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Effective perception of the surrounding environment and the balance between accuracy and processing speed are crucial for the
successful application of real-time semantic segmentation algorithm in the fields of autonomous driving, drones, and smart
security. In this paper, a lightweight feature reuse network MHANet for real-time semantic segmentation is proposed. The
main novelties of our method are improved ResNet and attention-based fusion mechanism. And the effectiveness of our
method is verified by a large number of experiments. Without any pre-training process, the performance of real-time
segmentation is improved by using deep fusion of segmentation maps with different resolutions. At the same time, our
network converges faster than other networks using pre-training when trained from scratch. Compared with existing methods,
the results obtained with our method on the Camvid dataset improve in accuracy (mIoU) ranging from 2% to 6% and in
efficiency (FPS) ranging from 15% to 18%. The results achieved 71.87% mIoU of accuracy in the Cityscapes test set, processing
images at 203 FPS. Experiments show that manual designed MHANet is effective in improving the performance of real-time
semantic segmentation without any pre-training.

1. Introduction

The semantic segmentation task is one of the most impor-
tant and fundamental problems in computer vision. In
recent years, with the continuous development of deep
learning and neural networks [1], semantic segmentation
techniques have made many breakthroughs. To enable
machines to learn more and richer information from limited
data, researchers generally believe that the deeper the net-
work design for semantic segmentation tasks, the better the
result will become, but at the same time the parameters
and computation will keep increasing. With the improve-
ment of accuracy, the inference speed becomes slower and
slower. It is not obviously suitable for some application areas
with high requirement of real-time inference speed, such as
autonomous driving, robot perception, and intelligent video
surveillance.

In recent years, there has been a proliferation of
approaches for real-time semantic segmentation, which have
obtained better performance on all types of benchmarks
compared to the previous ones. However, some works
[2–4] on real-time semantic segmentation still do not
achieve a balance in terms of speed and accuracy. At present,
for real-time semantic segmentation tasks, on the one hand,
to increase the inference speed, reduce the computational
cost, and obtain advanced semantic information, many
methods use excessive down-sampling [5, 6], like max-pool-
ing, which leads to the reduction of the resolution of the fea-
ture map. It sacrifices a large amount of spatial detail
information and there is also the problem of partial edge
information loss. On the other hand, to maximize the com-
pact network structure, most of the networks do not perform
proper post-processing [2, 7] and allow the feature maps to
be superimposed directly and simply, thus wasting much
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spatial semantic detail information and computational
resources.

To address the above issues, in this paper, we study the
details and global information in the input image more
deeply and propose a novel network—lightweight real-time
semantic segmentation network based on multi-resolution
hybrid attention mechanism (MHANet). Firstly, we design
a novel ResNet-based backbone segmentation network D-
Resnet, as shown in Figure 1. Unlike previous work, we
reduce the number of channels to reduce the computational
complexity and improve the speed of network inference, and
we use a dilated convolution with a dilation rate of 2 in the
residual branch of the last three stages to expand the recep-
tive field of the network. This can obtain richer contextual
information, improve the relevance of semantic information,
and improve the performance of the network without losing
resolution. Subsequently, the segmentation maps generated
in different down-sampling stages are used for multiscale
context fusion to further reduce the computational complex-
ity of the network.

In previous work [8], we found that the actual generali-
zation ability of the adaptive multiscale segmentation fusion
module is relatively poor. In contrast, as a very effective
structure, residual connection [9] can help the network to
back propagate more efficiently and prevent the gradient
divergence. The joint high-level semantic and low-level
fine-grained surface information can also increase the gener-
alization performance of the network [10]. Therefore, we
add skip connections at the beginning of building
attention-based feature mixing module (AFM) that spans
the entire module to improve the performance. Finally, the
segmentation map is deeply fused and passed through the
segmentation head to get the final segmentation result.

The contributions of this paper can be summarized as
the following three points.

