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Unmanned aerial vehicles (UAVs) play an important role in future 6G networks, which can be used to assist cellular networks in
setting up temporary networks to provide communication services when network access demand is intense. It is critical to design a
UAV tracking method with high efficiency and high precision under active sensor radiation control to build a reliable network of
UAVs. Multisensor cooperative multitarget tracking for UAVs with high accuracy is an alternative solution to meet the
performance requirements of 6G. In this paper, an information-entropy-based multisensor to multitarget allocation method
under low-radiation control is proposed for UAV tracking. Specifically, the knowledge-map-based demand assessment of
integrated track detection is first present; and then, fuzzy-decision-tree-based generation of sensor management plan is given;
the next, the basic linear programming model for multitarget to multi-UAV allocation is utilized based on cooperative tracking
under radiation control; finally, extensive experiments are conduct, and the experimental results show that the proposed
method has a good performance.

1. Introduction

With the rise of emerging technologies, e.g., AI [1–3],
unmanned aerial vehicle (UAV) communication [4, 5], and
D2D communication [6, 7], the future 6G network is
expected to connect everything and meet different commu-
nication needs [8, 9]. Actually, UAVs play an important role
in future 6G networks, which can be used to assist cellular
networks in setting up temporary networks to provide com-
munication services when network access demand is intense.
It is critical to design a UAV tracking method under active
sensor radiation control to build a reliable network of UAVs
[10]. Sensor-based detection and tracking is one of the main-
stream UAV tracking approaches, which can realize the
tasks of formation coordination to build a reliable UAV net-
work [11–13].

Through the cooperative action of two or three
unmanned aerial vehicles (UAVs) equipped with passive
detection sensors in formations, coordinated target position-

ing and silent attack can be realized. Under the premise of
high precision for tracking targets, the coordinated guidance
and tracking of the active and passive sensors of the UAVs
can reduce the electromagnetic radiation time, power, and
airspace of the active sensors and improve the overall perfor-
mance of UAV communication. In addition, it is possible to
realize decentralized optimization and coordinated control
of heterogeneous multimotion platforms through the coor-
dination of aircraft formations with active and passive sen-
sors. However, there are two main constraints for sensor
cooperative tracking. The first constraint is the capability
of a single sensor. In a complex battlefield environment, each
sensor unit can only track a limited number of targets with
fixed detection accuracy. The second constraint is the
resources contained in a single aircraft. Limited by transmis-
sion bandwidth and computing power, a single aircraft can
only fuse and process measurement information from a
small number of sensors. Therefore, it is necessary to focus
on solving the problem of optimal pairing of sensors and
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targets, rather than choosing as many sensors as possible.
Moreover, it is also necessary to select the optimal sensor
combination for each target and select the optimal tracking
object for each sensor, so as to achieve the optimal tracking
performance of multisensor to multitarget.

In this paper, a multi-UAV multitarget assignment
method based on low-radiation control active sensors is pro-
posed to meet the performance requirements of the tracking
task. In the method, a mathematical model of multi-UAV to
multiobjection allocation decision is established, in which,
one sensor is equipped on one UAV. First of all, the interval
between active sensors’ radiation duration periods is calcu-
lated. According to the current situation of active sensors,
it is divided into two modes: active and passive coordinated
tracking and passive sensor coordinated tracking. Then,
based on the information entropy and target threat degree,
a multi-UAV cooperative allocation scheme for multitarget
tracking is given. To verify the effectiveness of the multitar-
get and multisensor allocation method in this paper, the
simulation experiments are carried out according to the fol-
lowing scenarios. A single UAV platform with multiple sen-
sors is used to track four target UAVs. The experimental
result demonstrates that our method has a high efficiency
and high accuracy.

2. Related Work

Regarding target allocation, many scholars have conducted
research, mainly focusing on multi-UAV (unmanned aerial
vehicle) task allocation as the research background [14]. In
recent years, the research on the model of multisensor to
multitarget allocation mainly includes two aspects: one is
the target-priority, and the other is the matching algorithm
of the sensors (or combination) to the targets [15–17].
Among them, the matching algorithm is difficult to express
with a specific mathematical formula, and most of them
use the method of directly assigning values to the existing
parameter table. However, such methods cannot quantify
the matching algorithm scientifically and reasonably, mak-
ing the allocation result inaccurate. In [18], a sensor man-
agement method is proposed based on the efficiency
function, in which, the efficiency function is established
through the pairing function of the sensor and the target
and the target priority function to realize the reasonable allo-
cation of sensor resources.

