
Research Article
Artificial Intelligence in Agricultural Picking Robot Displacement
Trajectory Tracking Control Algorithm

Zhipan Wu1 and Huaying Du 2

1School of Computer Science and Engineering, Huizhou University, Huizhou, 516007 Guangdong, China
2School of Information Technology, City College of Huizhou, Huizhou, 516025 Guangdong, China

Correspondence should be addressed to Huaying Du; duhuaying@tm.hzc.edu.cn

Received 26 April 2022; Revised 23 May 2022; Accepted 2 June 2022; Published 16 June 2022

Academic Editor: Chia-Huei Wu

Copyright © 2022 Zhipan Wu and Huaying Du. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

With the development and leap of artificial intelligence technology, more and more robots have penetrated into all walks of life.
Today’s agriculture is changing in the direction of modernization and automation. On the one hand, because of rising labor costs,
it cannot afford to consume a large amount of labor for agricultural operations. On the other hand, the population is growing
rapidly, and traditional agricultural production, picking, and other links have been unable to keep pace with the development
of the times. Therefore, it is very necessary to use artificial intelligence technology to transform traditional agriculture. The
purpose of this paper is to use artificial intelligence technology to plan, track, and optimize the displacement trajectory of the
agricultural picking robot, so as to improve the working efficiency of the picking robot. In this paper, the neural network, the
D-H modeling method of the manipulator, and the forward and reverse motion of the manipulator are explained and
analyzed, and based on the relevant algorithms of neural network, the manipulator is modeled, and then the, forward and
reverse motion of the manipulator is analyzed in detail, and the digital model of the picking robot is constructed. Then, the
angle and motion speed of each joint of the robot are analyzed to reduce the motion trajectory error caused by friction and
other factors. Then, the simulation experiment of the displacement trajectory tracking control is carried out, and the linear
trajectory motion and the arc trajectory motion are deeply analyzed, and the axis error is greatly reduced after 6 iterations.
Finally, the displacement trajectory is optimized. The optimized total movement time is shortened by 6.84 seconds, which
enables the picking robot to not only ensure work efficiency but also accurately complete the planned displacement trajectory.
After continuous experiments on the algorithm model and the picking robot, the actual trajectory of the picking robot at 0.7
seconds can be expected. The trajectories are completely coincident, indicating that the neural network plays a very important
role in the trajectory research of picking robots.

1. Introduction

In recent years, the population has grown substantially, and
traditional agricultural production has been unable to meet
the growing demand for agricultural products. At present,
the agricultural production, picking, and transportation
technologies in many areas are relatively outdated. It
requires a lot of manpower and material resources, which
is time-consuming and labor-intensive. At the same time,
it is accompanied by the pressure of agricultural resources
and the shortage of labor resources. Modern agriculture
urgently needs new technologies to transform and upgrade.

At this time, artificial intelligence technology can play a
great role in the agricultural field. Picking robots are playing
an important role in intelligent agriculture. Picking robots
can be programmed to achieve tasks such as picking, han-
dling, and boxing of fruits and vegetables. It not only recog-
nizes and locates crops quickly but also has high work
efficiency and can complete high-intensity picking tasks. It
plays a very important role in saving labor costs, reducing
labor risks, realizing agricultural modernization, and
increasing the total agricultural output value. At the same
time, the development of picking robots provides theoretical
support and practical experience for the improvement and
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application of artificial intelligence technology. Therefore, it
is the general trend to promote the development of agricul-
ture to study the displacement trajectory tracking control
technology of agricultural picking robots.

