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With the continuous development of technologies such as sensors, computers, and artificial intelligence, intelligent mobile robots
with thinking, perception, and dynamics functions are widely used in military, political, and scientific research. Its development
has had a significant impact on national defense, society, economy, science, and technology and has become a strategic research
goal in the high-tech field of various countries. Robot positioning technology is one of the key research technologies for portable
robots, and reliable posture is the key prerequisite for completing various tasks. This article aims to study the robot walking route
driven by big data and the intelligent determination of real-time positioning based on cloud computing. This paper proposes an
active general positioning algorithm based on real-time positioning function, which can improve the convergence speed and
robustness of general positioning when different map scenes do not have clear geometric features and contain map noise. The
most basic requirement for robots to perform autonomous operations is to have reliable positioning performance. The
experimental results in this paper show that dynamic global positioning and adaptive behavior tracking are effective.
Compared with the traditional algorithm, the improved algorithm increases the convergence speed of the global layout by 41.59%.

1. Introduction

An intelligent mobile robot is a comprehensive system that
integrates environmental perception, dynamic decision-
making and planning, behavior control, and execution. Over
the years, with the development of science and technology,
the improvement of computer performance, and the fusion
of artificial intelligence and control theory, mobile robotics,
as an interdisciplinary subject, has involved multiple
research fields, which has attracted more and more public
attention. In this field, we mainly focus on the “motion”
characteristics of mobile robots and combine many func-
tions, such as perception of environmental and self-state,
execution and control of actions, dynamic planning, and
decision-making. The research on mobile robots began in
the late 1960s. From 1966 to mid-1972, researchers at the
Stanford Research Institute developed a mobile robot called
“Shakey” whose basic functions include perception, environ-
ment modeling, and motion design. At the same time, the
Soviet Union and the United States also developed the first

unmanned lunar rover. In 1997, the American rover Soiner
who successfully landed on Mars took as many as 500
photos related to the Martian landscape and sent them back
to Earth. This should be a major success in the actual appli-
cation of wheeled robots. Since its establishment, mobile
robots have made considerable progress in engines and
architectures, integrating multi-sensor information, posi-
tioning, route planning, and navigation monitoring and con-
trol. These technologies can be applied not only in the
military field but also in private and scientific research fields.
Especially in the private sector, portable robot technology
can be used to control the automatic and semi-
autonomous driving of vehicles to improve safety, and it
can be applied to smart wheelchairs to improve the elderly
and the disabled quality of life. In the long run, these tech-
nologies can also benefit from disaster search and rescue,
emergency rescue, and other dangers and difficult opportu-
nities faced by humans. This paper aims to study the robot
walking route driven by big data and the intelligent determi-
nation of real-time positioning based on cloud computing,
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in order to make a certain contribution to the real-time posi-
tioning of robots.

For a series of related research on artificial intelligence
robot technology, my country has also successively carried
out major special projects of the “15th Five-Year Plan.” For
example, many studies, such as robots based on bionics,
service-oriented application robots, and robots that can
operate in hazardous environments, have produced many
effective results. During the 863 Program, Tsinghua Univer-
sity developed an intelligent robot platform that has multi-
functional functions that can be used for outdoor experi-
ments. As the first Frontier-ITM mobile autonomous robot
to represent a Chinese university in the RoboCup medium-
sized football match, it was independently developed by
Shanghai Jiao-tong University. Shanghai Jiao-tong Univer-
sity and Harbin Institute of Technology have also jointly
developed a hotel service robot, which has been exhibited
at industrial fairs in recent years. At the same time, in the
RoboCup China Open Home Service Robot Competition
in recent years, home service robots such as “Jiao-long” from
Shanghai Jiao-tong University, “Ke-jia” from University of
Science and Technology of China, and “Amanda” from
Shanghai University have all achieved success and great
improvement. They have some basic functions, such as envi-
ronment modeling, independent installation, automatic nav-
igation, face recognition, voice interaction, and object
capture. Among related mobile robot technologies, position-
ing technology has always been one of the most basic tech-
nologies in the research field. For autonomous robot
mobile devices, reliable positioning results are the most basic
condition for accomplishing various tasks.

