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Anatomical structures manifested in ultrasound (US) images are crucial in efficient disease diagnosis. This modality has been used
to analyze different tissue properties, such as blood flow, in-depth tissue motion, and elasticity. Analysis of these US images is
posing a critical challenge, as these images are corrupted with noise primarily induced during acquisition. The biological
structures intended to be investigated need to be detected, enhanced, and preserved during image processing-based diagnosis.
US-based common carotid artery (CCA) images were considered in this study, and five denoising techniques were explored for
noise removal after converting the images to grayscale to identify efficient preprocessing for effective diagnosis. Furthermore,
filtered images were subjected to different entropy-inspired segmentation for qualitative validation and to segment the CCA.
The objective of this paper is a deliberate attempt to investigate the possible use of edge- and structure-preserving filtering
techniques to segment tissues of interest. The weighted nuclear norm minimization (WNNM) approach appears to be effective
in removing noise and simultaneously preserving the sensitive structures. Quantitative validation with peak signal to noise
ratio (PSNR), structural symmetry index measure (SSIM), and feature similarity index measure (FSIM) found to be 27:84 ±
1:04 dB; 0:76 ± 0:01 and 0:87 ± 0:01 were observed to be superiorly high with WNNM filtering. The input image and the
filtered image histograms are also compared for qualitative validation. The key finding in this study can be attributed to the
ability to remove noise from US images corrupted with noise while preserving the anatomical details. Furthermore, it can be
hypothesized that the anatomical structures under the influence of noise can be efficiently preprocessed and can be fed as a
viable image towards segmentation followed by recognition and morphological inference.

1. Introduction

Early detection of cardiovascular diseases (CVDs) by means
of suitable formulation of image-based biomarkers can lead
to effective diagnosis systems. Discerning several structures,

including intima-media thickness (IMT), in US-based CCA
images is challenging due to the inherently low contrast of
the respective structures. Morphological information related
to IMT is linked to the pathology of stroke reported to be
found in elderly adults. Effective edge detection and
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segmentation approaches are needed in efficient IMT deter-
mination. Accurate IMT determination is crucial for deter-
mining and evaluating the potential risk of stroke. Efficient
preprocessing of the ultrasound images can also aid in seg-
menting the object prior to recognition. Hence, a prepro-
cessing technique that preserves the anatomical structures
and helps in the following image processing stages can be
effective in designing efficient pipelines for ultrasound
image-based diagnosis. In this paper, an attempt was made
to investigate the performances of the structure-preserving
WNNM filtering technique, edge-preserving ADF, and con-
ventional filtering techniques such as Gaussian filtering,
median filtering, and average filters.

The layout and organization of this paper areas follows.
Section 2 presents a succinct literature review of existing
denoising mechanisms. Section 3 considers the proposed
methodology, while Section 4 provides a detailed discussion
and critique of the simulation results and summary of the
work. Section 5 encompasses the conclusion and the future
scope of denoising mechanisms.

2. Literature Review

US images have proven to be very effective in diagnosing
several critical diseases. US imaging is popularly used to
visualize biological structures such as the heart, carotid
artery, abdomen, breast, and blood vessels [1–4]. The pri-
mary challenges posed by ultrasound images in medical
image analysis are the presence of anatomical structures sur-
rounded by grainy noise resembling the background. Recog-
nizing the specific anatomical structure and associated
diagnostic information is highly challenging, and effective
preprocessing can help accomplish the task. Identifying
edges representing anatomical structures is a critical prepro-
cessing stage that can aid in several important tasks, such as
object detection and segmentation [5, 6]. Among prepro-
cessing stages, noise removal techniques contribute heavily
to effective edge identification. This is primarily due to the
evolution of state-of-the-art edge-preserving filtering tech-
niques that identify very sensitive edges representing biolog-
ical structures. From the literature, it is evident that
cardiovascular diseases (CVDs) are among the devastating
diseases accounting for severe mortality rates worldwide.
Several denoising techniques have been investigated to
remove noise with special emphasis on alleviating the edges,
including median filtering, wavelet-based filtering tech-
niques, nonlocal means, and total variation, along with sev-
eral other techniques [7–9]. Speckle noise removal in US
images was attempted using a bio-inspired variant of genetic
programming with a comprehensive analysis of different fil-
tering techniques, including GF, Wiener, and wavelet trans-
form. This implementation was carried out without the need
for logarithmic image transformation and threshold values
dependent on the individual images [10, 11].