In [19], the target-to-sensor allocation efficiency func-
tion is defined as a value function and a loss function in
the target-to-sensor allocation model, but it does not con-
sider the impact of the diversification of target characteris-
tics on the efficiency. In [20], the target priority function
and the sensor’s effectiveness function are considered to
establish a multisensor resource preallocation mathematical
model, in which, the preallocation of the three tasks of target
detection, target tracking, and target recognition is unified
into one framework. Moreover, an improved Hungarian
algorithm is used in [20] to solve the objective function.
However, the disadvantage is that the task-based matching
efficiency is not determined in the actual simulation. In
[21], an allocation model is proposed based on the recon-

naissance resolution of the sensors, where the UAV carries
and the constraints of the targets’ appearance time window.
A set of UAVs with different reconnaissance payload capa-
bilities to conduct information reconnaissance in multiple
mission areas in a mission scenario is studied in [22]. In
[23], Spyridis et al. studied target tracking of mobile IoT
devices at unknown locations with a set of UAVs equipped
with received signal strength indicator (RSSI) sensors in
6G network. In the proposed method, it preserves the
swarms that approach the radio frequency (RF) source more
efficiently, removing the rest of the drones that return to
base.

In [24], a distributed reinforcement learning (RL)
approach is proposed with an algorithmic framework that
relies on the possibility of drones exchanging some infor-
mation through communication channels to achieve context
awareness and implicitly coordinate the actions of UAV
swarms. In [25], an end-to-end collaborative multiagent
reinforcement learning (MARL) scheme is presented that
enables UAVs to make intelligent flight decisions for collab-
orative target tracking based on the past and current state of
the target. In [26], a multi-UAV intelligent maritime task
assignment and route planning scheme is designed based
on improved particle swarm optimization combined with
genetic algorithm (GA-PSO). In the proposed scheme, the
traditional particle swarm optimization (PSO) is improved
by introducing partial matching crossover and quadratic
transposition variation based on the simulation of the intel-
ligent ship control system. Moreover, the improved GA-
PSO is used in [26] to solve the stochastic task assignment
problem of multiple UAVs and the two-dimensional path
planning problem of a single UAV. In [27], a multitarget
tracking algorithm is proposed, in which trajectories evolve
over a special Euclidean group SEð2Þ. Applications include
tracking ground targets using cameras on hovering multiro-
tor drones. The method extends the recursive random sam-
ple consensus (R-RANSAC) algorithm to nonlinear motion
models. Other related works also include security tech-
niques for IoT and 6G [28–30] and AI for UAV communi-
cation [31–33].

In summary, these studies focus on the multiplatform
and multitarget allocation of a single sensor without consid-
ering radiation control conditions. However, the develop-
ment of formation coordination has not been analyzed,
and the influence of these factors on target allocation has
not been considered. It lacks comprehensive consideration
of the influence of multiple factors such as formation coordi-
nation, active sensor low-radiation control, and heteroge-
neous multisensors.

3. Allocation Method Based on
Information Entropy

According to the sensor scheduling instructions of the oper-
ator and the results received from the information fusion
calculation, the sensor allocation results and management
plans are generated, and the specific sensors are called to
perform the actual measurement tasks.
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First of all, it is necessary to carry out a comprehensive
track detection requirements assessment, clarify the detec-
tion requirements, and then generate a sensor plan. On this
basis, it is necessary to realize the sensor target pairing and
dispatch the corresponding sensors. Due to the fact that
the information gain in UAV allocation refers to the reduc-
tion of information entropy (uncertainty about target state)
before and after each tracking [34], the UAV resources can
be scheduled according to the value of the information gain,
and then, the resource allocation and pairing of multitarget
and multi-UAV can be completed.

3.1. Knowledge-Map-Based Demand Assessment of
Integrated Track Detection. The integrated track detection
demand assessment is to undertake the track information
and track evaluation information from the information
fusion system and make decisions to generate the current
sensor task demand in combination with the actual task
and aircraft platform status, including the demand for sup-
plementing dimension detection when the target detection
dimension is missing and the demand for improving target
accuracy when the target accuracy is low. The sensor usage
plan generation algorithm is utilized to obtain the usage
and allocation of multisensor based on the detection require-
ments from the sensor detection requirements, as well as the
sensor status, task, and carrier platform status.