Rezaee A uses an algorithm that continuously assigns PID
coefficients based on an online algorithm, depending on the
system characteristics based on fuzzy logic. The welding robot
used in this system is used to weld oil and gas pipelines. Place
the robot on the pipe and move it to weld. The motor is used
to move the robot around the pipe to adjust the speed.
Although the author used the above method to simulate, but
did not analyze the results of the realization [1]. Soon-Joe pro-
posed a cleaning robot motion mode method based on gram-
matical evolution. The optimization program is generated by
using the motion mode grammar defined by the Backus-
Naur form. In addition, in the process of program creation,
conditional probabilities are used between each syntax ele-
ment. However, after the simulation evaluation of the robot,
it is found that the proposed method is not superior to the
comparison algorithm. At present, the aging problem is
becoming more and more serious, and the demand for nurs-
ing is increasing year by year. Nursing robot is a solution to
meet the demand [2]. Kawai R developed a controllable, mov-
able, low-cost nursing robot through the operator’s hand
movements and conducted an evaluation to verify its effective-
ness. At first, the experiment participants felt that they could
not operate the robot the way they wanted, but eventually they
were able to do it the way they wanted. The disadvantage is
that with regard to the robot arm, some participants find it dif-
ficult to control it with the developed controller [3].

The innovations of this paper are as follows: (1) The
research on the robot less planning method and the robot

positioning technology is carried out. (2) An active general
positioning algorithm based on real-time positioning func-
tion is proposed. (3) Experiments are carried out on the
big data-driven robot walking route and real-time position-
ing intelligent judgment cloud computing.

2. Big Data-Driven Robot Walking Route and
Real-Time Positioning Intelligently
Determine Cloud Computing
Research Methods

2.1. Robot Gait Planning Method. The earliest surviving robot
is a teenage doll from the Historical Museum in Nusatier,
Switzerland. It was made 200 years ago. The ten fingers of
two hands can press the keys of the organ to play music, and
it is also played regularly for visitors to enjoy, showing the wis-
dom of the ancients. Compared with developed countries such
as the United States and Japan, the exploration time for biped
robots in our country is shorter, and most of them started in
the mid-1980s. Among them, Tsinghua University, Harbin
Institute of Technology, National University of Defense Tech-
nology, Beijing Institute of Technology, and other universities
have done a lot of research in this field [4, 5]. Robots can
improve social efficiency. The application of robots reduces
the workload of human beings and solves some problems that
humans cannot solve. For example, Ali’s city brain can opti-
mize the time allocation of intersections, improve traffic effi-
ciency, and make busy cities more intelligent. Although it
started late compared to other countries, due to the gradual
improvement of my country’s economic strength and scien-
tific research level, on the other hand, government depart-
ments are paying more and more attention to robots. Our
country has obtained certain results and experience in the field
of biped robots and launched our country’s own advanced
biped robot [6]. In the 1980s, National Science and Technol-
ogy University embarked on the development of biped robots
and successively developed KWD-1, KWD-2, and KWD-3.
Then, in 2000, the country’s first biped robot “Forerunner”
was developed [7, 8], as shown in Figure 1.

The forerunner can realize most of the actions of ordinary
people, such as turning, forwarding, backing up, and going
upstairs. And in the following years, the National University
of Science and Technology introduced a new generation of
robot pioneers, which are basically similar to humans in terms
of appearance and function [9]. At present, domestic and for-
eign researchers have many methods to study the dual-robot
hiking plan, but the general methods are similar [10].

2.2. Robot Positioning Technology. The most basic require-
ment for robots to perform autonomous operations is to
have reliable positioning performance. Its direct perfor-
mance is the ability to accurately obtain the current position
coordinates of the robot in the global coordinate system
[11]. According to various methods of sensor information
fusion, the existing positioning methods for mobile robots
can be roughly divided into the following three types. Rela-
tive positioning: refers to the offset of the element relative
to the original position of the document layout; absolute
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positioning: refers to the arbitrary positioning of the element
in the original page separation.