The utility and inevitable need for efficient denoising
techniques was emphasized primarily in US images with a
comprehensive analysis of edge detection techniques [11].
The importance of efficient denoising techniques, such as
curvelet transform-based approaches, to aid in segmenting

US CCA structures was explained [5]. Several approaches
with mathematical formulations involving partial derivative
equations have been proposed exclusively for medical
images, including US images [12, 13]. In contrast, state-of-
the-art denoising techniques have also been proposed using
deep learning strategies for US images [14, 15]. Additionally,
several other preprocessing strategies are being developed to
aid in formulating effective diagnostic strategies [16, 17].
The effectiveness of state-of-the-art noise removal
approaches in performing efficient delineation of tissue of
interest in US images with the aid of machine learning
approaches indicates the imminent need for edge- and
structure-preserving approaches [18]. Designing efficient
despeckling techniques in conjunction with enhancement
techniques was found to be effective in identifying the
intima-media thickness (IMT) in US-based CCA images,
which, in turn, paves the way for the early diagnosis of cer-
tain CVDs [6]. Designing effective denoising strategies is of
paramount interest in early diagnosis related to US-based
CCA images. Several of the above approaches were designed
to mitigate certain types of noise. Contributing towards effi-
cient pipeline design considering the importance of preserv-
ing important structures is the primary goal of this study.

US images are primarily affected by noise, including
speckle noise, Gaussian noise, and Poisson noise [4, 7]. B-
mode ultrasound images and CCA were primarily used in
measuring IMT [4, 19, 20]. In designing and implementing
image processing-based pipelines, the results of several pro-
cessing stages are affected due to the presence of noise. Spe-
cific preprocessing methods are essential to mitigating noise
and artifacts. Several techniques were employed for identify-
ing plaque present in the ultrasonic images. It is necessary to
segment the affected region from the carotid artery ultra-
sonic image for an accurate diagnosis of carotid plaque.
The WNNM filtering technique is very effective in accom-
plishing the task of removing noise while simultaneously
preserving the structural information [20–23]. In this study,
different filtering techniques were explored to preserve the
CCA structure in US images [24–29]. Major motivation of
this study is to identify the usability of filtering techniques
to denoise image with clear emphasis to preserve the sensi-
tive structures in the US images. The major limitation of
the proposed technique is selecting the proper selection
parameters to tune the WNNM filtering technique and the
processing time.

3. Proposed Methodology

The input images considered in this study were obtained
from carotid artery images. This specific database consists
of 84 images related to B-mode ultrasound longitudinal sec-
tion acquisition of CCA from 10 volunteers [4]. To ensure
uniformity and computational ease, images are first resized
to 128× 128, and next, the resized images are converted to
grayscale images. To investigate the filtering capabilities of
the filtering techniques, first, the resized grayscale images
are corrupted with Gaussian noise of mean and variance of
0 and 0.05, respectively. The flowchart depicting the pro-
posed work is shown in Figure 1.
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Five denoising techniques, namely, WNNM, anisotropic
diffusion filtering (ADF), Gaussian filtering (GF), average fil-
tering (AVGF), and median filtering (MDF), were imple-
mented in this work for CCA image noise removal using
MATLAB (2016) [30–32]. Among these five techniques,
GF, AVGF, and MDF are conventional filtering techniques,
whereas ADF and WNNM operate filtering based on edge
information.

3.1. WNNM Filter. The WNNM-based approach utilizes the
rank minimization approach, wherein the sum of singular
values called the nuclear norm is used for the minimization
approach. Soft thresholding utilizing these singular values is
further used to perform the filtering operation [20].

X∗ = argminX f Xð Þ + τ Xk kX : ð1Þ

Nuclear norm minimization (NNM) utilized in this
approach is expressed as in Equation (1). The function f ðXÞ
is defined arbitrarily, and XϵRm∗n and τ are regularizing
parameters. An improved approximation of the rankminimiza-
tion was attempted with a weight factor instead of NNM termed
weighted nuclear norm minimization (WNNM) [20, 21].

