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Recently, mobile edge computing (MEC) has been widely applied into Internet of Things (IoT) networks, which has attracted a lot
of attention from researchers. A critical challenge in the MEC-aided IoT networks is that the performance analysis is often
complicated, where it is quite difficult for us to obtain some analytical or closed-form solution to the performance analysis,
such as outage probability and bit error rate. This has been the bottleneck of the development of MEC-aided IoT networks. To
address this challenge, we deeply investigate the Chebyshev-Gauss approximation method and derive the analytical solution to
implement this powerful and useful approximation. We then give several examples to show the effectiveness of the Chebyshev-
Gauss approximation in the performance analysis for the MEC-aided IoT systems. The results in this work can serve as an
important reference and reveal some important inherent mechanisms for the MEC-aided IoT networks.

1. Introduction

Recently, a lot of wireless nodes cooperate together, to
communicate and compute collaboratively, which form
the Internet of Things (IoT) networks [1, 2]. In such a
system, a lot of wireless nodes access the system spectrum,
by using orthogonal or nonorthogonal multiple access
schemes [3, 4]. These nodes can communicate and com-
pute in a collaborative way, when facing some intensive
calculating tasks. Besides the communication and calcula-
tion, the privacy protection also becomes a key research
topic in the study of IoT networks [5, 6], where some pri-
vacy protection methods from the physical layer to the
application layer should be incorporated into the system,
in order to enhance the data communication privacy and

data calculation privacy, especially for some sensitive data
such as medical data and financial data.

Some novel techniques have been proposed by
researchers to promote the development of IoT networks,
among which mobile edge computing (MEC) is a key tech-
nology [7, 8]. In the MEC-aided IoT networks, some edge
nodes have some powerful ability to help calculate the inten-
sive tasks from other nodes, which will be helpful in leading
to a smaller delay and power consumption (PoCo). In this
area, a lot of studies have been performed to utilize the com-
munication resources as well as calculating resources in the
MEC-aided IoT networks, through some conventional opti-
mization methods such as convex optimization or some
intelligent algorithms such as deep reinforcement leaning
(DRL) algorithms, in order to reduce the system delay and
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PoCo [9]. This can help make the MEC-aided IoT networks
fit the various applications [10–12].

Because of restricted regularity sources, cochannel inter-
ference has actually been unavoidable in the wireless com-
munication systems. Cochannel interference has restricted
the system efficiency seriously, as well as being the traffic
jam of the wireless systems. The effect of cochannel interfer-
ence on the system efficiency of wireless communications
was thoroughly examined in the literary works. Some
authors examined the dual-hop communicating systems in
the existence of cochannel interference, as well as the system
data rate and outage possibility. For the secure communicate
systems in cochannel interference, the system efficiency
might be examined through obtaining the capacity as well
as asymptotic privacy outage possibility, whereby the impact
of interfering energy on the system efficiency might be
exposed.

A critical challenge in the MEC-aided IoT networks is
that the performance analysis is often complicated, where
it is quite difficult to obtain some analytical or closed-form
solution to the performance analysis, such as outage proba-
bility and bit error rate. This has been the bottleneck of the
development of MEC-aided IoT networks. To address this
challenge, we deeply investigate the Chebyshev-Gauss
approximation method and derive the analytical solution
to implement this powerful and useful approximation. We
then give several examples to show the effectiveness of the
Chebyshev-Gauss approximation in the performance analy-
sis for the MEC-aided IoT systems. The results in this work
can serve as an important reference and reveal some impor-
tant inherent mechanisms for the MEC-aided IoT networks.

2. Chebyshev-Gauss Quadrature

In numerical analysis, numerical integration is the method
and theory of calculating the value of definite integration.
We can use the Leibniz integral rule to calculate the definite
integral through the original function. However, it is regu-
larly difficult to calculate the original value of the function.
There are few functions that can be expressed by elementary
functions, and the integration of most integrable functions
cannot be expressed by elementary functions or even analyt-
ical expressions. Therefore, in many cases, we can only use
numerical integration to calculate the approximate value of
the function.

