
Research Article
A Hash-Based Fast Image Encryption Algorithm

Ruifeng Han

Computer Science Department, Xinzhou Teachers University, Xinzhou 034000, China

Correspondence should be addressed to Ruifeng Han; hrf_xztu@163.com

Received 1 March 2022; Accepted 13 July 2022; Published 10 August 2022

Academic Editor: Ruinian Li

Copyright © 2022 Ruifeng Han. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Many specialists and academics have recently become interested in the security of digital images in applications for the Internet of
Things. Hash-based digital image encryption algorithms with high unified average changing intensity (UACI > 30:96 percent) and
only one pixel difference from the plain image would therefore adjust plenty of the pixels in the cipher image and have indeed
been suggested to maintain the protection of images in the Internet of Things (NPCR > 98:77 percent). Theoretical study and
simulation results show that the suggested approach can fix these issues while retaining all the advantages of the original. The
proposed image encryption algorithm has important application value for strengthening the security of the Internet of Things.

1. Introduction

With the continuous development of information technol-
ogy and computer processing power, cryptography has also
been extended. Because the network environment, especially
Internet of Things environment is vulnerable to attacks, and
digital images contain redundant information, which is
closely related to personal privacy, once it is leaked, it is
likely to be personally threatened and even affect commer-
cial secrets and national security. Many algorithms exclu-
sively handle with digital encrypted images or text
encryption, respectively. Several algorithms, nevertheless,
integrate these two tasks. Passwords are simpler and easier
for people to recognize than pseudorandom numbers or a
long string of codes, making it more practical and appropri-
ate to password-protect digital photographs [1]. Liu and Tan
put forth a plan that uses 1D SHA-2 algorithms combined
with password protection to encrypt digital images with
compound forward transform [2].

2. Defect Analysis of the Original Algorithm

2.1. Lack of Connectivity between Pixels during Encryption.
During the encryption of the original image, the key stream
generation step and there really is no relationship either
between pixel intensity, and indeed, the postprocessing
phase solely affects each pixel inside a one-to-one relation-
ship. This characteristic may expose it to selected attacks

[3]. An attacker can do this by encrypting only two images
that differ by only one pixel. The plain picture and the cipher
image could both be found by an opponent because the two
encrypted images just vary with one pixel from one another.
Figure 1 illustrates an illustration of a 16 × 16 image. Follow-
ing encrypted data, point (1, 2) in the original image is trans-
ferred to point (12, 5). An opponent can find the
permutation rules for a pixel by performing this method
again for each pixel in the original image. This is the same
as disclosing a fresh random map during postprocessing [4].

2.2. The Only Dependency of the Key Stream. We discover
that the participant’s password is completely dependent on
the secret key during the encryption step of the original tech-
nique. The associated stream usually stays the same as long
as the cipher is unmodified, regardless of whether this is
used mostly for XOR with the original picture or for a post-
processing step. A known-plaintext assault on the original
algorithm is hence inevitable. The following formulas are
used to express the random key fK1, K2,⋯, KM ×Ng,
KMN that the adversary could retrieve if they are given a
pair of pure image needs to set G = fG1, G2,⋯,GM ×Ng
and a placed of cipher maps C = fC1, C2,⋯, CM ×Ng.

Ki = Ci ⊕Gi,  1 < i ≤ 8 ×M ×Nð Þ: ð1Þ

The permutation rules for pixels are recovered when

Hindawi
Wireless Communications and Mobile Computing
Volume 2022, Article ID 3173995, 8 pages
https://doi.org/10.1155/2022/3173995

https://orcid.org/0000-0002-8256-4074
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/3173995


used with the chosen-plaintext attack previously discussed.
Understanding the key stream produced by a specific key
is identical to actually having that key. The equivalent nor-
mal image may be retrieved instantly for whichever cipher
image encoded with almost the same key.

2.3. Attack Simulation. Let us say there is a password image
but no one knows the key. An attacker could trick the encryp-
tion system by feeding it a black image (every pixel inside the
encrypted image equals 0) to get the cipher image B. B is def-
initely a different key stream.We could derive the replacement
rule, designated byM, using the procedure outlined in Section
2.1. Apply rule M on the replaced key stream to undo it. We
could create a new key stream that seems to be identical to
the key stream obtained by doing an XOR operation with
the original image prior to replacement. There seem to be
two procedures required to obtain the original image for
encrypted images. Flip the encrypted image using rule M
firstly and afterwards XOR the new key stream after that.
The outcome is the accurate normal picture. Throughout
Figure 2, the attack procedure is depicted.