(i) In this paper, we propose an attention-based feature
mixing module (AFM), which aims to fuse and
reuse the semantic information in multiscale seg-
mentation maps. It effectively improves the infer-
ence effect and generalization ability of the network

(ii) Based on the Resnet network, we further study and
propose the backbone network D-Resnet which is
more concerned with real time. This will help to
balance the accuracy and speed of segmentation

(iii) Our proposed model attains a better performance
on Camvid and Cityscapes datasets. We also pro-
vide detailed analysis of design choice

2. Related Work

2.1. Semantic Segmentation. Semantic segmentation is one of
the most fundamental problems in computer vision. With
the development of deep learning, Full Convolutional Net-
work (FCN) [1] broke the original segmentation models
and its methodological ideas were widely used in subsequent
research work. U-Net [11] uses a fully symmetric encoder-
decoder structure for network deepening, which effectively

improved the effects for small-scale datasets. The DRN
[12] uses dilated convolution on the main branch of ResNet,
improving the result of accuracy. Meanwhile, some other
works (for example, SegNet [13] and SPNet [14]) make
efforts to better utilize contextual information to enhance
accuracy.

2.2. Real-Time Semantic Segmentation. Recently, there is an
increasing demand for practical applications of real-time
semantic segmentation tasks in fields such as autonomous
driving. ENet [2] mainly uses bottleneck modules and reduc-
ing the number of input channels to improve the perfor-
mance. The network proposed by Eduardo Romera et al.
[15] reduces the costs by using factorized convolution. ERF-
Net [16] and ESPNet [17] have mainly rethought the convo-
lution to make the network perform better. In addition,
there are some networks with multi-branch structure, such
as the BiSeNet series [18, 19], which proposes separate train-
ing for spatial and contextual paths, and the feature fusion
operation is performed finally. Chen et al. [20] used a com-
bination of NAS and teacher-student networks to jointly
search for optimal architectures and improved the efficiency
of network reasoning.

2.3. Attentional Mechanism. Attention mechanism is a
rather important concept in the field of neural networks.
Xiao et al. [21] proposed a spatial converter module to
extract key information after transforming spatial domain
information. The core of SENet [22] was to learn feature
weights based on network losses. Wang F et al. [23] proposed
a residual attention network with an overall three-stage atten-
tion module. Wang X et al. [24] proposed a non-local opera-
tion to capture long-range dependencies. Although these
attention mechanisms were effective in improving the perfor-
mance of the network, they increased the number of network
parameters and computation and reduced the inference speed
of the network. For example, the self-attentionmechanismwill
bring computation by OððH ×WÞ2Þ. It would difficult to be
applied to lightweight tasks. So, researchers started to propose
some lightweight attention modules (for example, ECA-Net
[25] and CA [26]).

SUMMARY: Some of the works mentioned in subsections
2.1 and 2.2 either build the network more complex and deeper
at the expense of speed or focus more on lightweight architec-
ture at the expense of accuracy. A network with disbalance
between speed and accuracy cannot be used in real applica-
tions. Most of the works on attention mechanisms mentioned
in subsection 2.3 were designed for image classification tasks
or specific networks, and direct use of them in semantic seg-
mentation tasks did not yield good results. This paper then
rethinks the above aspects, proposes a proven lightweight
architecture, and retools the existing attention module to
finally adapt to our real-time semantic segmentation task.

3. Method

3.1. Network Structure. This section presents the overall
structure of lightweight real-time image semantic segmenta-
tion network based on multi-resolution hybrid attention
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mechanism (MHANet), and the network structure is shown
in Figure 1. Our network can be divided into two parts, one
part is our proposed D-Resnet backbone network for feature
extraction and generating multiscale segmentation maps,
and the other part is the attention fusion module, which
up-sampling the segmentation maps generated by D-
Resnet to be the same size. With weight assignment, the seg-
mentation map is fused, and the final segmentation result is
generated.