(1) Relative positioning method

It measures the current posture of the robot by measur-
ing the distance and direction of the movement relative to
the initial posture based on the built-in sensors of the robot
(such as odometer and penetrating navigation) [12]. This
method will accumulate inevitable path errors, which will
increase with the increase of time and distance, but at the
same time, it needs to take the initial stop as a reference
and is not suitable for general positioning of robots. Relative
positioning methods can be divided into static relative posi-
tioning and static relative positioning.

(2) Absolute positioning method

The central idea is to use artificial road signs, active or
passive signs, map matching points, or global positioning
systems to place them immediately. Position calculation
methods include algorithms for trimming, triangulation, or
model matching. This type of method has many environ-
mental requirements and usually requires manual changes
to the environment, resulting in high maintenance costs.
At the same time, certain matching algorithms are slowing
down. The concept of absolute positioning is mainly divided
into two types: the first is satellite absolute positioning, and
the second is absolute positioning in CSS positioning.

(3) Combined positioning method

It is a combination of the first two methods. Taking into
account the shortcomings of the first two positioning

methods, most portable robot positions are now based on a
combination of trajectory estimation and absolute informa-
tion correction, that is, a combination of positioning
methods [13].

2.3. Fisher’s Information. Fisher’s information is a measure of
the amount of information an observable random variable X
carries about unknown parameters of the distribution of a
model X. Variance is evaluated by mathematical statistics of
information, that is, information variance will have a certain
impact. To evaluate this impact, we can rely on Fisher’s infor-
mation, which has been verified in mathematical statistics and
information theory [14, 15]. People often misunderstand that
the prior probability determines the asymptotic distribution of
the posterior probability, but this is a misunderstanding. It is
Fisher’s information that determines the asymptotic distribu-
tion of posterior probability. This fact can be obtained by the
Bernstein-von Mises theorem in Bayesian statistics [16, 17].
This also shows that Fisher’s information plays an important
role in the maximum likelihood estimation of asymptotic the-
ory. By extension, the robot’s observation information is z,
and its possible pose is p. We know that the distribution of z
is closely related to p, and Fisher’s information can be used
to connect the observation information z with the possible
pose p relationship [18].

Specifically, the likelihood function of p is represented by
f ðz ; pÞ. When a certain value of p is given, assuming a ran-
dom variable z corresponds to it, then the probability den-
sity of z can be represented by the likelihood function
f ðz ; pÞ, which is the likelihood intuitive explanation of the
function. For the likelihood function, first take its natural
logarithm; and then obtain the partial derivative of the pose,
a function similar to the nature of the score (Score) can be
obtained. Under certain conditions (these conditions are
regular and follow-able), the scoring consists of two parts,
one is the part with a score of 0, and the other non-zero part
is defined as Fisher’s information:

I pð Þ = E
∂
∂p

log f z ; pð Þ
� �2

�����p
" #

: ð1Þ

In the above formula, for any given p value, the expression
E½•jp� represents the conditional expectation of z in the prob-
ability density function f ðz ; pÞ, where 0 ≤IðpÞ <∝, and it
can also be seen that the absolute value of the score is propor-
tional to Fisher’s information [19]. It should be noted that the
observation function targeted by Fisher’s information here is
not specific, and the random variable z can reflect any situa-
tion. Furthermore, we pointed out that when the score is 0
as the expectation, then its variance or covariance can be rep-
resented by Fisher’s information [20, 21].

If there is a precondition, that is, log f ðz ; pÞ is two-order
derivable to p, then Fisher’s information can be expressed by
the following formula under some specific conditions:

I pð Þ = −E
∂2

∂p2
log f z ; pð Þ

�����p
" #

: ð2Þ

Figure 1: Forerunner robot (this picture is borrowed from Baidu
Encyclopedia).
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This formula shows that Fisher’s information can also be
obtained by inverting the natural logarithm of the probabil-
ity density function f ðz ; pÞ to the second derivative of p. It
can be seen that this expression reflects the curvature of
the curve and can be very conveniently used to evaluate
the curve corresponding to the likelihood estimation func-
tion of p. When the curve is relatively convex, it is reflected
in the larger second-order partial derivative and larger Fish-
er’s information; on the contrary, when the curve is rela-
tively flat, it is reflected in the smaller second-order partial
derivative and smaller Fisher’s information.