Agricultural development is moving towards large-scale
and intelligent modernization. The cost of agricultural labor
is gradually rising, which will inevitably lead to a shortage of
labor. Therefore, it is essential for artificial intelligence to
enter the production and transportation links of agriculture.
The planting, picking, transportation, and processing of
crops are becoming automated and mechanized. Traditional
agricultural picking is labor-intensive, expensive, and ineffi-
cient. The modern agricultural picking robot can greatly
reduce the labor intensity of farmers, save costs, improve
picking efficiency, ensure that fruits and vegetables are har-
vested within an appropriate time, and avoid spoilage and
waste caused by too late picking. The development of pick-
ing robots not only adds power to agricultural production
but also greatly promotes the reform and upgrading of agri-
cultural management models. In the past, all links required
labor, and now the whole machine can be operated, and
labor costs have been greatly reduced. At the same time,
the research on picking robot science and technology also
provides practical experience for the improvement and
development of artificial intelligence. This has far-reaching
significance for improving the growth of agricultural output
value and the development of artificial intelligence.

The innovations of this paper are as follows: (1) It uses
artificial intelligence technology to track the displacement
trajectory of the agricultural picking robot, control the mov-
ing direction and speed of the picking robot, and improve
the picking efficiency. (2) The change matrix is used to
describe the pose, which simplifies the process of robot dis-
placement planning. (3) Combined with the theory of itera-
tive operation, the axis error is used to mediate and improve
the tracking of the displacement trajectory. The trajectory
error obtained by the experiment is processed and transmit-
ted to the controller, and the controller operates the robot to
repeat the experimental operation continuously, and the
error is reduced through continuous experiments, and the
accuracy of the tracking control of the displacement trajec-
tory is improved.

2. Related Work

Many scholars have paid attention to the research on the con-
trol algorithm of robot displacement trajectory tracking. Ou
et al. discussed the fixed-time tracking control of nonholo-
nomic wheeled mobile robots based on visual servoing. They
proposed a tracking error system between the mobile robot
and the desired trajectory, enabling the robot to track the ref-
erence trajectory in a fixed time. However, this process is com-
plicated and may result in inaccurate results [1]. Ma et al.
introduced the U-model method to relieve the requirement of
dynamic mathematical model and simplify the design of the
trajectory tracking controller of the manipulator. However,
there are certain errors in this method, resulting in insufficient
accuracy [2]. Peng et al. proposed a controlled DAE-based opti-
mal control (IOC)method. A series of IOC problems tend to be

continuous trajectory tracking problems at each time step, and a
Linear Complementarity Problem (LCP) is derived to solve the
IOC problem. This method provides a unified framework for
solving the trajectory tracking control problem of robotic multi-
body dynamic systems. However, this method is relatively old,
the data obtained is slightly lacking, and there is a lack of inno-
vation [3]. Khalilpour et al. proposed a novel feedback method.
On the premise of dynamic visual recognition, the joint motion
sensor is optimized to improve the performance of trajectory
tracking, and the oscillation is reduced through the operation
of the end effector. The authors derive kinetic formulations
for large-scale deployable cable-driven robots. The model can
better satisfy the stability condition [4]. Wang et al. proposed
a wavelet neural network fuzzy sliding mode controller for the
nonlinear problem of the manipulator system. The experimen-
tal results show that the proposed control scheme is suitable for
3-DOF robot displacement trajectory tracking control. But this
method has higher requirements on the accuracy of the algo-
rithm model [5]. Bensafia et al. utilize Fractional Model Refer-
ence Adaptive Controller (FMRAC) to achieve smooth
trajectories and optimize the performance of the robotic arm
of the SCARA robot. However, this operation has requirements
on the data analysis environment and needs to be performed in
a stable environment [6]. He et al. optimize the online compu-
tation of MPC using a model predictive control- (MPC-) based
tracking controller. Themethod includes threshold curve-based
event triggering and threshold band-based event triggering.
However, this method is based on a large amount of historical
data and requires an accurate database as support [7].