3. Improved Algorithm

In order to overcome the above potential defects, the follow-
ing improved algorithm is proposed:

(1) For convenience, the initial image post-processing
step is modified by us to the following equation,
defined as ACM; this includes the three variables a,
b, and k. To create the three variables that will substi-
tute the efficient algorithm, we utilize Ki =HðHð
KeyÞ. In our enhanced algorithm, however, k rounds
of operations are required in the encryption/decryp-
tion stage. On each turn, swap positions between
(0,0) and (1,1). Each round takes turns.

xn+1

yn+1

 !
=

ab + 1 a
b 1

 !
xn

yn

 !
mod 1ð Þ, a, b ∈N ð2Þ

(2) The improved algorithm is performed by splitting
the image into two equal pieces and then indepen-
dently encrypting each piece. The key stream is
determined by the user key and original image fea-
tures [5, 6]. In other words, when the same key is
used, different images are encrypted with the key

stream as a variable; it aids in preventing selected
and known-plaintext attacks on the encryption
algorithm

3.1. Encryption

(1) Identical to steps one and two of the initial step

(2) Generate a new key stream K0 with image features.
First, the original image is divided into two equal
parts L0 and R0 in the vertical direction, and the
two parts are encrypted, respectively, and the for-
mula is as follows. First, encrypt the information of
R0 using L0 to R1; the right part has been encrypted.
Then, L0 is encrypted to L1 using R1’s information

(3) Finally, to acquire the cipher picture, combine the 2
encrypted components L1 and R1

R1 = Complex imresize K ′ ⊕ gL0

� �
, M, N2

� �
, ′nearest′

� �� �
⊕ R0,

L1 = Complex imresize K ′ ⊕ gR1

� �
, M, N2

� �
, ′nearest′

� �� �
⊕ L0:

8>>><
>>>:

ð3Þ

L0 and R0 throughout the example above stand for the
left and right sides of something like the pure picture, while
L1 and R1 stand for the left and right sides of the cipher
image, gL0

and gR1
represent the average gray value of L0

and R1 which is of variable size, (∙, [M, N/2], “nearest”) rep-
resents the expansion operation, the “nearest” method is
used to the process of enlarging an image to M rows, and
N/2 column is known as cosine similarity interpolation.
The number of the pixel to which this pertinent is allocated
to the output pixel; additional pixels are not taken into
account. The compound transformation in the initial
encryption is represented by complex(∙)

(4) The postprocessing step is ACM

(5) Encrypted images

Figure 3 depicts the encryption process algorithm.
Figure 4 depicts the key stream creation algorithm.

3.2. Decryption. To obtain the XOR key stream, firstly invert
the ACM.

Encrypt the XOR key stream to produce a plain picture
next. L1 to L0 first were encrypted using R1’s data. Next, as
stated in the following expression, utilize the data from L0
to decode R1 to R0. L0 and R0 are the left and right halves
of the plain image, whereas L1 and R1 are the left and right
halves of the encrypted image.

L0 = L1 ⊕ Complex imresize K ′ ⊕ gR1

� �
, M, N2

� �
,′nearest′

� �� �
,

R0 = R1 ⊕ Complex imresize K ′ ⊕ gL0

� �
, M, N2

� �
,′nearest′

� �� �
:

8>>><
>>>:

ð4Þ

Figure 1: Mapping process.

2 Wireless Communications and Mobile Computing



Finally, the two decrypted parts L0 and R0 are connected
together to obtain a decrypted image.

4. Performance Analysis

In this section, a 256 × 256 Lena gray image [7] is selected to
conduct comparative experiments.

All experiments were performed using MATLAB 7.9 on
a personal computer (PC) which has a 250GB hard drive, a
2.0GHz Intel dual-core microprocessor, and 1.99GB of stor-
age [8].

4.1. Histogram of Encrypted Image. Every gray level’s fre-
quency is shown in the graph, and that every gray level
mainly related to the digital image [9]. The histograms of
the original and encrypted images are seen in Figure 5.

The graph of the password picture is quite homoge-
neous and distinct from the actual picture, as shown in
the figure.

4.2. Correlation of Two Adjacent Pixels. The correlation of
test image pixels includes horizontal correlation and diago-
nal correlation: first, in the picture, 2500 pairs of adjacent

(a) (b)

(c) (d)

Figure 2: Attack process.