If there is no correlation between the two sets of observa-
tions, the sum of the amount of information obtained from
each observation is the same as the total amount of informa-
tion obtained from the two observations [22, 23]. Fisher’s
information also follows this cumulative property, which is
a very good property for the application of this article, which
is expressed by the formula:

Iz1,z2 pð Þ =Iz1
pð Þ +Iz2

pð Þ: ð3Þ

The above results can be proved by the following deriva-
tion: the variance of the sum of the variables obtained by
adding the random variables is equal to the sum of the var-
iances of each variable, if and only if these random variables
are independent of each other, that is: if a random sample of
the size is 1, and there is another random sample with the
same attribute, and its size is n, so the result of sampling n
times in the former and 1 sampling in the latter is the same.

2.4. Cramer-Rao Bound Inequality. From the introduction in
the previous section, we can know that in the related asymp-
totic theory based on maximum likelihood estimation, the
amount of information can be obtained from the probability
density distribution of the parameters, and this can be
described by Fisher’s information, which is a very meaning-
ful one thing [24, 25]. In particular, we can find the lower
limit of information estimation through CRB inequality.
The following is a brief introduction to CRB inequality [26].

The CRB inequality was proposed by Harald Cramér
and Calyampudi Radhakrishna Rao. This inequality can be
used to determine the lower bound of the estimated variance
(covariance) of the parameters. Combining the background
of robot positioning, the derivation method of the classic
CRB inequality is given below [27, 28].

Assuming that p is an unknown certain pose, it can be esti-
mated by observing the z, and f ðz ; pÞ is the probability density
function corresponding to observing z. Then, when we esti-
mate the pose p, Fisher’s information IðpÞ will reflect the lim-
itation of the value range of its variance (covariance), namely:

Var p̂ð Þ ≥ 1
I pð Þ : ð4Þ

Among them, the validity of Fisher’s information IðpÞ
unbiased estimation is defined as follows:

e p̂ð Þ = I pð Þ−1
Var p̂ð Þ : ð5Þ

It can be seen that the range of eðp̂Þ is (0,1], Varðp̂Þ repre-
sents the true variance (covariance), andIðpÞ−1 represents the
minimum variance (covariance) of the unbiased estimate. We
can use the ratio of the two, that is, eðp̂Þ to express the estima-
tor. The minimum variance of that is the lower bound of vari-
ance, and the difference between its actual variance
(covariance).

The derivation process is as follows: usually, the param-
eter p that cannot be directly obtained can only be estimated
by the observation z, and the parameter p determines the
current value of the observation z. We know that due to
measurement errors and other factors, the observations z
must also have errors and have certain uncertainties. There-
fore, in order to link the two together, a probability distribu-
tion function pðzjpÞ needs to be introduced into the
parameter p and the observation z. Let the estimated infor-
mation TðzÞ of p be the real function of the measured data
z, let ΔT = TðzÞ − Tp, where:

TL =
ð
p z pjð ÞT zð Þdz: ð6Þ

If Tp = p is estimated on average, it is called unbiased
estimation. For unbiased estimation, any T and m indepen-
dent observations z1, z2,⋯, zm have:

ð
p z pjð Þ⋯ p zm pjð ÞΔTdz1 ⋯ dzm = 0: ð7Þ

To find the partial derivative of p in the above formula,
we get:

〠
m

i=1

ð
p z1 pjð Þ⋯ p zm pjð Þ 1

p zi pjð Þ
∂p zi pjð Þ

∂p
ΔTdz1 ⋯ zm −

dTp

dp
= 0:

ð8Þ

Because p is dependent on Tp instead of T , the above for-
mula can be converted to:

ð
p z1 pjð Þ⋯ p z1 pjð Þ 1

p zi pjð Þ 〠
m

i=1

∂ ln p zi pjð Þ
∂p

 !
ΔTdz1 ⋯ dzm −

dTp

dp
= 0:

ð9Þ

Using Cauchy-Schwarz inequality

ð
f xð Þg xð Þdx

� �2
≤
ð
f xð Þ2dx

ð
g xð Þ2dx: ð10Þ
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Available:

ð
p z1 pjð Þ⋯ p zm pjð Þ 〠

m

i=1

∂ ln p zi pjð Þ
∂p

 !2

dz1 ⋯ dzm

×
ð
p z1 pjð Þ⋯ p zm pjð Þ ΔTð Þ2p z1 pjð Þ⋯ p zm pjð Þ ≥ dTp

dp

����
����
2
:

ð11Þ

Introduce Fisher’s information IðpÞ and get 引入 Fish-
er’s 信息 IðpÞ,

mI pð Þ ΔTð Þ2 ≥ dTp

dp

����
����
2
: ð12Þ

For the unbiased estimator, ðΔTÞ2 is the variance
(covariance) square Varðp̂Þ2 of the estimated pose p̂, and d
Tp/dp = 1, the CRB inequality can be finally obtained.

The CRB inequality uses the inverse of Fisher’s informa-
tion to give the smallest variance (covariance) that may occur
when estimating the pose. It can be seen that the smaller Fish-
er’s information indicates the lack of observational information
in the pose, which means that the estimation of the current
pose is biased, and the measurement variance (covariance) is
larger. Therefore, the amount of observation information is
crucial to whether a parameter can be accurately estimated.
Based on people’s basic cognition, the more information, the
more accurate the estimation result will be. What needs to be
explained here is that Fisher’s information is usually in the
form of a matrix, because the parameters that need to be esti-
mated often contain multiple variables; in addition, the lower
limit of the variance (covariance) calculated by the CRB
inequality is only theoretical. The actual variance (covariance)
usually deviates from the theoretical value. This is due to the
different methods of evaluating parameters through observa-
tion information, the error or lack of observation information,
etc., but this deviation is usually within the allowable range.

2.5. Discretization Observation Model. In recent years, in the
research of mobile robot positioning, scholars generally believe
that it is an effective positioning method to correct the error of
the odometer through the sensor to perceive the surrounding
environment, and it has had many successful practical applica-
tions [29, 30]. The algorithm used in this paper is a laser range-
finder that perceives the distance of the environment. The laser
observation model is shown in Figure 2:

The pose of the robot is expressed by pt = ½xt , yt , θt�, riE
ðpt , ϕiÞ is the expected distance scanned by the i laser ray,
and the total number of laser rays is No. Then, the laser
observation model equation can be defined as:

ri = riE pt , ϕið Þ + εi, i = 1, 2,⋯,No: ð13Þ

Among them, εi represents Gaussian random noise with a
mean value of 0 and a variance of σ2

i . In practical applications,
the analytical map of the real environment is usually not avail-
able. Therefore, riE cannot be accurately calculated. εi is a par-

tial item that reflects physical influence factors, such as robot
speed, obstacle distance, orientation, and surface material.
Therefore, εi and its variance σ2i cannot be directly calculated.

3. Big Data-Driven Robot Walking Route and
Real-Time Positioning Intelligently
Determine Cloud Computing Experiments

3.1. The Positioning and Environment Construction of
Mobile Robots

(1) Positioning

The positioning system is designed for a specific location
and should describe the characteristics of the environment.Most
positioning systems operate in a structured environment, but
other positioning systems rely on GPS for placement, so they
can only operate in an outdoor environment. Some robots need
to make real-time mapping anytime and anywhere, while other
robots only need to be placed on the map created by the robot.

For indoor installation systems, most positioning algo-
rithms come from indoor installation systems. In a struc-
tured environment, it is necessary to simplify the structure
of the environment, such as a flat ground, without consider-
ing the obstacles of potholes. These methods are to align
external objects such as doors and glass to determine their
location and orientation.