At present, there are many algorithms for calculating
definite integral. For instance, these algorithms mainly
include the following:

(i) Rectangle rule

(ii) Trapezoidal rule

(iii) Romberg’s method

(iv) Gauss quadrature

Among the above algorithms, the Gaussian quadrature
rule with n-point is a quadrature rule constructed to yield
an exact result for polynomials of degree 2n − 1 or less by

a suitable choice of the nodes xi and weights wi for i = 1,
⋯, n. Specifically, the Gauss quadrature includes three dif-
ferent forms:

(1) Chebyshev-Gauss quadrature

(2) Gauss-Hermite quadrature

(3) Gauss-Jacobi quadrature

Now, we mainly discuss the Chebyshev-Gauss quadra-
ture. Chebyshev-Gauss quadrature is an extension of Gauss-
ian quadrature method, which is used to approximate the
following two types of integral value. For the first kind, we
can have

ð+1
−1

f xð Þffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p dx ≈ 〠
n

i=1
wif xið Þ, ð1Þ

where xi = cos ðð2i + 1Þπ/2nÞ, the weight wi = π/n, and the
approximation error decreases with a larger number of item
n.

On the contrary, for the second kind, we have

ð+1
−1

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p
g xð Þdx ≈ 〠

n

i=1
wig xið Þ, ð2Þ

where xi = cos ðiπ/ðn + 1ÞÞ, the weight wi = ðπ/ðn + 1ÞÞ sin2
ðiπ/ðn + 1ÞÞ, and the approximation error decreases with a
larger number of item n.

For a random function f ðxÞ, its integral Ð ba f ðxÞdx can be
approximated as

ðb
a
f xð Þdx ≈ 〠

n

i=1
wif xið Þ, ð3Þ

where wi is the weight coefficient, and the approximation
error decreases with a larger number of item n. Note that
the accuracy can be improved by increasing the number of
xi or finding the right xi. We can rewrite f ðxÞ as

f xð Þ = ρ xð Þg xð Þ: ð4Þ

Therefore, (3) can be approximated as

ðb
a
ρ xð Þg xð Þdx ≈ 〠

n

i=1
wig xið Þ, ð5Þ

where ρðxÞ is the weight function and the approximation
error decreases with a larger number of item n. We can
use the Chebyshev-Gauss quadrature to approximate (5).
The Chebyshev polynomials of the first kind are obtained
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from the following recurrence relation:

cos 2θ = 2 cos2θ − 1,
cos 3θ = 4 cos2θ − 3 cos θ,

cos nθ = Tn cos θð Þ,
Tn xð Þ = cos n ⋅ arccos xð Þ:

ð6Þ

Let TnðxÞ = 0, and the root of the equation can be
obtained as

Tn xð Þ = cos n ⋅ arccos xð Þ = 0,

n ⋅ arccos x = π

2 + kπ = 2k + 1ð Þπ
2 ,

arccos x = 2k + 1ð Þπ
2n ,

xk = cos 2k + 1ð Þπ
2n

� �
,

ð7Þ

where k = 0, 1,⋯, n − 1, and xk is the Chebyshev node,
namely, the root of the Chebyshev polynomials of the first
kind.

As shown in Figure 1, the Chebyshev node is equivalent
to the x-axis coordinates of N equally spaced points on the
unit semicircle. The Chebyshev-Gauss quadrature can
obtain a relatively approximate solution only when the func-
tion f ðxÞ can be approximated by polynomials in the inter-
val ½−1, 1�. We use an affine transformation for nodes over
an arbitrary interval ½a, b� as

xk =
1
2 a + bð Þ + 1

2 b − að Þ cos 2k − 1
2n π

� �
, k = 1, 2,⋯, n:

ð8Þ

For (3), let

x = 1
2 a + bð Þ + 1

2 b − að Þy, ð9Þ

and thus, we have

ðb
a
f xð Þdx =

ð1
−1

1
2 b − að Þ ⋅ f 1

2 a + bð Þ + 1
2 b − að Þy

� �
dy:

ð10Þ

Let y = cos θ, where θ = ðð2k + 1Þπ/2nÞ, k = 0, 1,⋯, n − 1
, and then, we have

ð1
−1

1
2 b − að Þ ⋅ f 1

2 a + bð Þ + 1
2 b − að Þy

� �
dy

= −
ð0
π

1
2 b − að Þ sin θ ⋅ f

1
2 a + bð Þ + 1

2 b − að Þ cos θ
� �

dθ:

ð11Þ

We can further write

ðb
a
f xð Þdx =

ðπ
0

1
2 b − að Þ sin θ ⋅ f

1
2 a + bð Þ + 1

2 b − að Þ cos θ
� �

dθ:

ð12Þ

According to the definition of definite integral, we can
write

Ð b
a f ðxÞdx as

ðb
a
f xð Þdx = 〠

n−1

k=0

1
2 b − að Þ sin 2k + 1ð Þπ

2n

� �
π

n

⋅ f
1
2 a + bð Þ + 1

2 b − að Þ cos 2k + 1ð Þπ
2n
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:

ð13Þ

By comparing with (5), we can obtain

xi =
1
2 a + bð Þ + 1

2 b − að Þ cos 2k + 1ð Þπ
2n

� �
, ð14Þ
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Figure 1: Chebyshev node on the unit semicircle.
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where k = 1, 2,⋯, n − 1, and

wi =
1
2 b − að Þ sin 2k + 1ð Þπ

2n

� �
π

n
, ð15Þ

3. Numerical and Simulation Results

In this part, we present some numerical and simulation
results to verify the convergence effect of the conventional
rectangle rule and the Chebyshev-Gauss quadrature. We
compare the convergence effect of the following three
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Figure 2: Comparison of the convergence effect of I1.
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Figure 3: Comparison of the convergence effect of I2.
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functions, in Figures 2–4 and Tables 1–3.

I1 =
ð3
1
ex

2−x1/2dx,

I2 =
ð3
1
log ex − x2

� �
dx,

I3 =
ð3
1

xe
x−x

x3
dx:

ð16Þ

Figure 2 shows the convergence effect of I1. We can find
that the Chebyshev-Gauss quadrature and the benchmark
method (namely the rectangle rule) both reach the conver-
gent state after 1600 iterations, and the ultimate convergent
values are 271.2296 and 272.1258, respectively. Similarly, as
shown in Table 1, the Chebyshev-Gauss quadrature method
approaches convergence with the convergent value of
271.2469, after about 200 iterations, which is much faster
than the benchmark method which approaches the conver-
gent state, after about 1200 iterations.

In Figure 3, the Chebyshev-Gauss quadrature approxi-
mation is performed on I2 to demonstrate the advantage of
faster convergence than the benchmark method. From
Table 2, we can also find that the Chebyshev-Gauss quadra-
ture method approaches the convergent state with the con-
vergent value of 2.6207, after about 200 iterations, while
the benchmark method approaches the convergent state,
after about 1200 iterations. The associated ultimate conver-
gent values are 2.6207 and 2.6218 after 1600 iterations,
respectively.

Figure 4 illustrates the convergence of the function I3. It
can be seen that the Chebyshev-Gauss quadrature method
approaches the convergent state with the convergent value
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Figure 4: Comparison of the convergence effects of I3.

Table 1: Approximation of I1 versus the number of iterations.

Iteration Benchmark method Chebyshev-Gauss

1 441.1021 277.4677

200 278.1464 271.2469

400 247.7484 271.2329

600 273.5892 271.2310

800 273.0044 271.2303

1000 272.6519 271.2300

1200 272.4162 271.2298

1400 272.2475 271.2297

1600 272.1258 271.2296

Table 2: Approximation of I2 versus the number of iterations.

Iteration Benchmark method Chebyshev-Gauss

1 2.8100 2.6329

200 2.6296 2.6207

400 2.6252 2.6207

600 2.6237 2.6207

800 2.6230 2.6207

1000 2.6225 2.6207

1200 2.6222 2.6207

1400 2.6220 2.6207

1600 2.6218 2.6207
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of 5.3354 after about 200 iterations, while the benchmark
method approaches the convergent state with the conver-
gence value of 5.3428 after about 1400 iterations, as shown
in Table 3. This also shows the advantage that the
Chebyshev-Gauss quadrature method converges much faster
than the benchmark method. The associated final conver-
gent values are 5.3353 and 2.6218 after 1000 iterations,
respectively.

4. Conclusions

In the MEC-aided IoT networks, a critical challenge was that
the performance analysis was often complicated, where it
was quite difficult to obtain some analytical or closed-form
solution to the performance analysis, such as outage proba-
bility and bit error rate. To address this challenge, we deeply
investigated the Chebyshev-Gauss approximation method
and derived the analytical solution to implement this power-
ful and useful approximation. We then gave several exam-
ples to show the effectiveness of the Chebyshev-Gauss
approximation in the performance analysis for the MEC-
aided IoT systems. The results in this work could serve as
an important reference and reveal some important inherent
mechanisms for the MEC-aided IoT networks.
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