Assume that given an input image X ∈ℝH×W×C , H repre-
sents the height of the image, W represents the width of the
image, and C represents the number of channels of the
image; the features extracted by D-ResNet generate three
segmentation maps ½X1, X2, X3�, as shown in Equation (1).

X1, X2, X3½ � = F Xð Þ, ð1Þ

where X1, X2, X3 denote the three segmentation maps gener-
ated after D-Resnet extracts features of a given input image
X at different levels. Fð∙Þ represents the operation of feature
extraction and pixel-level classification using a 1 × 1 convo-
lutional layer.

We then perform an up-sampling operation on these
three different size segmentation maps to make the three
maps of the same size. Especially, the bilinear interpolation
method is currently a popular method for up-sampling. This
method interpolates a set of uniformly sampled positions to
achieve up-sampling. Although the operation is simple, it
introduces the problem of semantic misalignment, which is
fatal to the effectiveness of our network segmentation. In
contrast, the semantic flow-based up-sampling method
[27] can transfer and align the semantic information from
the higher level to the lower level and enrich the semantic
representation of the lower level features, so we choose the
semantic flow-based up-sampling method module in the
up-sampling stage, as shown in Equation (2).

Segi = f up Xið Þ, ð2Þ

where f upð·Þ represents the up-sampling method based on
semantic flow, Xi is the segmentation map generated in the
previous stage, and Segi then represents the segmentation
map after up-sampling.

Next, segmentation maps of the same size are superim-
posed and fused by the attention-based feature mixing mod-
ule based on the generated weights. Finally, the complete
prediction results are generated, as shown in Equation (3).

output = Fmix Segið Þ, ð3Þ

where Fmixð·Þ denotes the attention-based feature mixing
module.

3.2. D-ResNet and Auxiliary Loss. We designed a stronger
lightweight fully convolutional backbone network D-
ResNet for MHANet based on ResNet-34 [9], and the struc-
ture is shown in Figure 2. We used [32,64,128,256] as the
input channel for a better balance between speed and accu-
racy. At the same time, considering that the max-pooling
operation in the stem layer causes information loss and
makes the convolutional neural network lose translation
invariance, the pooling operation in the stem is removed in
this paper. To allow the network to gradually increase the
sampling rate without losing information by making the
image size too small, we choose to compress the input
images to 1/16.

In semantic segmentation tasks, the process of machine
learning requires not only dense feature maps but also effec-
tive contextual semantic information, and dilated convolu-
tion is an excellent solution to this problem. The DRN [12]
network replaces the main branch of the ResNet backbone
network with a dilated convolution but causes a gridding
effect, which the authors use three methods to improve,
but the final result is still not particularly satisfactory.

INPUT X
3 × 512 × 1024

X3
19 × 32 × 64

X2
19 × 32 × 64

Seg3
19 × 64 × 128

Seg2
19 × 64 × 128

Seg1
19 × 64 × 128

OUTPUT
19 × 512 × 1024

upAttention–based
feature mising moduleStage 1 Stage 2 Stage 3

Conv
BN

Relu
Stage X Segmentation

map
Semantic flow

upsampling

Stage 4

D – Resnet

19 × 64 × 128

X1
19 × 64 × 128

Upsampling

Figure 1: The structure diagram of lightweight real-time image semantic segmentation network based on multi-resolution hybrid attention
mechanism (MHANet).
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Therefore, we proposed to use a 3× 3 convolution with a
dilation rate of 2 for all the residual branches of the last three
stages to increase the perceptual field of the network, while
the main branches are the same as before. After the residual
branches are fused with the main branches, it allows the net-
work to learn richer semantic features and lose as little detail
as possible in the image. It also does not change the size of
the feature map, allowing the network to still make infer-
ences at larger sizes without affecting the network inference
efficiency. To accelerate network inference even further,
MHANet uses 1× 1 convolution in the latter three stages
to generate segmentation maps with fewer channels for sub-
sequent inference.

