network model to fit the
nonlinear relationship between WER, adversarial
degree, and adversarial samples, in order to further
improve the security and discrimination capability
of the detection algorithm. The robust detection
algorithm based on WER and the calculation
method based on adversarial degree are combined
with the waveform characteristics of the voice itself
to extract voice features. This combined method
can better restore the audio itself and also provides
a benign input feature for the calculation of the
neural network, thereby ensuring the accuracy of
the calculation results and a high recall rate

2. Related Work

2.1. Attack Model. ASR technology converts human speech
into text [14–16]. From speech signals to text characters,
ASR technology spans multiple basic and cutting-edge disci-
plines such as acoustics and linguistics, signal processing,
computers, and artificial intelligence. Although research on
speech recognition began as early as the 1950s, due to its
complexity, the accuracy of speech recognition was not very
high until the emergence of neural networks and the rise of
end-to-end technology [17, 18]. Since then, the accuracy of
speech recognition rate has been advancing rapidly. Com-
pared with the traditional DNN-HMM [19] hybrid model,
the end-to-end ASR system omits the steps of aligning text-
and context-sensitive phonemes and can directly start train-
ing from the neural network without multiple iterations.
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All the theoretical research and experiments in this
paper are based on Deep Speech, an open source, end-to-
end ASR system [20]. The network structure is shown in
Figure 1. The MFCC feature of speech is used as input.
The core is an RNN model with correctionist temporal clas-
sification (CTC) loss [21] as the loss function; the output is
the probability distribution of the character sequence.

The Deep Speech model consists of 5 hidden layers. For
input x, we use hl to denote the lth layer and h0 to denote the
input. The first 3 layers are fully connected layers. For the
first layer, the input at time t is not only the characteristics
xt of time t, but also the characteristics of its front and back
C frames, totaling 2C + 1 frames. The first 3 layers are calcu-
lated by

hlt = g Wlhl−1t + bl
� �

, ð1Þ

where gðzÞ =min ðmax ðz, 0ÞÞ and the maximum value is
limited on the basis of ReLU, so it is also called Clipped
ReLU. The fourth layer is a two-way RNN, as shown in

hft = g W4h3t +Wf
τh

f
t−1 + b4

� �
,

hbt = g W4h3t +Wb
τh

b
t+1 + b4

� �
:

ð2Þ

The most common RNN is used here instead of LSTM/
GRU in order to make the network structure simple and
consistent and to facilitate the optimization of calculation
speed. In this two-way RNN, the parameters input to the
hidden unit are shared (including bias), and the RNN in
each direction has its own hidden unit and hidden unit
parameters. hf is calculated from time 1 to time T , and hb

is calculated from time T in turn. The fifth layer will add

the two outputs of the fourth layer bidirectional RNN as
its input, as shown in

h4t = hft + hbt ,

h5t = g W5h4t + b5
� �

:
ð3Þ

The last layer is a fully connected layer without activa-
tion function, which uses softmax to turn the output into a
probability corresponding to each character, as shown in

h6t,k = ŷt,k = P ct = k xjð Þ =
exp W6

kh
5
t + b6k

� �

∑jexp W6
j h

5
t + b6j

� � : ð4Þ

After calculating Pðct = kjxÞ, CTC can be used to calcu-
late Lðŷ, yÞ and find the gradient of L to the parameter.

2.2. CW Attack. The CW attack is a white-box targeted
attack against the ASR system, derived from the literature
of Nicholas Carlini and David Wagner [22]. In this method,
we propose to improve the CTC loss function y introducing
the L2 norm of noise distortion and using the Adam opti-
mizer to simultaneously optimize CTC loss and distortion
to achieve a balance between distortion and CTC Loss. The
loss function is shown by

minimize δj j22 + c ⋅ l x + δ, tð Þ
such that dBx δð Þ ≤ τ

dBx δð Þ = dB δð Þ − dB xð Þ
, ð5Þ

where δ is the added noise; c is the weight; x is the original
audio; l is the CTC loss function; t is the target transcription
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Figure 1: Deep Speech network model.
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text; dBxðδÞ is the distortion of the noise δ relative to the
original waveform x, measured in decibels (dB); τ is the
maximum distortion constant; and dBð⋅Þ is the logarithmic
scale which is used to measure the relative loudness of audio
or noise samples; the calculation method is shown in