3.2. Anisotropic Diffusion Filter. ADF operates by smoothing
the object in such a way that the edges are preserved with the
aid of gradient detection, which is given by the equation

It = div c x, y, tð Þ∇Ið Þ = ∂
∂x

c x, y, tð ÞIxð Þ ∂
∂y

c x, y, tð ÞIy
� �

, ð2Þ

where c is the conduction diffusion coefficient which is
responsible for performing the smoothing operation on the
image, whereas Ix and Iy are image gradients observed in
the x and y directions, respectively. The c is considered as
a function representing the magnitude of gradient of bright-
ness function f given by

c x, y, tð Þ = f ∇I x, y, tð Þk kð Þ: ð3Þ

In order to preserve the edges, proper selection of the
function f is essential. The commonly used function for dif-
fusivity f is given by

f ∇I x, y, tð Þk kð Þ = exp −
∇Ik k
K

� �2
 !

, ð4Þ

where K is a constant called as kappa and represents the
edge strength threshold [30, 31]. GF, AVGF, and MDF were
implemented with window sizes of (3, 3) [32, 33].

The equations to represent validation metrics are shown
in Table 1, where f flt is the filtered image, f orgis the original
image,Mμf org

, σ2
f org

, μf flt
, σ2f fltare the mean and variance of fil-

tered and original images, σf org, f f lt
is the covariance between

the original and filtered images, and c1 and c2 are constants.
PC ðxÞ is phase congruency computed for image, and S ðxÞ is
similarity between two images. MSE is mean square error.

Validation is performed with the aid of metrics such as
PSNR, SSIM, and FSIM [22–26, 34–38]. The main objective

Pre-processing

Input images Image resize Grayscale
conversion

Add Gaussian
noise

Filtering techniques

Average filter Gaussian
noise Median filter

Anisotropic
diffusion

filter
WNNM filter

Validation

PSNR FSIM SSIM

Quantitative Quantitative
Otsu

threshold

ADF and
WNNM
images

Entropy-
Otsu

Segmentation

Otsu Kapur’s
entropy Shanbhag

Figure 1: Flowchart representing the proposed approach.
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of the study is to investigate the performance of the filtering
techniques to preserve the fine structures and segment the
structures. Histograms of the images are also investigated
in the process of validating the efficacy of the WNNM filter-
ing approach over other techniques. Validating the segmen-
tation is not the focus of the study [39]. The edge-based
filtering techniques such as ADF and WNNM were dis-
cussed in the paper to identify the efficacy of the work.
The Meta-heuristic based segmentation approaches such as
Otsu-based thresholding, Kapur’s entropy and Shanbhag
entropy were also attempted in this paper for investigation
of the proposed work. The tools used in the work are
Python3.7, OpenCV, and Skimag libraries [22–29, 32, 37,
38, 40–53].

From the above equations:

(i) Otsu: Here, i and j represent indices for the two
intensity classes, namely, foreground and back-
ground; ωi is the probability of occurrence, and μi
is the mean of a class, respectively. This method
operates by selecting the optimal threshold by
means of maximizing the objective function using
the equation and the interclass variance between
the classes

(ii) Kapur’s entropy: In this approach, the optimal
threshold is computed based on the maximum
entropy defined by the equation, where HðρiÞ is
the Shannon’s entropy of the corresponding class

(iii) Shanbhag entropy: In this approach, the member-
ship value is assigned to the pixel intensities based
on their proximity to the class threshold as defined
by the equation

Figure 1 shows the flowchart representation of the pro-
posed denoising method. In Figure 1(a), the input images
are prepared before noise removal. Later, five individual fil-
ters were applied to the noisy images to obtain filtered
images. In Figure 1(b), the filtered images were first sub-
jected to validation, followed by Otsu-based threshold and
morphological operation.

4. Results and Discussion

The representative CCA image used from the dataset is
shown in Figure 2(a). In Figure 2(b), the representative
image, which is resized to a 128× 128 matrix size, converted
to grayscale and corrupted with Gaussian noise, is shown. It
can be observed that the presence of noise has a severe
impact on identifying CCA structural information.