The structure of the D-Resnet proposed in this paper is
shown in Table 1, and we can see the D-ResNet is lower than
the native ResNet-34 in terms of the number of parameters
and computation. In the ablation experiments mentioned
in subsection 4.3.3, it was also demonstrated that MHANet
using D-ResNet as the backbone network has nearly 1%

improvement compared to FCN using ResNet-34 (69.5%
→71.23%).

It is worth noting that a training strategy is proposed to
enable the network to be trained more efficiently and to
improve the accuracy of semantic segmentation. In this
paper, the cross-entropy losses of segmentation maps at dif-
ferent scales in these three stages are calculated and summed
according to different weights as auxiliary losses to guide the
training of the network, while it does not increase the com-
putational complexity, as shown in Equation (4). The final
loss function used for training is the loss function output
lossoutput at the end of the network plus an auxiliary function
of our design.

loss = lossoutput + αloss2 + βloss3 + γloss4, ð4Þ

where lossoutput represents the segmentation result loss of the
final network, lossi, i = 2, 3, 4 represents the segmentation

Conv + bn + Relu

Auxilliary train loss

Seg head Train loss 2

Train loss 3

Train loss 4

Seg head

Seg head

Layer1

Layer2

Layer3

Layer4

INPUT X

(a)

Conv + bn + Relu

Conv + bn

BasicBlock

Conv + bn

BasicBlock

BasicBlock

(b)

Conv + bn

BasicBlock

Conv (dilated rate = 2) + bn

Conv + bn + Relu

…

(c)

Conv + bn + Relu

Conv + bn + Relu

(d)

Figure 2: (a) denotes the D-ResNet structure, where Train loss i ði = 2, 3, 4Þ is the auxiliary loss. (b) denotes the structure of Layer 1. (c)
denotes the structure of Layer 2, 3, 4. (d) denotes the structure of Basic Block.

Table 1: (Left) Resnet-34 network architecture. (Right) D-Resnet network architecture, “d =2” indicates the use of a dilated convolution
with a rate of 2.

Stage Output ResNet-34 Output D-Resnet

Stem 512 × 1024 7 × 7, 64, stride 2 512 × 1024 7 × 7, 64, stride 2
3 × 3 max pool, stride 2

Layer1 256 × 512
3 × 3, 64

3 × 3, 64

" #
× 3 256 × 512

3 × 3, 32

3 × 3, 32

" #
× 3

Layer2 128 × 256
3 × 3, 128

3 × 3, 128

" #
× 4 128 × 256

3 × 3, 64

3 × 3, 64
 d = 2

" #
× 4

Layer3 64 × 128
3 × 3, 256

3 × 3, 256

" #
× 6 64 × 128

3 × 3, 128

3 × 3, 128
 d = 2

" #
× 6

Layer4 32 × 64
3 × 3, 512

3 × 3, 512

" #
× 3 64 × 128

3 × 3, 256

3 × 3, 256
 d = 2

" #
× 3

1 × 1 Average pool, fc — —

# Params. 21.80M 5.33M

GFLOPs 35.77 13.92
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map loss generated in the three stages after D-Resnet, and
the parameters are set to α = 0:1, β = 0:25, and γ = 0:4 to bal-
ance the loss. We experimented with the parameter settings
in subsection 4.3.4.

3.3. Attention-Based Feature Mixing Module. Attention-
based feature mixing module (AFM) is a very important
module in MHANet proposed in this paper, and the archi-
tecture is shown in Figure 3.

In this paper, the design of the architecture is mainly
inspired by the SKNet [28] network. It first proposes a
three-stage structure of separation, fusion, and selection,
using 3 × 3 and 5 × 5 convolutional kernels to perform con-
volutional operations on the feature maps, followed by a
process similar to the SE module [22]. The ASFNet further
improved it to the adaptive multiscale segmentation fusion
(ASF) module.