The outdoor installation system uses GPS as the main
installation method for outdoor robots. However, GPS may
not always be able to receive enough satellite signals. In
other words, GPS cannot produce accurate results. This
requires the use of other sensors (such as rangefinders) to
improve system accuracy and correct GPS errors.

Indoors and outdoors, there are few methods that can be
used in both environments at the same time. This is because
indoor methods are highly structured environments and
therefore not suitable for outdoor work. In addition, GPS
does not work indoors. It is difficult to find a suitable
method indoors and outdoors. In addition to using signs
in the environment, cameras can also be used to capture
the terrain and structure of the environment using position-
ing methods based on surface features.

(2) Map construction

For the positioning problem, there are two ways to build
a map. Under normal circumstances, it is to complete the
construction of the map before the implementation of posi-
tioning. Another way is to continuously complete the map as
the robot moves in the environment, that is, SLAM.

SLAM is the main research topic of robotics. These
methods can help robots run in unknown environments
and display the number of robots running on service robots
(such as wheelchair robots, cleaning robots, and search and
rescue robots).

In order to realize the construction of the robot map, it is
necessary to solve some problems of communication,
dynamic environment, and robot search. Communication
problems refer to the consistency of information detected
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by different sensors on the same object. The dynamic envi-
ronment includes moving objects such as people and cars,
and other factors also cause natural changes. Robot explora-
tion is the function of robots navigating while mapping the
map. The advantage of this method is that the robot can
be placed in an environment that has not been visited before,
the environment map is constantly changing, and the robot
can also be placed in a changing environment.

3.2. Simulation Test. For simulation, the hardware platform
is an Intel personal computer (Intel Core2 Duo E7200
2.5G CPU, DDR2-800 2G RAM). For the experiment, the
hardware platform is the “Jiao-long” smart wheelchair inde-
pendently developed by the laboratory. On the “Jiao-long”
wheelchair platform, the positioning algorithm is executed
on an industrial computer (Intel Core Duo T2500 2.0G
CPU, DDR2-667 3G RAM); the wheelchair adopts two-
wheel differential drive, and the controller is self-designed
DSP motion control board; meanwhile, the wheelchair is
equipped with an odometer, which is calibrated in advance,
and equipped with a laser rangefinder (SICK LMS111).

For simulation and experiment, the software platform
uses CARMEN, an open source robot simulation platform
under Linux SUSE system. When comparing different posi-
tioning algorithms, standard algorithms, such as the stan-
dard particle filter algorithm with “roulette” re-sampling
process, are implemented based on CARMEN standard

code; and for improved algorithms based on positioning
capabilities, and other needs to be compared. The algorithm
is implemented by the secondary development of the stan-
dard code under CARMEN. For smart wheelchairs, the main
sensors are odometer and laser rangefinder. The errors
brought by these sensors will inevitably have an impact on
the algorithm. In the following, how to simulate these sensor
errors in the simulation will be specifically explained. The
odometer uses a photoelectric encoder to record the mileage
data. Although it has been pre-calibrated, it still has a certain
error. Mainly include system errors such as small precision
errors, driver errors, and non-system errors caused by wheel
slip caused by uneven road surface. In addition, as the
weight of the user carried by the “Jiao-long” smart wheel-
chair is different, the deformation of the wheel changes,
and its kinematics model will also change to a certain extent.

For active global positioning algorithms based on posi-
tioning capabilities, before simulation and experimentation,
a global probability grid map needs to be established first.
Furthermore, based on the known map, the positioning abil-
ity in each pose can be calculated offline in advance and
stored. Because the laser rangefinder used in this article is
not omnidirectional scanning, when we calculate the posi-
tioning capability offline, we need to discretize the observa-
tion direction, that is, to discretize a different observation
direction. In addition, the greater the system sampling inter-
val, the greater the sensor error introduced. Therefore, this

(xt, yt)

X

𝜑i

𝜃t

riE (pt, 𝜑i)

1st LRF ith LRF

Y

X

Y

Figure 2: Laser observation model.

Table 1: Judgment conditions for different convergence states.