Figure 1 shows the basic process of track integrated
detection demand assessment. The track integrated detec-
tion demand assessment is mainly based on the system track
quality assessment results and the actual task, platform sta-
tus, and other information, making comprehensive decisions
to generate the track integrated detection demand such as
dimension supplement and accuracy improvement.

The core of the track integrated detection demand assess-
ment is to build a knowledge map generated by the detection
demand. Based on the map, the demand reasoning is carried
out to generate the basic sensor use requirements, which is
the basic constraint for the next multitarget and multisensor
allocation. Figure 2 shows the entity relationship diagram of
airborne sensor detection demand knowledge map, which
describes the association relationship between airborne sen-
sor detection demand entities. Here, the macro association
relationship is described, and only the possible coupling rela-
tionship between entities is described.

The track integrated detection demand entity, as the out-
put node, combined with the system cross-linking relation-
ship, concludes that the track integrated detection demand
entity has a direct one-step inference relationship with the
fusion situation, basic task type, and sensor equipment.
There is a direct one-step inference relationship between
the aircraft platform and the sensor equipment, which repre-
sents the sensor load configuration of a specific flight plat-
form. There is a direct one-step inference relationship
between the aircraft platform and the fusion situation, which
is used to express the relationship between the attitude of the
aircraft platform and the fusion situation. The indirect rela-
tionship between flight platform and track integrated detec-
tion demand entity is multistep inference, which indicates
the impact of different aircraft platform states on detection

demand generation, such as health status. There is a direct
one-step inference relationship between the basic task type
and the sensor equipment, which indicates the constraints
of different task types and stages on the available sensor
modes, parameters, etc. In addition to the direct relationship
between the basic task type and the sensor equipment, there
is also an indirect relationship through multistep inference
of the sensor equipment. The knowledge map should be
continuously expanded and improved based on experience
and knowledge.

3.2. Fuzzy-Decision-Tree-Based Generation of Sensor
Management Plan. By receiving the integrated detection
demand generated from the track integrated detection
demand estimation, combined with the mission stage infor-
mation, platform status information, etc., the comprehensive
decision-making is how to generate specific parameters to
guide the sensor work and generate the sensor management
plan.

On the basis of obtaining the demand of track integrated
detection, considering that the types of airborne sensors,
multisensor control methods, and controllable parameters
are basically clear, and the requirements for real-time
decision-making are relatively high, the fuzzy decision tree
method is selected to generate specific sensor equipment
types and sensor control parameter sequences. The con-
struction of fuzzy decision tree is to introduce fuzzy infer-
ence system (FIS) into the structure of traditional decision
tree to form a fuzzy tree structure and fuzzify the fixed rule
parameters, so that it has the ability to be optimized, and it is
convenient to optimize the parameters of decision tree on its
basis.

The purpose of the sensor management plan generation
technology is to effectively use the existing sensor resources
to collect information, meet the requirements of targets
and scanning space, and effectively perform specific tasks.
Its core problem is to determine which sensor to choose to
monitor and track the target of concern, as well as the type,
configuration, working mode, parameters, and measurement
process of sensors according to certain rules or optimization
criteria (such as track accuracy and detection probability).
Mutual cooperation among sensors, etc., because different
sensors have different characteristics, undertake different
tasks, have different requirements for sensors, and have
more practical information requirements, the generation of
sensor management plan usually includes the following
contents.

(i) Switch State Management. When the active sensor
emits energy, it will expose itself and then be
attacked. In order to hide or protect itself, it is nec-
essary to control the switch state of the active sensor
and reduce the radiation times of the sensor. On the
premise of meeting the basic task, the active sensor
should be in a silent state as far as possible. For
the sensor with limited energy, controlling the
switch state of the sensor can also prolong the work-
ing time and service life of the sensor
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(ii) Working Mode Management. Some sensors have
different working modes. Choosing different working
modes can complete different tasks, and the working
modes of sensors can be flexibly selected according to
task requirements

(iii) Working Parameter Control. The working parame-
ters of some sensors can be controlled, which will
affect the task execution of the sensor. For example,
for radar, the main operating parameters include
operating carrier frequency, transmission power,
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Figure 1: Flowchart of track integrated detection demand assessment.
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beam direction, and revisit frequency. By control-
ling these parameters, the target detection and
tracking performance of radar can be optimized