3. Picking Robot Trajectory Tracking
Control Algorithm

3.1. Radial Basis Neural Network (RBF). Radial basis neural
network is a feed-forward neural network model without
feedback. It is usually presented as a three-layer feedforward
network: input layer, hidden layer, and output layer [8].
Input nodes can transmit a large amount of information
from the outside world to the neural network. The hidden
layer maps these input variables into a nonlinear space [9].
In the hidden layer space, the input variables will then be
transmitted, and the activation function will be generated
after the action. This activation function is the radial basis
function, which corresponds to the hidden layer neurons
one-to-one [10, 11]. If the number of hidden layer nodes
in the radial basis neural network increases, the solving abil-
ity and approximation ability of the corresponding network
will be stronger, and the structure will be more complex. The
structure of the output layer is relatively simple. The linear
weighted sum of the output of the hidden nodes obtained
after continuous calculation is the output result [12].
Figure 1 is the basic structure of radial basis neural network.

Supposing j represents the number of input nodes, n rep-
resents the number of hidden layer nodes, and k represents the
number of output nodes. The input vector is denoted as A =
½a1, a2,⋯aj�P, the output matrix is denoted as λ = ½λða, b1Þ,
λða, b2Þ,⋯, λða, bnÞ�, bi is the node position, and the ith hid-
den layer, i = 1, 2,⋯, n, is presented. The output Qnk =
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½Q1,Q2,⋯,Qn�P is the weight matrix, where Qi =
½Qi1,Qi2,⋯,Qik�P, and the vector is GðAÞ =
½g1ðaÞ, g2ðaÞ,⋯, gkðaÞ�p.

There are the following three expressions of the activa-
tion function:

(1) Multiple quadratic functions

λ a, blð Þ = a2 + b2l
� �12, l = 1, 2,⋯, n ð1Þ

(2) Inverse multiple quadratic function

λ a, blð Þ = 1
a2 + b2l
� �12 , l = 1, 2,⋯, n ð2Þ

(3) Gaussian function

λ a, blð Þ = exp −
a − b2l
μ2

 !
, l = 1, 2,⋯, n ð3Þ

The input value is set to A, the center of the basis
function is set to bl, and the lth is presented. The
smoothing factor is μ. l is the number of hidden layer
centers, and a − bl is the norm. λða, blÞ has a maximum
value in bl, and there is one and only this one. If the
value of a − bl increases, λða, blÞ becomes zero.

The output layer is calculated by the hidden layer:

gs að Þ = 〠
n

l=1
Qlsλ a, blð Þ, S = 1, 2,⋯, k: ð4Þ

Among them, Qls is represented as a weight value, which
is between the lth hidden layer node and the Sth output layer
node.

As the variables of the input layer of the Gaussian func-
tion increase, the system does not become more complex.
And the smoothness of the Gaussian function is good, which
is convenient for theoretical analysis [13]. Therefore, the
Gaussian function is a calculation function often used by
the radial basis function.

3.2. D-H Modeling Method of Robotic Arm

3.2.1. Parameters. The robotic arm D-H establishes a coordi-
nate system on each link. The relationship between adjacent
coordinate systems is represented by a matrix transformation
[14–17]. After transformation, the pose of the end effector is
obtained, and the pose is represented by base coordinates.

The adjacent coordinate systems and links are represented
by the second transformation matrix. If the motion analysis of
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Figure 1: Radial basis neural network structure.
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Figure 2: Schematic diagram of rod parameters.
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the manipulator is to be performed, each link must be analyzed
and described [18–20]. rk is the rod length and λk is the torsion
angle. In addition, lk is the offset distance, indicating the dis-
tance between the two links, and βk is the joint angle, indicating
the number of angles formed by the normal lines of the two
links. The resulting parameters are shown in Figure 2.

3.2.2. Establish a Coordinate Axis. The pose relationship
between each link is a coordinate system fixed on each link.
The coordinate system fPg is the coordinate system of the
end of the manipulator, and fk − 1g is the coordinate system
fixed to the link k.

For a rotary joint, the joint parameters are lk, rk, and λk,
and the joint variable is βk. For moving joints, the joint
parameters are βk, rk , and λk, and the joint variable is lk.