User password

Plain
image

Arnold
cat map

Self-adaptive and
XOR operation

Encrypted
image

Figure 3: Encryption process algorithm.

3Wireless Communications and Mobile Computing



Gray-level value
of another part

Hash 256

XOR

Image (FFT (DCT))

Key stream

Password: SecureMePlease !

ed-03-99-69-1c-e0-a9-47…

1110110100000011100…

Bit stream resize fit the image size

Figure 4: Key stream generation algorithm.

(a) Original image

800

700

600

500

400

300

200

100

0
0 50 100 150 200 250

(b) Histogram of original image

(c) Encrypted image

400

350

300

250

200

150

100

50

0
0 50 100 150 200 250

(d) Histogram of encrypted image

Figure 5: Histogram of original image and password image.

4 Wireless Communications and Mobile Computing



pixels are chosen at random, and then, the correlation coef-
ficient is calculated by

rxy =
cov x, yð Þj jffiffiffiffiffiffiffiffiffiffi

D xð Þp
×

ffiffiffiffiffiffiffiffiffiffi
D yð Þp , ð5Þ

cov x, yð Þ = 1
N
〠
N

i=1
xi, ð6Þ

D xð Þ = 1
N
〠
N

i=1
xi − E xð Þð Þ2, ð7Þ

where the gray scale values of the adjacent image pixels
are represented by x and y.

Figure 6 depicts, correspondingly, the horizontal, verti-
cal, and diagonal correlations between the two images.
Table 1 displays the findings of the regression analysis of
adjacent pixels.

4.3. Sensitivity Analysis. Often, an adversary might alter the
encrypted image slightly in order to observe the change in
results. In doing so, meaningful relationships between plain
images and cryptographic images can be found. This is
called a differential attack.

4.3.1. NPCR and UACI Analyses. But only when the pictures
vary by something like a single pixel, NPCR denotes the rate
of difference in the frequency of pixels inside an encryption
algorithm. The unified average intensity of change (UACI)
metric calculates the average brightness of the variation
between the two images. NPCR and UACI both rely on
slight adjustments to the two images while maintaining the
same key. In reference [10], the original image and key of
the NPCR calculated by the author have changed by one bit.

Suppose there are two encrypted pictures, C1 and C2,
which normal control pictures vary by just one pixel. The
gray scale values of the encrypted images C1 and C2 are des-
ignated as C1ði, jÞ and C2ði, jÞ, accordingly, in the i-th row
and j-th column.

0
0

50

50

100

100 150

150

200

200

250

250

(a)

0
0

50

50

100

100 150

150

200

200

250

250

(b)

0
0

50

50

100

100 150

150

200

200

250

250

(c)

0
0

50

50

100

100 150

150

200

200

250

250

(d)

0
0

50

50

100

100 150

150

200

200

250

250

(e)

0
0

50

50

100

100 150

150

200

200

250

250

(f)

Figure 6: Correlation of two horizontally adjacent pixels.

Table 1: Correlation coefficient of two adjacent pixels.

Normal image Password image

Level 0.9431 0.0089

Vertical 0.9725 -0.0215

Diagonal 0.9264 -0.0074

Table 2: NPCR and UACI analyses.

Normal image Password image

NPCR 0.0015% 98.7778%

UACI 0.0000% 30.9639%

5Wireless Communications and Mobile Computing



The definitions of NPCR and UACI are

NPCR =
∑M

i=1∑
N
j=1

M ×N
× 100%,

UACI =
∑M

i=1∑
N
j=1 Ci i, jð Þ − C2 i, jð Þj j
M ×N × 256 × 100%:

ð8Þ

The sizes of the picture are M and N , correspondingly.
For our instance, the key “SecureMePlease!” has been

used, and the chosen pixel is the position (1,2) of the image
pixels. Its number is altered from (10100011)2 to
(10100010)2. NPCR and UACI are therefore reported in
Table 2.

Table 2 demonstrates how much greater our revised
technique is programmatically than the original method in
sensitivity.

The responsiveness to the actual picture is quite low in the
original method. The whole key picture in the 256 × 256 sample
provided has only been modified by roughly 0.0015 percent.
The UACI is around 0 [11]. Experiments show that encrypted
images are vulnerable to plaintext and known-plaintext attacks.

Consequently, it is evident that our enhanced approach
fixes the old system’s flaw of being blind to minute alter-
ations in planar images. The encrypted picture’s pixels shift
whenever a single pixel in the original picture changes
(NPCR > 98:77%), and the universal mean shift intensity
increases (UACI > 30:96%). The results demonstrate that
the effectiveness is satisfactory.