dB xð Þ =maxi20 ⋅ log10 xið Þ, ð6Þ

where xi represents the value of the i
th sampling point of the

waveform x.
Why can CW attacks be used to generate adversarial

examples? It should be noted that the CTC loss function
reflects the relationship between the target transcription text
and its corresponding audio. When the audio does not
match the text, the CTC loss is larger. Therefore, reducing
the CTC loss of the audio to is equivalent to increasing the
CTC loss of the audio and the original transcribed text, but
the direction of its increase is to approach. In addition, to
be able to converge as quickly as possible, we use the fast
gradient thinking in the FGSM algorithm. In each iteration,
loss is used to derive the added noise to obtain the gradient
that makes the loss function change the fastest, and the dis-
turbance noise is “updated” along this gradient direction
until the transcription target is reached.

Figure 2 shows a comparison of the audio waveform
before and after the CW attack. The original audio content
is “but everything had changed,” and the CW attack is suc-
cessfully transcribed as “nothing is impossible.” It is clear
that the CW attack modifies the entire waveform. The pro-
nunciation segment of the adversarial sample has a greater
similarity to the original waveform, while the silent segment
has a significant gap. In addition, compared with the original
audio, we can hear obvious TV-like snowflake noise.

3. Algorithms

In this section, we introduce our proposed audio adversarial
sample detection model. As shown in Figure 3, the model
includes seven components.

(i) Speech interface module: Corresponding to the
upper left corner of Figure 3, this module is respon-
sible for detecting the legality of input audio files,
that is, whether the sampling rate and format meet
the specifications, and then converting the speech
into the form of a one-dimensional vector

(ii) Noise reduction module: The core of the robust
detection algorithm, this module is responsible for
noise reduction and storage of audio. Here, it
imitates the code style of the audio adversarial
sample attack library and encapsulates all the noise
reduction-related code into the denoise.py file.
Called through the interface of the denoise input
audio, the function returns the save path of the
audio after noise reduction

(iii) Feature extraction module: This module, which
forms the core of the feature detection algorithm,
is responsible for extracting the feature vector of

the filter banks of the audio. In addition, the mod-
ule is responsible for the extraction of MFCC fea-
tures; that is, another DCT operation is performed
on the basis of the filter banks for Deep Speech
voice recognition system input

(iv) Speech recognition system: This system is responsi-
ble for transcribing the input MFCC features into
human-understandable text

(v) WER calculation module: (described in Section 3.1)

(vi) Adversity calculation module: (described in Section
3.2)

(vii) Two-class neural network: (described in Section
3.3)

3.1. Robust Detection Algorithm Based on Word Error Rate.
The core of the robust detection algorithm based on WER
is spectral subtraction noise reduction. In this method, the
first spectral subtraction noise reduction is performed on
the audio to be detected [23], and then, the audio is tran-
scribed before and after noise reduction through the ASR
system to calculate the WER of the audio to be detected.
Finally, according to the differentiation of adversarial sam-
ples based on WER, a classifier is designed for detection.
The algorithm principle and process are as follows:

According to the generation process of adversarial
samples, let yðnÞ be an audio adversarial sample with added
antinoise, and then yðnÞ is composed of original audio xðnÞ
and additive noise dðnÞ; that is, the form of the additive
model is shown in

y nð Þ = x nð Þ + d nð Þ: ð7Þ

The Fourier transform on both sides of the equation is
shown in

Y ωð Þ = X ωð Þ +D ωð Þ: ð8Þ
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Figure 2: Audio waveform comparison before and after CW attack.
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If expressed by the power spectrum, the form of the
additive model is shown in

Y ωð Þj j2 = X ωð Þj j2 + D ωð Þj j2 + 2 Re X ωð ÞD ωð Þ
n o

: ð9Þ

Here, 2 Re fXðωÞDðωÞg is called the cross term. Due to
the vibration of the vocal organs, the speech signal is usually
nonstationary. But if only one of the frames is intercepted,
assuming that it is 10 to 30 ms, the speech in this frame
has a stationary characteristic. In the same way, the noise
signal is also stable or slowly changing at the microscopic
scale. Therefore, it is considered that the mean value of the
additive noise dðnÞ is 0, and is not related to xðnÞ; that is,
the cross term is 0. The above formula is simplified as