From this, the relationship between the coordinate sys-
tem fkg and the coordinate system fk − 1g is

k−1Gk = Rot B, βkð ÞTrans 0, 0, lkð ÞTrans ck, 0, 0ð ÞRot A, λkð Þ

=

dβk ‐dλkeβk eλkeβk λkdβk

eβk dλkdβk ‐eλkdβk λkeβk

0 eλk dλk lk

0 0 0 1

2
6666664

3
7777775
:

ð5Þ
k−1Gk is a homogeneous transformation matrix

between two adjacent coordinate systems fk − 1g and
coordinate system fkg.

The homogeneous transformation matrix 0Uk of any
coordinate system fkg relative to the base coordinate system
is the continuous product of each adjacent homogeneous
transformation matrix 0Uk , written as

0Uk =
0G1

0G2 ⋯
k−1Gk =

Yk
i−1

i−1Gi

=
pk tk rk vk

0 0 0 1

" #
=

0Fk
0vk

0 1

" #
:

ð6Þ

The attitude matrix of the kth coordinate system is ½pktkrk�
, and the position vector of the kth coordinate system is vk.

3.2.3. Establish the Motion Equation of the Manipulator. A
five-degree-of-freedom serial robot is established, and the
five joints are rotatable, as shown in Figure 3.

Synthetically, the coordinate system is established, the
base coordinate system {0} is taken, and the hand coordinate
system is {5}, and Figure 4 is obtained.

According to the coordinate system, D-H is established
as shown in Table 1.

It can be seen from Table 1 that among the five joints, the
fifth robotic arm used for picking operations has the longest
offset distance, and the second and third joints used to adjust
the picking distance have the longest rod lengths. The first and
fourth joints can be used to adjust the angle of picking.

3.3. Picking Robot Solution

3.3.1. The Robotic Arm Is Moving. The forward motion of
the manipulator is the pose of the manipulator end effector
in the coordinate system [21].

The total transformation matrix from the base coordi-
nate system to the hand coordinate system is

0Uk =
0G

1
1G

2
2G

3
3G

4
4G5 =

qa oa ra va
qb ob rb vb
qc oc rc vc
0 0 0 1

2
666664

3
777775: ð7Þ

Among them,

qa = eβ1eβ5 + dβ1dβ234dβ5,

qb = eβ1dβ234dβ5 − dβ1eβ5,

qc = −eβ234dβ5,

oa = eβ1dβ5 − dβ1dβ234eβ5,

ob = −dβ1dβ5 − eβ1dβ234eβ5,

oc = eβ234eβ5,

ra = −dβ1eβ234,

rb = −eβ1eβ234,

rc = −dβ234,

va = r2dβ1dβ2 − l5dβ1eβ234 − r3dβ1dβ23,

vb = r2eβ1dβ2 − l5eβ1eβ234 − r3eβ1dβ23,

vc = −r2eβ2 − l5dβ234 − r3eβ23:

ð8Þ

β23 = β2 + β3, β234 = β2 + β3 + β4, and so on.
From this, the pose of the hand coordinates in the base

coordinate system can be obtained.

3.3.2. Reverse Motion of the Robotic Arm. The inverse
motion of the manipulator is the joint variable obtained
based on the known pose of the manipulator end in the
coordinate system [22]. Using the algebraic method, the

First joint

Second joint

Third joint

Fourth joint

Fifth joint

Matrix

Pedestal

Figure 3: Structure diagram of the robotic arm.
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joint variables β1, β2, β3, β4, and β5 of the inverse motion
are obtained.

Multiplying formula (7) by the left of 0G−1
1 yields

0G1
−1
U = 1G2

2G3
3G4

4G5 =
1U5: ð9Þ

Both ends are represented as

dβ1 eβ1 0 0

0 0 −1 0

‐eβ1 dβ1 0 0

0 0 0 1

2
666664

3
777775

qa oa ra va

qb ob rb vb

qc oc rc vc

0 0 0 1

2
666664

3
777775 = 1U5:

ð10Þ

Putting (3,4) on both sides of formula (10), it gets

dβ1vc − eβ1va = 0: ð11Þ

With trigonometric transformation, it gets

va = μ cos ω, va = μ sin ω: ð12Þ

Among them, μ =
ffiffiffiffiffiffiffiffiffiffiffiffiffi
v2a + v2b

p
, ω = r tan 2ðvb, vaÞ.