State of convergence Judgment condition

a
(1) More than 80% of the particles converge to 10 convergent cluster centers

(2) Mp>10 grids, and Mr>10 grids

A
(1) More than 80% of the particles converge to 10 convergent cluster centers

(2) Mp<2 grids, and Mr<2 grids

B
(1) More than 80% of the particles converge to 10 convergent cluster centers

(2) Mp<2 grids, and Mr>20 grids
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article sets the effective sampling time of the simulation to
400ms in order to reserve the necessary and possible sam-
pling time consumption for future practical applications.

In the simulation, we can know the real pose of the
robot, so we can make good use of it when analyzing the
simulation results (here the real robot pose is not used in
the active global positioning algorithm, but only used for
the analysis of the positioning results). Specifically, based
on the real robot pose, K-mean algorithm, and Mahalanobis
distance (Mahalanobis distance), the convergence state of
the particles can be clearly classified. The particle conver-
gence state a indicates that the pre-convergence has been
completed, and the particles have been clustered into several
more obvious particle piles; the particle convergence state A
indicates that most of the particles are clustered into one
particle pile, and the estimated robot pose and the real robot

position the pose is close; the particle convergence state B
indicates the state of convergence failure, that is, although
most of the particles are clustered into a particle pile, the
robot pose estimated by the particles is the judgment condi-
tion of three different convergence states that deviate from
the real robot pose as shown in Table 1:

N
um

be
r

State of convergence

Passive algorithm
status a

0

50

100

150

200

250

25.4

234.2

17.7

186.9

T1
T2
T3

Passive algorithm
status A

Active algorithm
status a

Active algorithm
status A

Figure 3: Comparison of average convergence steps between active and passive global positioning algorithms.

Table 3: Comparison of active and passive global positioning
algorithm state B.

Cycle Passive algorithm status B Active algorithm status B

T1 2/80 0/80

T2 15/80 6/80

T3 49/80 28/80

Table 2: Simulation and experimental parameters of the global positioning algorithm.

Description Parameter

Map resolution (raster size) 0:1 × 0:1m2

Static positioning capability discrete step size Δx = Δy = 0:1m, Δθ = 1∘

Maximum scanning distance of laser rangefinder Dmax = 20m
Laser rangefinder scanning range, resolution, and number of rays 0 − 180 ° , 1 ° ,No = 181
Simulated odometer error 10 ° /m10cm/m20 ° /360 °½ �
Number of actions Na = 5
Linear velocity of motion v! = 0:4m/s
Linear velocity coefficient kv = 1:0
Angular velocity of action w! = 20 ° /s
Angular velocity coefficient kw = 1:0
Action execution time Δt = 2:0s
High weight judgment threshold w kð Þ

t = 0:7
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In Table 1, Mp is the Mahalanobis distance between the
center point of all convergent clusters and the estimated pose
of the robot;Mr is the Mahalanobis distance between the cen-
ter point of the convergent cluster and the real pose of the
robot; one of the grids represents 0.1m. In addition, the
parameters used in the simulation and experiment of the
global positioning algorithm (including the required number
of particles, etc.) are given below, as shown in Table 2.

4. Big Data-Driven Robot Walking Route and
Real-Time Positioning Intelligent
Determination of Cloud Computing
Experimental Analysis

In the simulation, the algorithm based on the positioning
capability proposed in this paper was compared in a wide
range of environments and in different scenarios, with all
parameters (such as the number of particles, etc.) and the
simulation environment of different scenarios. In compari-
son, the scene has a small number of environmental struc-
tures with unclear geometric characteristics and a number
of map noises, but looking at the global map, its observation
characteristics are relatively clear; the scene is an office, and
looking at the global map, its observation characteristics are
relatively similar. And there are many environmental struc-
tures and map noises with unclear geometric features; scene
T3 is a corridor. Although there are not many environmen-
tal structures and map noises with unclear geometric fea-
tures, the observation features are very similar in the global
map. The location is very easy to introduce observational
ambiguity.