However, ASF does not fully utilize the segmentation
map, and some semantic information is still missed when
passing through the network. So, MHANet rethinks the
SKNet. Firstly, MHANet fuses the three up-sampled seg-
mentation maps obtained from different scales, using the
concat method instead of simple pixel-level addition.
Because the pixel-level addition operation is a direct linear
addition of the corresponding segmentation maps, the num-
ber of feature channels is not increased; it will cause infor-
mation loss, as shown in Equation (5).

FushionMap = f concat segð Þ, ð5Þ

where seg denotes the segmentation maps at different scales
and f concat denotes the concat operation.

Subsequently, the global average pooling and fully con-
nected operations are performed on the segmented maps
after concat to extract global information for obtaining the
segmented maps weights at different scales, and then the
probabilities are obtained using softmax and then weighted
and summed separately. However, in the experiments, there
may be problems of poor generalization ability and degrada-
tion of network performance in the network. In this paper,
we solve this problem by using a residual connection’s struc-

ture so that MHANet can still maintain a good information
structure during training, as shown in Equations (6) and (7).

φ = 〠
n

i=1
segi + δ ⋅ seg1 + ε ⋅ seg2 + ϕ ⋅ seg3, ð6Þ

δ, ε, ϕf g⟶ softmax f f c f gp FushionMapð Þ
� �h i

, ð7Þ

where segi denotes the segmentation map after up-sampling,
fδ, ε, ϕg denotes the corresponding each segi weight parame-
ter generated by the attention-based feature mixing module,
f gp represents the global pooling operation, f f c represents
the fully connected operation, and softmax represents the
computation probability operation.

Seg1

Seg2

Seg3

Seg1

Seg2

Seg3

Attention module Concat

Fusion map

Soft max

Segmentation map

(a) Attention-based feature mixing module (b) Attention module

Fusion map
Weight

Fgp Ffc

𝛼

𝛽

𝛾

Figure 3: (a) is the overall architecture of the attention-based feature mixing module. (b) shows the architecture of the attention module.

Table 2: Setting up the dilated convolution at different stages of the
backbone network, we validate on the Cityscapes test set to obtain
mIoU and FPS results.

Stage4 Stage3 Stage2 mIoU

— — — 71.1645

✓ — — 71.0996

— ✓ — 68.9519

— — ✓ 69.0471

✓ ✓ — 70.4554

✓ ✓ ✓ 69.4500

— ✓ ✓ 69.4516

✓ ✓ ✓ 71.8686

Table 3: To verify the impact of fusion of different stage
segmentation maps on the final accuracy of our network, we
validate the mIoU results on the Cityscapes val set.

Seg2 Seg3 Seg4 mIoU

✓ 72.62

✓ ✓ 72.77(+0.15)

✓ ✓ ✓ 72.83(+0.21)
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4. Experiments and Analysis

In this paper, Cityscapes dataset and Camvid dataset are used
to verify the real-time and validity of MHANet, respectively.

4.1. Experiment Setup. Our models are trained on one tesla
v100 with a batch size of 8. We use Adam as our optimizer
with weight decay 2e−4. For data preprocessing, we used
the same approach as ASFNet [8]. For fair comparison with

Table 4: To verify the impact of each module on the final accuracy of our network, we validate the mIoU results on the Cityscapes val set.

Method Backbone Up-sampling Aux loss AFM mIoU

FCN-Res34 Resnet34 × × × 69.50

MHANet-Base D-Resnet SF × × 71.23(+1.73)

MHANet-Base/loss D-Resnet SF √ × 72.04(+2.54)

MHANet D-Resnet SF √ √ 73.16(+3.66)

(a) (b) (c)

(d) (e) (f)

Figure 4: Visualization results of each stage on cityscapes dataset.
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other work, we use the same online hard example mining
(OHEM) strategy [29] during training.

Cityscapes: The Cityscapes [30] semantic scene parsing
dataset contains 5000 finely labelled images, of which
2975/500/1525 images are used for network training/valida-
tion/testing. We randomly crop the image from 1024× 1024
for training. We also adopt an initial learning rate of 0.0005.
Our models are trained for 900 epochs. We conduct all
inference experiments under CUDA 10 on RTX2080TI.