4.3.2. Key Sensitivity Test. Crucial sensitivity is the pace at
which a cryptographic picture’s pixel count changes even
though only one piece of the password is changed. The usual
image should first be encrypted with the testing password
“SecureMePlease!” before the least-valid password is changed
to “SecureMePlease.” and the identical image is encrypted. Con-
sider the various password photos once more.

(a) Original image (b) Encrypted image: key = “SecureMePlease!”

(c) Encrypted image: key = “SecureMePlease!” (d) Difference image

Figure 7: Key sensitivity test.

Table 3: Rate of change.

Original key New key Change rate

SecureMePlease!

SecureMePlease. 99.600%

secureMePlease! 99.161%

SecuremePlease! 99.245%

SecureMePlease 99.295%

6 Wireless Communications and Mobile Computing



The outcome is in regard to pixel gray levels, the
encrypted image is completely different with a slight differ-
ence in the key (as shown in Figure 7). Table 3 displays the
outcomes of the encryption with different keys, with an aver-
age rate of change as high as 99.323%.

Also, if the image is encrypted with a key and decrypted
with another, simply modified key, the decryption fails.
Figure 8 demonstrates how photos encrypted using the
“SecureMePlease!” password cannot be properly decoded
with the “SecureMePlease” password.

4.4. Other Security Analysis

4.4.1. Resist Plaintext Attack. We may observe a significant
change at the crucial stream creation when evaluating the
original method with the revised approach. The user’s pass-
code is the single factor that determines how the key stream
is utilized in the original file, whether it is for an XOR oper-
ation with the actual picture or for postprocessing. It is sep-
arated from typical visuals. The key stream in our enhanced
technique is based on the original picture’s properties as well
as the user’s passcode. That is, although just use the same
passcode, if various photos are encoded, the crucial stream
of the XOR stage is unpredictable. This person assists with
encrypted photographs defend against selected plaintext
attacks and known plaintext attacks.

Also, a cryptanalyst sending a dark image through into
encryption method seems to have no impact on the opera-
tion because the key stream is varied when encrypting vari-
ous images with the same cipher. The “chosen plain text
assault” discussed above can be eliminated by our enhanced
algorithm.

4.4.2. Diffusion and Chaos. Obfuscation and diffusion are
two characteristics of secure cryptographic procedures that

(a) Original image (b) Encrypted image: key = “SecureMePlease!”

(c) Decrypted image: key = “SecureMePlease!” (d) Decrypted image: key = “SecureMePlease!”

Figure 8: Key sensitivity test.

Table 4: Encryption time of three encryption algorithms.

Encryption algorithm Image size Encryption time

Literature [12] 90∗180 2.13

Literature [13] 128∗128 1.24

The algorithm in this paper 128∗128 0.15

7Wireless Communications and Mobile Computing



were first established by Claude Shannon in the field of cryp-
tography. NPCR demonstrates that when just one pixel of
the plaintext is altered, nearly every pixel in the crypto-
graphic picture is altered, as illustrated in Section 4.3.1
(NPCR > 98:77 percent). The revised algorithm’s diffusion
characteristics are excellent.

Through the correlation analysis of the gray histogram
and adjacent pixels, the proposed improved algorithm has
good chaos.

4.4.3. Brute Force Attack. The suggested enhanced algorithm
depends on the required space length and critical sensitivi-
ties for brute force attack evaluation.

Essential space: the SHA-2 method and the FFT-DCT
composite transform are irreparable processes, as was
already stated; in addition, ARM will arrange the pixels,
which is very secure for common commercial applications

Key sensitivity: as shown in Figures 7 and 8, even a small
key change causes almost all pixels to change the corre-
sponding cryptographic image

Therefore, our algorithm is highly resistant to brute force
attacks.

4.5. Comparison of Similar Algorithms. The algorithm pro-
posed in this paper has superiority by comparing and ana-
lyzing the algorithm of literature [12] and literature [13].
Reference [12] suggested a Feistel network-based picture
encryption technique, which has high security and can be
comparable to the algorithm in this paper, but there is a
gap with this paper in terms of sensitivity. This paper also
introduces in Section 4.3. The algorithm in this paper Fewer
iteration rounds are required.