X ωð Þj j2 = Y ωð Þj j2 − D ωð Þj j2: ð10Þ

In the speech signal, it is generally considered that there
is no speech activity in the first few frames, so the first few
frames can be regarded as pure noise signals; that is, the
noise spectrum jDðωÞj2 can be estimated using these frames.
Because the phase of the speech signal will not affect
humans’ understanding of speech, after obtaining the ampli-
tude spectrum of the original audio, the phase of the speech
adversarial sample can be used to approximate the speech
phase of the original audio. At this time, an approximation
original audio can be obtained in theory.

Further, we use the audio before and after noise reduc-
tion to obtain the reference text and the predicted text
through the ASR system. We hope that the impact of noise
reduction can be reflected in the differences in the text. To
measure the inconsistency between two paragraphs of text,
this method uses WER.

WER is generally used to compare predicted text and
reference text in units of characters and to quantify the dif-
ference between the two texts. It is typically used to measure
the performance of an ASR system and is a key indicator in

the field of speech recognition. Its calculation formula is
shown in

WER = S +D + I
N

=
S +D + I
S +D + C

: ð11Þ

Note that S is the number of words that need to be
replaced in the reference text, D is the number of words that
need to be deleted in the reference text, I is the number of
words that need to be inserted into the reference text, and
C is the correct number of words in the reference text. As
a result, N = S +D + C is the character length of the refer-
ence text.

The numerator of the WER is equivalent to the edit
distance of two paragraphs of text [24]. Editing distance is
defined as the minimum operation required to change from
one text to another. The executable operations include
replacing a character, deleting a character, and inserting a
character. The industry has a classic dynamic programming
solution to this problem, and its state transition equation is
shown in

DPi,j =min

DPi−1,j−1 + 0 if hi = rj

DPi−1,j−1 + 1 Substitutionð Þ
DPi,j−1 + 1 Insertionð Þ
DPi−1,j + 1 Deletionð Þ

0
BBBBB@

; ; ð12Þ

where h is the predicted text, r is the reference text, and
DP is the matrix used for state transition which dimension
is jhj × jrj .
3.2. Feature Detection Algorithm Based on Adversarial
Degree. The core of the feature detection algorithm based
on adversarial degree is the extraction and application of fil-
ter banks features. In this method, we first extract the filter
banks of the audio to be detected and then calculate the
antagonism of the audio to be detected based on the filter
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Figure 3: Speech adversarial sample detection model.
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banks. Finally, according to the degree of discrimination of
adversarial samples, a classifier is designed for detection.
The algorithm principle and process are as follows.

3.2.1. Pre-Emphasis. The first step of the algorithm is to
apply a pre-emphasis filter to the signal. Compared with
the low frequency, the high frequency usually has a smaller
amplitude, so the pre-emphasis filter can be used to bal-
ance the spectrum and amplify the high frequency. In
addition, the pre-emphasis can also avoid numerical prob-
lems during the Fourier transform operation and improve
the signal-to-noise ratio (SNR). The specific calculation
formula is shown in

y tð Þ = x tð Þ − αx t − 1ð Þ, ð13Þ

where x is the speech signal, y is the signal after pre-
emphasis, and α is the pre-emphasis coefficient, which is
generally selected as 0.95 or 0.97.

3.2.2. Framing. After pre-emphasis, the signal needs to be
divided into short-time frames. Under normal circum-
stances, the frequency in the speech signal is not static, and
the Fourier transform of the entire speech signal will lose
the frequency contour of the signal. Therefore, the signal is
also processed in units of frames, and then, the approximate
value of the signal frequency profile is obtained by merging
adjacent frames. In speech processing, the frame size is usu-
ally set to 25ms.

3.2.3. Window Adding. After the signal is cut into frames, a
window function such as a Hamming window needs to be
applied to each frame to offset the assumption of unlimited
data made by the fast Fourier transform (FFT) and reduce
spectrum leakage. The form of the Hamming window is
shown in

w n½ � = 0:54 − 0:46 cos 2πn
N − 1

� �
, ð14Þ

where 0 ≤ n ≤N − 1 and N is the length of the window.