It can be derived as follows:

β1 = r tan 2 vb, vað Þ: ð13Þ

Formula (7) both sides (1,3) and (2,3) get

−eβ234
dβ234

=
radβ1 + rbeβ1

−rc
: ð14Þ

By solving, it can get

β234 = rtan2 radβ1 + rbeβ1, rcð Þ: ð15Þ

Formula (7) on both sides (1,4) and (2,4), it can get

r2dβ2 + r3dβ23 = dβ1va + eβ1vb + l5eβ234,

r2eβ2 + r3eβ23 = −vc − l5dβ234:

(
ð16Þ

Letting dβ1va + eβ1vv + l5eβ234 =M and −vc − l5dβ234 =
N , get

cβ3 =
M2 +N2 − r22 − r33

2r2r3
: ð17Þ

Letting dβ3 =W, then

eβ3 = ±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −W2

p
, β3 = r tan 2 ±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −W2

p
,W

� �
: ð18Þ

β3 has two solutions, which are represented by positive
and negative signs.

Left-multiplying 0G−1
1 by formula (7), we get

0G1
−1
U = 3G4

4G5 =
3U5: ð19Þ

A3
A2A1

C1 C2
C3 C4

C5
A0

C0

r2 r3

A4

A5

d5

l0

Figure 4: D-H method coordinate system.

Table 1: D-H data table of each joint.

Joint Joint angle βk Offset lk Rod length rk Torsion angle λk

#1 β1 0 0 -90

#2 β2 0 393 0

#3 β3 0 361 0

#4 β4 0 0 -90

#5 β5 274 0 0
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Both ends get

dβ1dβ23 eβ1dβ23 ‐eβ23 ‐ r3 + r2dβ3ð Þ
‐dβ1eβ23 ‐eβ1eβ23 ‐dβ23 r2eβ3

‐eβ1 dβ1 0 0

0 0 0 1

2
666664

3
777775

qa oa ra va

qb ob rb vb

qc oc rc vc

0 0 0 1

2
666664

3
777775 = 3U5:

ð20Þ

Equating both ends (1,3) and (2,3) of formula (20), it
gets

eβ4 = eβ2 radβ1eβ3 + rcdβ3 + rbeβ1eβ3ð Þ − d2 radβ1dβ3 + rceβ3 + rbeβ1dβ3ð Þ,
dβ4 = −eβ2 −raeβ3 + radβ1dβ3 + rbeβ1dβ3ð Þ + d2 radβ3 + radβ1eβ3 + rbeβ1eβ3ð Þ:

(

ð21Þ

Letting rc =H and radβ1 + rbeβ1 = F be substituted into
formula (21) to get

eβ4 = eβ2 Feβ3 +Heβ3ð Þ − dβ2 Fdβ3 −Heβ3ð Þ,
dβ4 = eβ2 Heβ3 − Fdβ3ð Þ − d2 Hdβ3 + Feβ3ð Þ:

(
ð22Þ

Multiplying 0G−1
1 to the left by formula (7), it gets

0G1
−1
U = 2G3

3G4
4G5 =

2U5: ð23Þ

Both ends are obtained as

dβ1dβ2 eβ1dβ2 ‐eβ2 ‐r2
‐dβ1eβ2 ‐eβ1eβ2 ‐dβ23 0

‐eβ1 dβ1 0 0

0 0 0 1

2
666664

3
777775

qa oa ra va

qb ob rb vb

qc oc rc vc

0 0 0 1

2
666664

3
777775 = 2U5:

ð24Þ

Equating both ends (1,3) and (2,3) of formula (24), it can
get

−d2e4 − d4e3 = Fd2 −He2,

d3d4 − e3e4 = −Hd2 − Fe2:

(
ð25Þ

It combines formula (21) and formula (25) to get

β4 = β234 − β2 − β3: ð26Þ

Equating both sides (3,1) and (3,2) of formula (24), it
gets

eβ5
dβ5

=
dβ1qb − eβ1qa
dβ1ob − eβ1oa

: ð27Þ

Letting dβ1qb − eβ1qa = I and dβ1ob − eβ1oa = Z, get

β5 = r tan 2 I, Zð Þ: ð28Þ

To sum up, the inverse solution of the five-degree-of-
freedom robot is obtained. In practical work, the most
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Figure 5: Displacement trajectory tracking and tracking error of picking robot.
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suitable solution can be selected based on the method that
conforms to the shortest path, the shortest time-consuming,
and the least energy-consuming method to improve the effi-
ciency of the robot [23].

4. Robot Displacement Trajectory
Tracking Experiment

4.1. Neural Network Control. The displacement trajectory
tracking of the picking robot controlled by the neural net-
work is shown in the following figure:

It can be concluded from Figure 5 that the actual trajec-
tory of the picking robot can completely coincide with the
expected trajectory in 0.7 seconds.

In the actual operation process, there may be errors in
the joint operation of the robot, which will cause small fluc-
tuations [24]. But this will not affect the tracking
performance.

The angle and velocity changes of each joint are shown
in Figure 6.

It can be seen from Figure 6 that the joints of the picking
robot move independently. In the process of moving,
whether the speed suddenly changes will have a greater
impact on the working effect and performance of the robotic
arm. If there is a sudden change in speed, the robotic arm
will be impacted and vibrated accordingly. This will affect
the stability of the manipulator and reduce the efficiency
[25–27]. The change curve of each joint angle and velocity
reflected in Figure 6 is continuous and smooth. The speed
of the start node and the stop node is both 0, and there is
no sudden change. This shows that the robot under the con-
trol of neural network runs smoothly and has good perfor-

mance. It is feasible to use neural network control to plan
and track the displacement of the robot.

4.2. Displacement Trajectory Tracking Control Experiment.
The experiment was divided into two phases. In the first
stage, the line segment connecting D1 and D2 in the plan-
ning space is the desired trajectory of the end of the third
axis of the picking robot. Assuming that the motion time is
0.83 seconds, the parameters of the controller are CD = CH

= 7:0 and φ = ½14, 0:4, 7�t , and the iterative process selects
a round trip between D1 and D2.

The arc connecting G1 and G2 in the second-stage plan-
ning plane is the expected trajectory of the end of the second
axis of the picking robot. Assuming that the movement time
is 5.28 seconds, the parameters of the controller are also
CG = CH = 7:0 and φ = ½14, 0:4, 7�t , and the back and forth
between G1 and G2 is used as an iterative process. Then,
the trajectory error information is obtained, and the error
is substituted into the control law for calculation, and the
iteration coefficient and compensation torque of the first
iteration process are obtained. It is then transmitted to the
controller, which operates the robot for a second movement
[28]. Repeating the above operations continuously can
obtain the error data of each movement, as shown in
Figure 7.

The variation of each axis error of the picking robot tra-
jectory movement is shown in Figure 7. It can be seen from
the figure that the error fluctuates with the increase of time.
In the first axis, when the time is 300 s and 500 s, the error is
the largest; in the second axis, when the time is 100 s, 300 s,
500 s, and 700 s, respectively, the error is maximum. Because
of the leading term λ‐1 = 0 of the first iteration, the first iter-
ation curve can be viewed as a trajectory error curve without
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algorithmic guidance. However, the axis error of the subse-
quent iteration curves decreases with the increase of the
number of iterations. The axis error is greatly reduced after
6 iterations, as shown in Tables 2 and 3.