(iv) Time Management. In a multisensor system, for dif-
ferent tasks or observation objects, only a part of the
sensors may be required to work at a certain time.
Therefore, it is necessary to plan the tasks of each
sensor in the time series. In addition, when some
sensors or certain things in the target environment
maintain synchronization or relationship in time
(such as moving target detection, track loss, etc.),
it is required to manage the time of sensor operation

(v) Space Management. The main task of space man-
agement is to determine the spatial direction of each
sensor, so as to better complete the detection and
tracking tasks of single target and multitarget. In
addition, many sensors do not work in an omni-
directional way, which requires that the spatial ori-
entation of multiple sensors can ensure the coverage
of the entire airspace and the continuity of task exe-
cution, such as the indication and handover of sen-
sors to targets, while requiring time and space
management

(vi) Sensor Task Coordination. Multiple sensors in sen-
sor networks usually need different sensing capabil-
ities and can obtain different sensing information.
By realizing information sharing among sensors,
they can cooperate with the tasks of each sensor
on this basis, drive the actions of sensors with tasks,
and enable multisensor cooperation to complete
battlefield sensing tasks. Through the decomposi-
tion of the above management purpose, the whole
multisensor information fusion system becomes a
closed-loop system, so that the working state and
tasks of the sensors can be adjusted in real time
according to the needs of the task and the changes
of the target and environment, so as to give full play
to the advantages of each sensor, better complete
the target and environment sensing tasks, improve
performance, improve their own viability, automate
the process, and reduce the burden of operation

As shown in Figure 3, the decision tree based on tree
structure is suitable for most of the clear correspondence
between input and output and can give more accurate prior
expert knowledge. It can express the related knowledge
through the multitree structure, expand the knowledge con-
veniently through the construction of subtree, and realize
the reasoning ability with fuzzy attributes or Bayesian prob-
ability by setting the fuzzy system on the tree node or the
state transition probability on the opposite side. On the basis
of prior expert knowledge, genetic algorithm and small neu-
ral network can be used to optimize the combination rela-
tionship of knowledge structure and even the parameters
in knowledge structure, which can produce more reasonable
and high-quality decisions.

On the basis of obtaining the demand of track integrated
detection, considering that the multisensor control mode is
basically clear, the fuzzy decision tree method is selected to
generate specific sensor equipment types and sensor control
parameter sequences. The construction of fuzzy decision tree
is to introduce fuzzy inference system (FIS) into the struc-
ture of traditional decision tree to form a fuzzy tree structure
and fuzzify the fixed rule parameters, so that it has the ability
to be optimized, and it is convenient to optimize the param-
eters of decision tree on its basis.

As shown in Figure 3, by obtaining the time domain
situation, airspace situation, measurement dimension
requirements, and measurement performance requirements
with the detection demand assessment, two state measure-
ment nodes can be set: (1) situation assessment node and
(2) status evaluation node. Note that, the situation assess-
ment node completes the measurement parameter demand
analysis of all targets in the airspace within a certain
period; and the status evaluation node completes the per-
formance demand analysis of all measured parameters.
These two state nodes correspond to two decision points,
which are sensor type decision and sensor working param-
eter decision.

The fuzzy reasoning mode based on fuzzy inference
engine is suitable for the knowledge expression mode of tree
structure. By introducing the fuzzy reasoning system into
the decision tree node, it has the ability of generalization
and optimization under the guidance of certain prior knowl-
edge and has a wide range of applications. As shown in
Figure 4, taking radar mode management as an example,
drawing on the knowledge of domain experts, multiple tar-
get attribute values and corresponding radar mode selection
results are selected as training samples to learn the fuzzy
decision tree and establish the fuzzy decision tree of radar
mode management. The established fuzzy decision tree is
used as the reasoning rule, and the real-time target is used
as the test data to reason and classify it. The classification
results are expressed with confidence as the real-time radar
mode management results. For fuzzy decision tree, the most
important reasoning mechanism depends on the design of
fuzzy system. The membership function and the design of
membership function are introduced. For details of the fuzzy
attribute membership values of enemy target attributes,
please refer to Table 1.

As shown in Figure 5, the selection of the attribute with
the smallest fuzzy information entropy among all attributes
to be the current test attribute node and the specific tree
building algorithm is as follows.