3.2.4. Fourier Transform and Power Spectrum. Next, we per-
form short-time Fourier transform on each frame, which is
also called N-point FFT. N is usually 256 or 512. The power
spectrum calculation formula is shown in

P =
FFT xið Þj j2

N
, ð15Þ

where xi is the i
th frame audio signal.

3.2.5. Filter Banks. Finally, the Mel-level triangular filter
(usually 40 filters) is applied to the power spectrum to
extract the filter banks features. The Mel scale imitates the
human ear’s perception of sound; that is, it has a higher
discriminative power at a lower frequency and a lower dis-

criminatory power at a higher frequency. The conversion
formula of Hertz f and Mel m is shown in

m = 2595 log10 1 +
f

700

� �
,

f = 700 10m/2595 − 1
� �

:

ð16Þ

Each filter in the Mel filter bank is triangular, with a
response of 1 at the center frequency, and linearly decreases
to 0 toward the center frequency of the adjacent filters. The
filters in the Mel filter bank are shown in

Hm kð Þ =

0 k < f m − 1ð Þ
k − f m − 1ð Þ

f mð Þ − f m − 1ð Þ f m − 1ð Þ ≤ k < f mð Þ

1 k = f mð Þ
f m + 1ð Þ − k

f m + 1ð Þ − f mð Þ f mð Þ < k ≤ f m + 1ð Þ

0 k > f m + 1ð Þ

0
BBBBBBBBBBBB@

,

ð17Þ

where m is the subscript of the filter bank; in this method
1 ≤m ≤ 40, f ðmÞ is the center frequency of the mth triangu-
lar filter, and HmðkÞ represents the response of themth trian-
gular filter at k Hz. Because the human ear’s perception of
sound is not linear, it is necessary to use the log function
for nonlinear processing at the end.

3.2.6. Confrontation. Statistical observation of the filter
banks of benign and adversarial samples reveals that the
probability of positive values in the filter banks features of
adversarial samples is significantly higher than that of
benign audio samples. In addition, the longer the noise dura-
tion, the greater the noise amplitude, and the greater the
probability of a positive value. Based on this, we propose
the concept of adversarial frames. Frames with nonnegative
filter banks feature values are regarded as adversarial frames,
which indicate the degree of disbelief in this frame.

Furthermore, the speech signal is counted in units of
frames in filter banks, and the concept of adversarial degree
is proposed, which represents the proportion of adversarial
frames in the audio. The greater the proportion, the greater
the degree of disbelief in the audio, that is, the greater the
possibility of treating it as a confrontational sample. The
smaller the proportion, the more authentic the audio is.
The calculation method of antagonism is shown in

ADR = ∑i f ≥ 0∀f ∈ feaið Þ
N

, ð18Þ

where f ea is the feature matrix of the audio filter banks and
N is the first dimension of f ea, which is related to the audio
duration.
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3.3. Collaborative Detection Algorithm Based on Neural
Network. All single detection algorithms may bring about
the problem of insufficient robustness, and the algorithm
proposed in this paper is no exception. An attacker can
deliberately reduce a single index to carry out more
advanced secondary attacks. In addition, the binary classifi-
cation in the real scene is usually not linearly separable,
and all the methods that use linear classification will inevita-
bly result in the lack of a certain performance index of accu-
racy or recall. Therefore, to further improve the robustness
of the model and the algorithm’s discrimination against
adversarial samples, we combine the methods proposed in
Sections 3.1 and 3.2 to provide a better detection method.

Here, we regard WER and adversarial degree as the char-
acteristics of artificially extracted speech samples and then
use neural network for nonlinear fitting training to achieve
the effects of classification and detection.

In this paper, a lightweight binary neural network is
selected. In addition to the input layer and the output layer,
it only includes two hidden layers and the corresponding
dropout layer, as shown in Table 1.