In the test, the reducer of the first axis used a harmonic
reducer, which made the friction torque smaller [29]. There-
fore, the curve of the first axis is gentler than that of the sec-
ond axis. The second axis is a linear motion that is
transmitted to the ball screw through a multistage gear train
reducer and a synchronous belt. However, the gear train
reducer has the disadvantage of uneven friction, so it shows
a trend of fluctuation.

Figure 8 shows the error curve of each axis of the picking
robot’s arc trajectory motion. It can be seen from the figure
that the data shows a fluctuating trend. Both the first axis
and the second axis reach the maximum error when the time
is 2000 s, and the error of the second axis reaches a small
peak at 1000 s. Since the arc motion is limited by the centrip-
etal acceleration, the convergence speed of the arc orbit is
slower than that of the linear orbit. So the running speed will
drop, which makes the iterative effect less obvious than the
linear motion [30]. The specific data table is shown in
Table 3. The circular arc trajectory movement has a sudden
change at 2000ms, which corresponds to the corner G2 of
the trajectory.

The experimental results show that the adaptive iterative
learning control algorithm can well complete the trajectory
tracking task. With the increase of the number of iterations,
the trajectory error can be reduced to a certain range and has
better tracking effect for the case of large initial error.

4.3. Displacement Trajectory Optimization of Picking Robot.
In order to improve the operating efficiency of the robot
and ensure that the robot can complete the task in a short
time, the trajectory of the robot can be optimized to reduce
the impact force the robot receives during operation [31].

It starts from the initial population and selects the best
individual in the current cluster based on the evaluation
function values of all corresponding individuals. It uses
intersection and mutation to generate new subclusters
[32], which evolve the clusters into better regions to find
the optimal solution. The main calculation process is as
follows:

(1) First, assign all parameters, including the number of
individuals, the number of variables, the frequency
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Figure 7: The variation of each axis error of picking robot linear trajectory motion.

Table 2: Linear trajectory error.

Initial maximum error
Maximum error after

six iterations
Percentage of
initial error

First axis 3:8 × 10‐2rad 1:8 × 10‐3rad 2.2%

Second
axis

2:3 × 10‐2rad 1:8 × 10‐3rad 3.6%

Difference 1:5 × 10‐2rad 0 1.4%

Table 3: Circular path error.

Initial maximum error
Maximum error
after six iterations

Percentage of
initial error

First axis 2:1 × 10‐2rad 1:3 × 10‐2rad 77.4%

Second
axis

6:1 × 10‐3rad 5:3 × 10‐3rad 78.8%

Difference 14:9 × 10‐3rad 7:7 × 10‐3rad 3.4%
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of crossover, the probability of mutation that may
occur, and the algebra used to end the operation

(2) It creates an area scanner and determines the
interval to which it belongs. The interval to which
a variable belongs is determined by the constraints
of finding the variable for a particular problem

(3) In the interval to which the variable belongs, convert
all individual codes that exist in the solution space,
so that the solution space is transformed into a
genetic space

(4) It determines the initial cluster, randomly generates
a parent cluster containing N individuals, and sets
the N individuals as the starting point, and uses the
neural network and D-H modeling method to start
the operation. Then, let S be the last terminated
genetic algebra

(5) The initial cluster is brought into the calculation,
each fitness function value is obtained, and the indi-
vidual with relatively excellent fitness value is
selected after comparison

(6) The cluster is subjected to genetic operations, such as
selection, mutation, crossover, and recombination,
so that the cluster p(e) is transformed into the next
generation cluster p(e+1)

(7) After a series of operations, the individual fitness
values in the optimal solutions of all clusters are
obtained, and the optimal solutions of each cluster
are judged. The operation is terminated if the termi-
nation condition is met

The specific process is shown in Figure 9.

Letting the time interval be Tx, x = 1, 2,⋯, n, the
obtained time series comparison table before and after opti-
mization is shown in Table 4.