In addition, although the literature [13] has been
improved, the encryption speed of the algorithm in this
paper is significantly higher than that of the literature
[13]. Table 4 shows the image encryption algorithms pro-
posed in this paper, literature [12] and literature [13]. The
time required to encrypt the same image, it can be seen
that the encryption speed of this paper is the fastest that
is because the literature [12] uses a large number of itera-
tions, resulting in a slow operation, while the literature
[13] is because there are too many rounds. This results
in increased computation time, which in turn slows down
encryption.

5. Conclusion

In this research, we suggested a hash-based fast picture
encryption algorithm for Internet of Things (IoT) applica-
tions, where the image is split into equivalent left and right
portions, and the data from one half is used to encrypt the
other part in turn. Theoretical study and computer simula-
tion demonstrate the robustness of our suggested approach
against chosen plaintext assaults as well as chosen plaintext
attacks.

Data Availability

All the data used to support the findings of this study are
available in the article.

Conflicts of Interest

No contradictions exist, according to the researchers, with
the publication of this research.

References

[1] H. Dai, W. Dong, and S. Zhong, “Design and analysis of a class
of SHA-x improved hash algorithms,” Computer Engineering,
vol. 35, no. 6, pp. 181-182+185, 2009.

[2] R. Liu and T. Tan, “A review of research on digital image
watermarking,” Journal of Communications, vol. 21, no. 8,
pp. 40–49, 2000.

[3] J. Wu and S. Song, “An improvement of text encryption
method,” Journal of Chongqing University of Science and Tech-
nology: Natural Science Edition, vol. 6, no. 2, pp. 55-56, 2004.

[4] A. Zhou and Y. Yu, “Robust speech recognition by adopting
random projection in feature space,” Computer Applications,
vol. 32, no. 7, pp. 2070–2073, 2012.

[5] X. Liao, S. Lai, and Q. Zhou, “A novel image encryption algo-
rithm based on self-adaptive wave transmission,” Signal Pro-
cessing, vol. 90, no. 9, pp. 2714–2722, 2010.

[6] D. Xiao and F. Y. Shih, “Using the self-synchronizing method
to improve security of the multi chaotic systems-based image
encryption,” Optics Communications, vol. 283, no. 15,
pp. 3030–3036, 2010.

[7] R. Liu, F. Li, and L. Su, “Bilateral filtering based image restora-
tion for multiple grayscale images,” Computer Applications,
vol. 30, no. 4, pp. 902–904, 2010.

[8] Y. Li, “Simulation calculation of control system—MATLAB,”
Computer Measurement and Control, vol. 12, no. 4, pp. 40–
43, 1996.

[9] Y. Tang, Z. Wwang, and J. A. Fang, “Image encryption using
chaotic coupled map lattices with time-varying delays,” Com-
munications in Nonlinear Science and Numerical Simulation,
vol. 15, no. 9, pp. 2456–2468, 2010.

[10] S. Deng, Y. Zhan, and D. Xiao, “Analysis and improvement of
a hash-based image encryption algorithm,” Communications
in Nonlinear Science & Numerical Simulation, vol. 16, no. 8,
pp. 3269–3278.

[11] A. Manikond and P. Mangalampalli,UACI: Uncertain Associa-
tive Classifier for Object Class Identification in Images, 2012.

[12] F. Li and J. Xu, “Image encryption algorithm based on hash
function and multi-chaotic system,” Computer Engineering
and Design, vol. 31, no. 1, pp. 141–144, 2010.

[13] G. Chen, X. Zhao, and J. Li, “A self-adaptive algorithm on
image encryption,” Journal of Software, vol. 16, no. 11,
p. 1975, 2005.

8 Wireless Communications and Mobile Computing


	A Hash-Based Fast Image Encryption Algorithm
	1. Introduction
	2. Defect Analysis of the Original Algorithm
	2.1. Lack of Connectivity between Pixels during Encryption
	2.2. The Only Dependency of the Key Stream
	2.3. Attack Simulation

	3. Improved Algorithm
	3.1. Encryption
	3.2. Decryption

	4. Performance Analysis
	4.1. Histogram of Encrypted Image
	4.2. Correlation of Two Adjacent Pixels
	4.3. Sensitivity Analysis
	4.3.1. NPCR and UACI Analyses
	4.3.2. Key Sensitivity Test

	4.4. Other Security Analysis
	4.4.1. Resist Plaintext Attack
	4.4.2. Diffusion and Chaos
	4.4.3. Brute Force Attack

	4.5. Comparison of Similar Algorithms

	5. Conclusion
	Data Availability
	Conflicts of Interest