Camvid: The Camvid [31] contains 701 images. 367/101/
233 images are used for network training/validation/testing.
We randomly crop the image from 512× 512 for training.
Other sets are the same as Cityscapes.

4.2. Criterions. In this paper, we use four metrics to evaluate
the effect.

mIoU: mean Intersection over Union between ground
truth and predicted segmentation results. It is calculated
based on each category and then the mean value, as shown
in Equations (8).

mIoU = 1
k + 1

〠
k

i=0

pii
∑k

j=0pij +∑k
j=0pji − pii

: ð8Þ

FPS: Number of image frames processed per second, an
algorithm is considered to have real-time performance when
it can execute at a speed of 30 FPS or more.

GFLOPs: The number of floating-point operations,
understood as the amount of computation. It can be used
to measure the complexity/computation of an algorithm/
model.

Params(M): Number of parameters, used to measure the
complexity of the model.

4.3. Ablation Study

4.3.1. The Validation of Backbone Network D-Resnet
Expansion Phase. We used dilated convolution in the stage2-
4 of D-ResNet because we would input the last stage2-4’ seg-
mentation maps into AFM. This part verifies different stages’
dilated convolution use and influence on mIoU.

Table 2 shows that using all or none of the three stages
gives much better results than using every stage or using
both stages together. We believe that the discontinuous use
of dilated convolution will lead to drastic changes in the
receptive field at different stages. It will cause semantic infor-
mation loss to some extent and lead to a decrease in the
accuracy. It is also easy to see from Table 2 that continuous
using dilated convolution results higher mIoU. This can
prove that our designed D-Resnet backbone network is
remarkably effective.

4.3.2. Effectiveness of the Fusion of Segmentation Maps at
Different Stages. To interpret why we used the three seg
maps to do the summation operation, this part designs an
experiment to illustrate, as shown in Table 3. It is obvious
from the results in Table 3 that the more segmentation maps
used, the higher the final mIoU is.

4.3.3. Effectiveness of the Redesigned Module. This part is
conducted to demonstrate the effectiveness of the proposed
modules. Table 4 presents the quantitative results of our
experiment. We can find MHANet-Base improves 1.73%
compared with FCN-Res34 (origin resnet-34 with FCN
head). Adding auxiliary loss and AFM also improves the seg-
mentation accuracy by 2.54% and 3.66% compared with
FCN-Res-34. In short, our proposed modules are effective
for semantic segmentation. The visualization results as
shown in Figure 4.

4.3.4. Experiment on Hyper-Parameter Setting of Loss
Function. In this section, we conducted extensive experi-
ments on the hyper-parameter design of the loss function
on Cityscapes validation dataset, as shown in Figure 5.
Empirically, we conducted experiments on three parameters
in the range of [0.1,0.9]. For the hyper-parameter α, mIoU
reaches the best when it is set to 0.1. For hyper-parameters
β and γ, the fold plot presents as a convex curve and the
mIoU reaches the best at 0.25 and 0.4, respectively.

73.25 73.16 73.16 73.16

72.76

72.57
72.49

71.82

71.28

71.62

71.37

73.13
73.00

m
lo
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 (%

)

72.75

72.50
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71.75

71.50

71.25
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Figure 5: Visualization results of hyper-parameter setting of loss
function.
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Table 5: To verify the impact of each module on the final accuracy of our network, we validate the mIoU results on the Cityscapes val set.
“∗” represented the network use TensorRT to speedup.

Model Resolution GFLOPs Parameters FPS mIoU

ERFNet [16] 512 × 1024 — 2.1M 41.7 68.0

DABNet [7] 512 × 1024 — 0.76M 104.2 70.1

ASFNet [8] 512 × 1024 15.35 5.42M 185 70.9

FRFNet-slim [32] 512 × 1024 11.38 — 206.3 65

FRFNet [32] 512 × 1024 16.01 — 132.7 69.5

STDC1-Seg50∗ [33] 512 × 1024 0.81 8.4M 250.4 71.9

STDC2-Seg50∗ [33] 512 × 1024 1.44 12.5M 188.6 73.4

BiseNetv2∗ [18] 512 × 1024 21.1 — 156 72.6

MHANet(ours) 512 × 1024 14.25 5.42M 203 71.87

Table 6: Comparison with advanced results on the Camvid dataset. Input size is 360 × 480 resolution.