Images filtered using different filtering techniques are
shown in Figure 3. In Figure 3(a), a noisy image filtered
using an average filter is shown. The influence of the filtering
technique is visible primarily in certain regions, especially
pixels representing low-intensity levels with sizeable, local-
ized regions, but noise is still predominant in the structures.
In Figure 3(b), the Gaussian-filtered image is shown, in
which it can be seen that the presence of noise is observed

Input: Noisy image x
1. Initialize x0 ,y0
2. For k = 1 to n number of iterations
3. Regularize in each iteration
4. For each patch in the image of fixed size
5. Identify identical patch group
6. Estimate weight vector
7. Perform singular value decomposition (SVD)
8. Obtain the estimate Xj

9. End
10. Build clean image at the iteration k
11. End
Output: Filtered image xfilt

Algorithm 1

Table 1: Validation measures and formulae.

Measures Formulae

PSNR PSNR f flt, f org
� �

= 10 log 2552/MSE f flt, f org
� �� �

FSIM FSIM f flt, f org
� �

= ∑S xð Þ:PC xð Þ
∑PC xð Þð Þ

SSIM SSIM f flt, f org
� �

= 1
M

〠
2μf org

μf flt
+ c1

� �
2σf org , f flt

+ c2

� �

μ2f org + μ2f flt + c1
� �

σ2f org + σ2
f flt

+ c2
� �
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throughout the image. The median-filtered image is shown
in Figure 3(c), and the noise seems to be marginally reduced.
An anisotropic filtered image is shown in Figure 3(d), and
the technique seems to have filtered the noise with due

importance to edges, such as retaining structure. However,
some of the sensitive structures seem to be blurred. The
WNNM-filtered image shown in Figure 3(e) appears to have
removed noise while preserving the important structures.

(a) (b)

Figure 2: Representative and resized CCA image: (a) input image and (b) image resized and noise corrupted image.

(a) (b)

(c) (d)

(e)

Figure 3: Filtered images. (a) Average filtered, (b) Gaussian filtered, (c) median filtered, (d) anisotropic filtered, and (e) WNNM filtered.
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The box plot representation of the validation metrics,
such as PSNR, SSIM, and FSIM, is shown in Figure 4. The
PSNR of the noisy images and the filtered images is shown
in Figure 4(a). It can be observed that noisy images have very
low PSNR, and all the filtering techniques contributed to
removing noise and improving PSNR with clear variations
seen across the techniques. The PSNR in the case of ADF
and WNNM appears to be better compared to conventional
filtering techniques. Among ADF and WNNM, the perfor-
mance of WNNM is clearly seen to be better with higher
PSNR values.

The SSIM-based plot is shown in Figure 4(b). A similar
trend can be seen with a much higher (greater than 0.7)
SSIM value obtained with WNNM among all the filtering
techniques. The next best performance is observed in the
case of ADF, which also has low variance. SSIM values for
all the conventional filtering techniques are less than 0.6,
which also has a very high variance. Additionally, the SSIM
values for noisy images are far lower (less than 0.3).

The FSIM-based box plot comparison is shown in
Figure 4(c). The FSIM values indicate that there appears to
be a marginal improvement in the case of AVGF and
MDF, whereas slightly better performance can be seen in
the case of GF and ADF. GF-based FSIM values have high
variation. FSIM values in the case of WNNM are higher than
those of the rest of the filtering techniques. Additionally, the
low variance achieved by WNNM and ADF techniques is
observed.

Histograms of the input image, noisy image, and filtered
images using different techniques are depicted in Figure 5.
The histogram of the input image is shown in Figure 6(a),

where it can be observed that the histogram is skewed left
with the majority of the intensities concentrated close to
low-intensity levels. The histogram of the noisy image in
Figure 6(b) indicates that the added noise spread the inten-
sities across and depicted the near Gaussian curve morphol-
ogy. The histogram of the Gaussian-filtered image in
Figure 6(c) clearly indicates that the morphology of the
Gaussian curve is still intact, which means that the filtering
is not instrumental in making the image closely resemble
the input image. The histogram of the median-filtered image
in Figure 6(d) indicates that the spread is relatively reduced
but still not close enough to depict the morphology of the
input image. The average filter performance also seems to
reduce the spread marginally, as depicted in Figure 6(e).
The spread in the intensity levels is considerably reduced
after the image is filtered using an anisotropic diffusion filter,
as represented by the histogram in Figure 6(f). The histo-
gram of the WNNM-filtered image in Figure 6(g) seems to
closely resemble the histogram in that of the input image,
shown in Figure 6(a).