4. Implementation and Evaluation

4.1. Databases. The Common Voice [25] corpus is an initia-
tive from Mozilla, which contains six files with tab-separated
values (TSV files) and a single clips subdirectory that con-
tains all of the audio data, where each of the six TSV files
represents a different segment of the voice data, with all six
having the following column headers: [client_id, path, sen-
tence, up votes, down_votes, age, gender, accent]. It is a
collection of self-recorded voices uploaded by many users
on the Common Voice website. The text content comes
from many public domains, such as blog posts submitted
by users, old books, movies, and other public speeches.
According to Mozilla, the main purpose of the project is to
train and test the ASR system. The goal is to help teach
machines how to speak, but Mozilla also encourages its use
for other purposes.

The Common Voice corpus is divided into three parts.
The “valid” subset is the audio that has been heard by at least
two people and that most of the listeners think matches the
text. The “invalid” subset contains the audios that do not
match their corresponding text judged by at least 2 persons.
And the remaining audios form the subset named “other”.
Furthermore, “valid” and “other” are divided into three
parts: “dev” is used for development and experimentation,
“train” is used for speech recognition training, and “test” is
used for testing WER.

Considering the cost in time and hardware, this paper
finally selected 8071 audio files of “cv-valid-dev” and “cv-
valid-test” as the preliminary screening of the dataset.

The audio files of the Common Voice corpus are all in
.mp3 format. Therefore, first, the format conversion of the
preliminary audio files is required, and then Deep Speech
is used for transcription, and the WER index is tested.
According to the results, Deep Speech reached an average
WER of 7.33% and performed well on the preliminary
screening dataset. Finally, this paper screened out 1,200

speech samples with a WER of 0 and the length of the tran-
scribed text not exceeding 57 as the experimental benign
sample dataset and used the CW attack to generate the cor-
responding adversarial sample dataset. If the length of the
transcribed text of the benign sample does not exceed 37,
the CW attack target is set to “nothing is impossible”; other-
wise, the attack target is set to “if winter comes can spring be
far behind?”

4.2. Environment. The hardware environment of the experi-
ment in this article is shown in Table 2.

The software environment of the experiment in this
paper is shown in Table 3.

In Table 3, Deep Speech code is Mozilla’s code imple-
mentation of Deep Speech’s speech recognition model, and
Deep Speech model is a trained model file that stores the
weights, biases, gradients, and other variable values of the
model. We need to pay attention to compatibility when
using the Python package. The adapted version number is
given here. CUDA and cuDNN are drivers that need to be
installed when using Nvidia graphics cards. We can also
install the TensorFlow version, if it is the correct version.

4.3. Indicators. In order to better introduce the two-category
index, a confusion matrix is first introduced here. The con-
fusion matrix is shown in Table 4.

4.3.1. ACC. ACC indicates the proportion of samples with
correct predictions to the total samples. The ACC calcula-
tion formula is shown in

ACC =
TP + TN

TP + TN + FP + FN
: ð19Þ

4.3.2. AUC. The area under the curve (AUC) represents
the area under the ROC curve. Here, in order to better
understand the ROC curve, we first introduce the true
positive rate (TPR) and false positive rate (FPR). TPR
represents the proportion of all positive samples in the
dataset that are correctly predicted. The calculation for-
mula is shown in

FPR =
TP

TP + FN
: ð20Þ

Table 1: Two-class neural network architecture.

Layer (type) Output shape

dense_1 (dense) (None, 64)

activation_1 (activation) (None, 64)

dropout_1 (dropout) (None, 64)

dense_2 (dense) (None, 64)

activation_2 (activation) (None, 64)

dropout_2 dDropout) (None, 64)

dense_3 (dense) (None, 1)

activation_3 (activation) (None, 1)
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FPR represents the proportion of negative samples
that are predicted to be positive samples. The calculation
formula is shown in

FPR =
TP

TP + FN
: ð21Þ

Every time a threshold is set, a set of TPR and FPR values
can be obtained. Therefore, the score of each sample in the
test set is set as a threshold, so that multiple sets of TPR
and FPR values can be obtained. At this time, FPR is used
as the abscissa and TPR as the ordinate to draw the ROC
curve.