Model Resolution GFLOPs Parameters FPS mIoU

ERFNet [16] 360 × 480 2.07M 8.43 133 65.0

DABNet [7] 360 × 480 0.76M — 104 66.4

EDANet [34] 360 × 480 0.68M 8.97 — 66.4

ASFNet [8] 360 × 480 5.38M 5.07 220 68.0

FRFNet [32] 360 × 480 4.02M — 225 68.2

MHANet(ours) 360 × 480 5.42M 4.76 257 70.07

(a) (b) (c)

Figure 7: Visualization results on the Camvid dataset.
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Therefore, we set the loss function as loss = lossoutput + αlos
s2 + βloss3 + γloss4, where α = 0:1, β = 0:25, γ = 0:4.

4.4. Analyze the Convergence Speed of the Proposed Network.
In this section, we analyze the convergence speed of the pro-
posed network in Cityscapes dataset, as shown in Figure 6.
We use loss as criterions to evaluate if the network is conver-
gence. The value of loss decreases rapidly within the first 100
epochs, from nearly 3.0 to near 2.0. From 100 to 900 epochs,
the network decreases uniformly and converges around 900
epochs. Finally, we get the best effect in 896th epoch.

4.5. Compare with State-of-the-Arts. In this section, we com-
pare our network with other SOTA approaches on two
benchmarks, including Cityscapes and Camvid.

4.5.1. Cityscapes. As shown in Table 5, we show the four
metrics of GFLOPS, number of parameters, mIoU, and
inference speed of our proposed method on the test set of
Cityscapes. The data for all other methods are taken from
the original paper or from the official online server of City-
scapes. The method proposed in this paper, MHANet,
achieves superior results compared to the other methods.
At an input size of 512× 1024, our network achieves an
inference speed of 203 FPS.

Compared with the latest proposed STDC network, it is
based on a modified BiSeNet architecture and uses pre-
trained network parameters, more data for training. The
training process is relatively more complex. In this respect,
our architecture is relatively simpler, and is not pre-trained,
using only data from the Cityscapes dataset to train the net-
work from scratch. Meanwhile, the STDC series network
uses the TensorRT technique, which can more than double
its network rate. However, this paper does not use various
optimization methods to get similar results to it.

4.5.2. Camvid.We also validated the method of this paper on
the test set of Camvid, as shown in Table 6. In terms of
inferred speed, MHANet can reach 257 FPS, while the mIoU
score can reach 70.07%, a speed improvement of nearly 40
FPS. MHANet has improved about 2% in accuracy com-
pared to the previous work, which further demonstrates
the capability of MHANet, and the visualization results are
shown in Figure 7.

5. Conclusion and Future Work

In this paper, we think about Resnet once again and propose
the D-Resnet backbone network for feature extraction,
which is highly effective. Then, we presented attention-
based feature mixing module (AFM), which is effective for
enhancing feature representations. Third, this paper fully
combines the loss generated by the segmentation map with
the final network loss to jointly guide the training of the
network. Meanwhile, MHANet has conducted extensive
experiments on semantic segmentation datasets, and the
scores obtained on the evaluation metrics fully demonstrate
the effective balance of accuracy and speed of this network.
In the future, we will continue to explore and extend the
method based on this paper and try to migrate the backbone

network of this paper on other tasks, such as instance
segmentation and object detection.

Data Availability

The datasets are available in Cityscapes: https://www
.cityscapes-dataset.com and Camvid: http://mi.eng.cam.ac
.uk/research/projects/VideoRec/CamVid/.
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