The values obtained using validation metrics such as
PSNR, SSIM, and FSIM are depicted in Table 2. The metric
values in the noisy images prove that the influence of noise
degrades the image quality. The PSNR values are consider-
ably improved with WNNM and ADF compared to conven-
tional filtering techniques. Similar trends are observed in the
SSIM and FSIM measures. The system specifications are
Windows 10, 64-bit OS, 2.00GHz processor and 4GB RAM.

The results obtained in this study clearly indicate that
image smoothing filters, which have a clear mechanism to
smooth the pixels and regions representing nonedge
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Figure 4: Boxplot representation of validation metrics for different filtering techniques: (a) PSNR, (b) SSIM, and (c) FSIM.
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information while enhancing the regions representing edges,
are important for US images. Two of the conventional filters,
GF and AVGF, generally operate the process of removing
noise without considering the nature of regions, especially
without bothering whether the regions represent edges.
The performance of these filters is moderate, as depicted
by the quantitative measures. MDF, which operates based
on the median value in the mask region, is moderate with
respect to SSIM but overall does not provide significant
results. ADF is an edge-preserving filter that operates by
identifying the edge representing pixels, wherein based on
the lambda value, the smoothing is high in nonedge regions.
The filtering results are better than those of most conven-
tional filters. The formulae for Entropy and segmentation
approaches are incorporated in Table 3.

The computation times are more for ADF and WNNM.
But, the medical image analysis requires accuracy. Thus,
ADF and WNNM considered for the biomedical applica-
tions and are incorporated in Table 4.

The results rendered by the WNNM filtering technique,
which operates based on singular values, are impressive, as
suggested by quantitative measures as well as qualitative
observations. A high SSIM clearly indicates that the struc-
ture of the image before adding noise was retrieved after fil-
tering. It can be inferred that the WNNM filtering technique
can be used in designing an effective preprocessing module
in US-based CCA images. The importance of noise removal
using different approaches and their impact on segmenting
specific tissue in US images as depicted in several studies is
found to be interesting and much needed [1, 2]. In this

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5: Segmentation masks of ADF images and mask overlay: (a) entropy-Otsu threshold, (b) Otsu threshold, (c) Kapur’s entropy, (d)
Shanbhag entropy segmentation, and (e)–(h) overlay of (a)–(d).
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Figure 6: Continued.
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study, the basic segmentation strategy, namely, Otsu-based
thresholding, is used to delineate the tissue. Additionally,
no validation strategy for segmentation is implemented.
Hence, the use of state-of-the-art segmentation approaches
along with validation measures is a definite scope for future
enhancements in related studies.

The three validation metrics, namely, PSNR, SSIM, and
FSIM, clearly indicate that the two edge-preserving filters,
ADF and WNNM, are performed better than the conven-
tional filter.

To further investigate the quantitative analysis, the
entropy-based segmentation techniques were used to com-
pare the ADF and WNNM.

The segmented masks obtained using entropy-Otsu,
Otsu thresholding, Kapur’s entropy, and Shanbhag entropy
are shown in Figure 7 for ADF images in first row and cor-
responding overlay in the second row. The Otsu threshold
entropy images in (a) indicate oversegmentation performed
by the method. The Otsu thresholding in (b) and
Shanbagh-based segmentation in (d) seem to have per-
formed moderately to segment the boundaries of CCA. On
the other hand, the Kapur’s entropy-based mask in (c) has
been observed to have performed relatively better to delin-
eate the intended structures. The metrics of different filtering
techniques are compared in Table 2.

The segmented masks and overlays obtained after filter-
ing the images with WNNM-based filter are shown in
Figure 7. The Otsu threshold entropy images in (a) again
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Figure 6: Histograms of input, noisy, and filtered images: (a) input image, (b) noisy version of (a), (c) Gaussian filter filtered, (d) median
filtered, (e) average filtered, (f) anisotropic diffusion filtered, and (g) WNNM filtered; x-axis represents pixel intensity, and y-axis represents
the frequency or count of the pixel intensities.