4.3.3. Precision. Precision represents the proportion of
positive samples that are correctly predicted to all positive
samples. The calculation formula is shown in

Precision =
TP

TP + FP
: ð22Þ

4.3.4. Recall. Recall represents the proportion of positive
samples that are correctly predicted to all positive samples.
It basically has the same meaning as the true rate, except that
the name is different. The calculation formula is shown in

Recall =
TP

TP + FN
: ð23Þ

4.3.5. F1 Score. F1 score is defined as the harmonic mean of
precision and recall. The calculation formula is shown in

F1 = 2 ×
Precision × Recall
Precision + Recall

: ð24Þ

4.4. Result and Analysis. Figures 4 and 5 show the compari-
son diagrams of WER and adversarial degree distribution of
benign samples and adversarial samples generated by CW
attacks. According to the WER distribution map, it is clear
that the WER of the benign samples is concentrated in the
range of 0 to 0.1, while the WER of nearly every adversarial
sample is greater than 0.1. Furthermore, according to the
adversarial degree distribution map, it is clear that the
WER of the adversarial samples is concentrated in the range
of 0.9 to 1.0, while the benign samples have a wider distribu-
tion range, but most of them are less than 0.9. Therefore, the
WER and adversarial degree have a good degree of success in
differentiating the adversarial samples generated by the CW
attack. In terms of the distribution ratio, the differentiation
capability of adversarial degree is slightly weaker than that
of the WER.

Figure 6 shows the joint distribution diagram of WER
and adversarial degree of the benign sample and the
adversarial sample generated by the CW attack. The bound-
ary between the benign sample and the adversarial sample is
relatively clear, with points crossing only sporadically. It can
be concluded that the collaborative detection algorithm is
very successful at differentiating the adversarial samples
generated by the CW attack.

Figure 7 shows the ROC curves of the three detection
algorithms against CW attacks. The upper left corners of
the three curves are infinitely close to the ð0, 1Þ point, and
the AUC value is greater than 0.99, indicating that these
three algorithms perform very well in detecting CW attacks.
In addition, the ROC curve of the collaborative detection
completely covers the other two curves, indicating that the
performance of the collaborative detection algorithm is bet-
ter than that of a single detection. Because a single detection
has a high degree of discrimination against the adversarial
samples generated by the CW attack, the improvement of
the discrimination degree by coordinated detection is lim-
ited. The ROC curves of robust detection and feature

Table 2: Hardware environment.

Items Parameter

CPU Intel Xeon E3-1230v5

RAM 16GB DDR4

GPU NVIDIA Quadro K420

Storage 1 T SSD

Table 3: Software environment.

(a)

Component Version

Ubuntu 16.04

Python 3.5.2

Deep Speech code 0.4.1

Deep Speech model 0.4.1

CUDA 9.0

cuDNN 7.0

(b)

Python packages Version

pandas 0.24.0

numpy 1.16.4

Keras 2.2.4

ds-ctcdecoder 0.4.1

tensoflow-gpu 1.12.0

scipy 1.4.1

Table 4: Confusion matrix.

Actual result
P N

Prediction
P TP FP

N FN TN

whereT and F represent true and false, and P and N represent positive and
negative.
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detection overlap. In terms of the AUC value, the robust
detection performs the best.

Next, we will further discuss the algorithm in terms of its
specific performance on the test set, that is, ACC, accuracy,
recall, and F1 score. Table 5 shows the CW attack detection

indicators. By comparing the three detection algorithms, we
can draw three conclusions.

(1) The three detection algorithms all have a good degree
of discrimination against adversarial samples in CW
attack scenarios, with the collaborative detection
algorithm the best, followed by the robust detection
and the feature detection. Because the collaborative
algorithm also detects the resistance robust detection
characteristics, such as WER, and the feature-
sensitive characteristics of neural networks, its suc-
cess rate is higher than that of the other two. Feature
changes often affect the robustness of the system, so
in terms of index values, robustness, and detection
methods are better than feature detection methods

(2) Robust detection algorithms based on WER tend to
have a higher accuracy rate, but the recall rate is
low. Feature detection algorithms based on adversar-
ial degree tend to have a higher recall rate, but the
accuracy rate is low. It shows that the robust detec-
tion algorithm based on the suberror rate has higher
accuracy in the retrieval accuracy rate than the
feature detection based on adversarial degree. This
also confirms the conclusion (1) from another
aspect, that is, the robust detection method better
than feature detection methods

(3) The collaborative detection algorithm based on neu-
ral network improves the discrimination capability
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Table 5: Indicators of CW attacks.