Because the laser rangefinder used in this article does not
observe omnidirectionally for different scenarios, 4 sets of
simulations are carried out based on four different initial ori-
entations of “UP,” “DOWN,” “LEFT,” and “RIGHT”; con-
tain 20 comparison simulations; one comparison is
composed of two simulations based on passive and active

global positioning algorithms. These two simulations based
on different algorithms are used for comparison, and their
initial conditions, such as the initial pose of the real robot
and the initial particle distribution., are completely the same;
in addition, in order to collect statistical data, the initial con-
ditions of the 20 different comparisons in each group are
independent of each other and randomly generated.

According to the defined particle convergence state, dur-
ing the convergence process, the particle generally converges
to the state a first, and secondly, the particle may converge to
the state A or B. Of course, during the convergence process,
there is also a certain probability that it will not go through
the transition state a, but will directly converge to the state A
or B. As mentioned above, state A indicates correct conver-
gence, and state B indicates an incorrect convergence result.
In the simulation, statistical methods are used to analyze the
results. Figure 3 shows the average number of convergence
steps in different scenarios.

For state B, the number of convergence failures is
recorded and compared, as shown in Table 3.

It can be seen from Figure 3 that no matter in which sce-
nario, the average number of steps the algorithm proposed
in this paper converges to states a and A is more efficient
than the passive algorithm. Scenario T2, especially T3,
brings a lot of ambiguity to the robot observation. For pas-
sive algorithms, it is easy to fail to converge in these scenar-
ios. For example, in T3, a total of 80 simulations failed 49
times, and in the application proposed in this article algo-
rithm, the number of failures is reduced to 28. The above
results show that the algorithm proposed in this paper effec-
tively accelerates the convergence speed of global positioning
due to the influence of known map uncertainty on global
positioning and does not specifically extract a clear environ-
ment during the application of positioning capabilities to
determine robot movements and features to ensure the prac-
tical application ability and real-time performance of the
algorithm. At the same time, this also shows that the algo-
rithm proposed in this paper has strong robustness for
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different scenes with fuzzy geometric features and different
map noise levels.

The data of each simulation sequence number in sce-
nario T1 is shown in Figure 4:

The data of each simulation sequence number in sce-
nario T2 is shown in Figure 5:

The data of each simulation serial number in scene T3 is
shown in Figure 6:

Figures 4–6 compare the number of steps taken by differ-
ent algorithms to converge to the state through statistical

graphs. These data are randomly selected from all the simula-
tions that successfully converged. Figures 4–6 are data in dif-
ferent scenarios. It can be seen that in most cases, the
algorithm proposed in this paper converges faster than the
passive algorithm. The data clearly shows the advantages that
the global positioning algorithm brings to the global position-
ing algorithm taking into account the uncertainty of the
known map (included in the positioning capability estima-
tion): the convergence of the global positioning is accelerated
speed and enhances the robustness of the algorithm.
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5. Conclusions

The robot itself is a non-linear object with strong coupling
and contains many uncertainties. When the final operating
robot is in contact with the external environment, the work-
ing environment will also significantly affect the perfor-
mance of the control. In the real-time positioning and
walking route of mobile robots, in addition to the measure-
ment errors or performance limitations of its own sensors,
the construction noise of known maps, the actual environ-
ment lacking clear geometric features, dynamic obstacles,
data fusion, and real-time algorithmic factors, both will
bring uncertainty to the positioning of mobile robots. This
article is to analyze the impact of some or all of the above-
mentioned uncertain factors on the positioning and walking
route of the mobile robot and improve the positioning algo-
rithm. Through simulation and experimental results, it is
verified in the actual environment. Algorithm compared
with the passive general positioning algorithm, the algo-
rithm in this paper speeds up the convergence of general
positioning in the experiment. At the same time, by compar-
ing with the experimental results of the existing active global
positioning algorithm, it can be seen that the active global
positioning algorithm based on the positioning ability pro-
posed in this paper has a great advantage in computational
efficiency; especially for the active global positioning whose
core idea is similar to this paper as far as the algorithm is
concerned, it can be seen that the improvement effect is
more obvious. However, due to the limitations of time and
technology, this paper does not conduct a more in-depth
discussion of robot positioning, and we will further discuss
this in the follow-up.
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