Table 2: Comparison of validation metrics of different filtering techniques.

Validation measures Noisy images
Filtering techniques

GF AVGF MDF ADF WNNM

PSNR 16:02 ± 0:00 23:49 ± 0:04 24:29 ± 0:48 22:85 ± 0:36 25:01 ± 0:91 27:84 ± 1:04
SSIM 0:22 ± 0:04 0:33 ± 0:06 0:50 ± 0:06 0:43 ± 0:06 0:61 ± 0:02 0:76 ± 0:01
FSIM 0:27 ± 0:05 0:66 ± 0:06 0:77 ± 0:04 0:74 ± 0:04 0:83 ± 0:01 0:87 ± 0:01
Significance level: P value <0.0001 results for all metrics across filtering techniques w.r.t. noisy images.

Table 4: Comparison of Computing times.

Filtering techniques
Computation time (in

sec)

Gaussian filter(GF) 0.01

Average filter (AVGF) 0.01

Median filter (MDF) 0.3

Anisotropic diffusion filter (ADF) 0.4

Weighted nuclear norm minimization
(WNNM)

32

Table 3: Entropy and segmentation approaches with formulae.

Measures Formulae

Entropy H =〠
i

xi log xið Þ

Otsu threshold σ2c =〠
i,j
wiwj μi − μj

� �2

Kapur’s entropy arg max 〠
M−1

i=0
H ρið Þ

Shanbhag entropy Hf Tð Þ = 〠
G

g=T+1

p gð Þ
1 − P Tð Þ log μo gð Þ½ �
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indicate oversegmentation. The Otsu thresholding in (b) and
Shanbagh-based segmentation in (d) seem to have per-
formed again moderately to segment the boundaries of
CCA. The Kapur’s entropy-based mask in (c) has been
found to have resulted in better delineating the structures.

5. Discussions

The presence of noise in ultrasound images severely affects
image quality, thereby leading to difficulty in the efficient
design of image processing-based diagnostic tools. Primarily,
noise impacts the CCA structure morphology, as they are
defined with sensitive edges. Even small noise can be detri-

mental to effective CVD diagnosis. High efficacy resulting
design strategies are of paramount importance to alleviating
edges and preventing the smoothing of very sensitive edges
constituting structures of interest. We carried out a compre-
hensive qualitative and quantitative analysis by imple-
menting five different filtering techniques collaborating
with validation metrics. Furthermore, the filtered images
were segmented to perform a qualitative analysis of the
denoising approaches. It was found that the WNNM
removed the noise as evident from the high validation metric
values and further supported by the segmentation results,
which had fewer noisy structures. ADF, which is an edge-
enhancing filtering technique, also provided better

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 7: Segmentation masks of WNNM images and mask overlay: (a) entropy-Otsu threshold, (b) Otsu threshold, (c) Kapur’s entropy,
(d) Shanbhag entropy, and (e)–(h) overlay of (a)–(d).
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validation metrics. Conventional filtering approaches that
were performed in the closest vicinity could not reduce the
impact of noise and induce noisy structures.

Histogram-based validation also suggests that theWNNM
filter was instrumental in reducing noise and restoring the his-
togram close to the input image. Histogram-based validation
further reiterates that the WNNM filter is robust in many
aspects for providing efficient noise reduction. Hence,
WNNM can be a very useful filtering technique for alleviating
and preserving tissue structures. Various approaches of
obtaining threshold using entropy-based information further
provide wider ability of the preprocessing, especially the
edge-preserving filters to aid in near optimal segmentation of
the CCA which is very essential to aid in the diagnosis of the
IMT and possible presence of the plaque.

6. Conclusion

Designing a comprehensive methodology requires efficiently
designing each module starting from preprocessing; hence,
this study aims to contribute to this field and to include
machine learning approaches in various modules. This
paper proves quite useful in aiding clinical experts, including
radiologists, in their clinical investigations followed by diag-
nosis. This approach may further lead to future investiga-
tions involving structural preservation in real-time
situations and denoising ultrasound images.
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