Robust
detection

Feature
detection

Collaborative
detection

ACC 0.9950 0.9817 0.9967

AUC 0.9966 0.9946 0.9991

Precision 0.9983 0.9738 0.9983

Recall 0.9667 0.9900 0.9967

F1 score 0.9822 0.9818 0.9975
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of voice adversarial samples more than single detec-
tion. In addition, the collaborative detection algo-
rithm integrates the advantages of robust detection
and feature detection, making it have a higher accu-
racy rate and recall rate, as well as a more balanced
detection capability

4.5. Comparisons. In this section, we compare the best per-
forming collaborative detection algorithm with the existing
detection algorithms, which are TD detection, DU detection,
AP detection, and CNN detection. The comparison results
are shown in Figure 8. Where there is no bar, it indicates
that the author did not use the corresponding indicators.

Figure 8 shows that the detection scheme proposed in
this paper achieves higher scores in both AUC and ACC
indicators than the existing detection schemes, indicating
that the collaborative detection algorithm has a stronger
capability to detect CW attacks.

5. Conclusions

In recent years, thanks to China’s favorable policies for
artificial intelligence and the relatively mature technologies
of speech recognition, big data, and cloud computing, the
country’s intelligent voice industry has experienced a period
of rapid development. However, the popular ASR systems
are suffering from the severe threat of audio adversarial sam-
ples. Adding even a slight disturbance to original audios,
that is difficult to be detected by listeners, will make these
systems output erroneous transcriptions. This poses a seri-
ous threat to the security of smart voice devices, which is
the focus of this article’s research.

This paper proposes three detection schemes for detect-
ing adversarial samples: a robust detection algorithm based
on word error rate, a feature detection algorithm based on
adversarial degree, and a collaborative detection algorithm
based on neural network. The robust detection algorithm is
based on WER from the perspective of generating voice con-
frontation samples. It proposes the idea of using spectral
subtraction noise reduction to destroy the artificially added
perturbation in the confrontation sample and then uses
WER as a measurement standard for detection. From the

perspective of voice features, the feature detection algorithm
based on adversarial degree proposes two concepts: detect-
ing the filter banks feature of the speech frame as a unit
and adversarial frame and adversarial degree. The algorithm
uses these as the detection criteria. Considering the
problems that might be caused by single linear detection,
the neural network-based collaborative detection algorithm
combines WER and adversarial degree to jointly detect voice
adversarial samples by training a neural network.

The experimental results show that all three detection
algorithms display good discrimination against CW attacks,
with the collaborative detection performance the best,
followed by robust detection and then feature detection.
The results also show that robust detection algorithms tend
to have higher accuracy, but the recall rate is low. The fea-
ture detection algorithms tend to have higher recall, but
the accuracy is low. The collaborative detection algorithm
integrates the advantages of robust detection and feature
detection. While improving the overall discrimination, it
also has a higher accuracy rate and recall rate, as well as a
more balanced detection ability, which proves the necessity
of joint detection.

Although the results show that the research in this paper
has achieved good results, it should be noted that the adver-
sarial samples studied in this paper are directly input to the
voice interface and cannot form an attack effect after being
broadcast in the air. However, the latest work [26, 27] shows
that although there are many restrictions, there are already
adversarial samples that can be played and then attacked.
Therefore, it is important to continue research on the
defense of voice adversarial samples. In addition, the author
believes that it is very valuable to use each frame of speech as
a unit of detection, but due to time limitations, this could not
be addressed in this paper. Future research will explore this.

Data Availability

The Common Voice [25] corpus is an initiative from
Mozilla. It is a collection of self-recorded voices uploaded
by many users on the Common Voice website. The text con-
tent comes from many public domains, such as blog posts
submitted by users, old books, movies, and other public
speeches. According to Mozilla, the main purpose of the
project is to train and test the ASR system. The goal is to
help teach machines how to speak, but Mozilla also encour-
ages its use for other purposes.
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