The optimized picking robot can reach the set point of
the movement trajectory in a short time. The total exercise
time was shortened by 6.84 seconds from 14.19 seconds to
7.35 seconds. There is no deviation between the must-pass
points after optimization and those before optimization.
The picking robot can complete the motion trajectory accu-
rately and without error. The optimized robot can also better
cope with the impact on the movement, reduce the impact of
the impact on the movement and picking operations, and
improve the operation and work efficiency [33].

5. Discussion

This paper is dedicated to the application of artificial intel-
ligence technology to study the displacement trajectory
tracking control of agricultural picking robots. It not only
roughly describes the neural network, D-H modeling
method and the forward and reverse motion of the manip-
ulator, and combining artificial intelligence with the
research of displacement trajectory tracking control of
picking robot, radial basis function neural network is used
to guide the establishment of algorithm model, but also is
a new attempt to track and control the displacement tra-
jectory of the picking robot. By modeling the robotic
arm and analyzing the movement trajectory of the robot,
the displacement trajectory of the robot can be tracked
and controlled, and the operation and work efficiency of
the picking robot can be improved.

Through the analysis of this paper, it shows that artificial
intelligence has profound significance in the trajectory track-
ing control of robots. The use of agricultural picking robots
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Figure 8: The variation of each axis error of the picking robot’s arc trajectory motion.
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under the guidance of artificial intelligence technology to
carry out operations such as picking, handling, and packag-
ing of agricultural products can save labor costs, realize agri-
cultural modernization, and improve the total output value
of agriculture and the entire social economy, thereby pro-

moting the rapid development of society and economy. In
this paper, the motion simulation model of the robot is
established through the neural network method, the D-H
modeling method, and the forward and reverse motion anal-
ysis of the manipulator. It plans, tracks, and optimizes the
motion trajectory of the robot, and the running error of
the robot is greatly reduced through experimental analysis.
And the total time of the optimized robot movement is
shortened by 6.84 seconds, which can better cope with the
impact during operation, improve work efficiency, and com-
plete work tasks.

6. Conclusions

Through the analysis of this paper, the following conclusions
are drawn: (1) The actual trajectory of the picking robot under
the control of the neural network can completely coincide with
the expected trajectory in 0.7 seconds. The running process of
the robot is relatively stable, and the performance is better.
The neural network has a good effect on the tracking control
of the displacement trajectory. (2) It applies the D-Hmodeling
method to the modeling of the manipulator and solves and
analyzes the forward and inverse motion equations of the
manipulator. Then, the displacement trajectory of the robot
is planned, and experiments are carried out to simulate the
displacement trajectory of the robot, and the tracking and con-
trol are carried out. The experimental results verify that the
forward and reverse motion of the manipulator under the
guidance of artificial intelligence technology is reasonable.
The position and velocity of the end of the robotic arm
changes smoothly. And the axis error is greatly reduced after
6 iterations. (3) The displacement trajectory optimization
under the guidance of artificial intelligence can improve the
operation efficiency of the robot and ensure the completion
rate of the robot in a short time. And the optimized total
motion time is shortened by 6.84 seconds, which ensures high
efficiency and ensures that the displacement trajectory will not
be deviated. (4) This paper makes a certain contribution to the
research on the algorithm of the tracking control of the dis-
placement trajectory of the agricultural picking robot. But
there are also shortcomings. The robot will generate friction
during the movement process, and this friction force is more
complicated. It is very important to conduct an in-depth anal-
ysis of the friction force of the robot in the future research. In
the actual operation process, the robot will encounter some
obstacles such as branches and trunks during the operation.
The situation and displacement changes that will occur when
encountering obstacles also need further study.
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Table 4: Time series comparison table before and after
optimization.

Interval time (s) Before optimization After optimization

T1 5.13 1.76

T2 4.2 1.43

T3 0.89 0.66

T4 0.71 0.80

T5 0.52 0.37

T6 2.74 2.33
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