Let the data set (e.g., instance set) D = fe1, e2,⋯,eNg be
the example set defined on the discrete value universe x,
the fuzzy attribute set be fA1,A2,⋯,AMg, the attribute value
of attribute Ai be TðAiÞ = fai1 , ai2 ,⋯,aikgð1 ≤ i ≤MÞ, and the
class C = fC1, C2,⋯,CKg to be divided. In the i example, the
value of ei about the j attribute is represented by the corre-
sponding membership degree μI J , which is a fuzzy subset
defined on TðAiÞ. If the attribute Ai is a symbolic value attri-
bute, the value of μI J is 0 or 1. Let DCk be the data subset of
category Ck, and jDj be the cardinality of D.
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Step 1. Initialize and create a root node.

Step 2. The node is a leaf node, if the current node meets one
of the following conditions.

(1) All attributes are used up

(2) DCk /D > θ

(3) jDj < β

Among them, θ is the level of importance, and β is the
confidence level.

Step 3. If the current node does not meet the above condi-
tions, perform fuzzy segmentation on the node. The seg-
mentation steps are as follows.

(1) Calculate the information gain GðAi,DÞ of each
attribute, and select the attribute Amax with the larg-
est information gain as the test attribute of the cur-
rent node

(2) Divide d according to the fuzzy attribute value of
Amax, get a new fuzzy subset D1,D2 ⋯ ,Dm, and gen-
erate a new node t1, t2,⋯, tm

(3) Replace d with D1,D2,⋯,Dm in turn, and return to
Step 2 for iteration

Using the above method, the attribute with the largest
information gain is selected as the test attribute each time,
and the data set is divided, so as to generate a fuzzy decision
tree. The resulting decision leaf node is not a unique class,
but a class calibrated by trust. Thus, a reference fuzzy deci-
sion tree for radar air mode management can be obtained,
as shown in the above figure, in which M1 ~M5 represent
different RD working modes, including passive detection
mode, side scan tracking mode, continuous tracking mode,
follow-up detection mode, and active jamming mode. Rea-
soning based on the fuzzy decision tree is constructed above.
The target data searches down multiple branches with its
confidence (membership) of each branch (fuzzy subset) of
the corresponding test attribute and finally reaches multiple
leaf nodes and then calculates the confidence of each mode.
The specific calculation process is as follows.

Step 1. Path confidence calculation. Fuzzificate the current
target data, obtain the confidence of the target data to each
branch of the fuzzy subset of the test attribute, and calculate
the path confidence with the minimum operator. As shown
in Figure 5, if the leftmost path has distance⟶ FðμF = 0:8Þ,
and Entry angle⟶HðμH = 0:5Þ, the confidence of the path
is min ðμF , ¦IHÞ =min ð0:8,0:5Þ = 0:5.

Step 2. Confidence calculation of each mode. Calculate the
trust degree of each mode on all leaf nodes with the product
operator, as shown in the leftmost leaf node in Figure 5. The
trust degree of D =M1 = 0:83 · min ðμF ,HÞ = 0:83 · 0:5 =

Output

Time domain
situation

Airspace
situation

Dimension
requirement

Accuracy
requirement

Situation
assessment

Sensor type

State
evaluation

Sensor parameter

FIS1 FIS2 FIS3 FIS4

FIS5 FIS6

Figure 3: Decision tree model with fuzzy inference system.
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0:415. And then, combine the confidence of the same
mode on all leaf nodes and calculate with the maximum
operator. If the confidence of D =M1 of each leaf node
is f0:42,0:8,0:6,0:36,0:92,0:5,0:83g, the confidence of D =
M1 after combination is μD =M1 = max ð0:42,0:8,0:6, 0:36,
0:92,0:5,0:83Þ = 0:92; finally, normalize the confidence of
the merged model as follows.

�μD = μD =Mi

∑5
j=1μD =Mj

: ð1Þ

The confidence of each mode obtained in the above steps
is used as the reasoning result to characterize the demand
degree of RD for each mode. When nonnumerical reasoning
results are needed, the mode with the greatest confidence is
selected as the result of RD empty mode management. In
addition, for the fuzzy membership parameters of fuzzy tree,
genetic algorithm can be constructed to form genetic fuzzy
tree for parameter optimization, and then, the decision-
making process can be optimized more carefully and flexibly.

3.3. Basic Linear Programming Model for Multitarget to
Multi-UAV Allocation Based on Cooperative Tracking.
Generally, we assume that a sensor-to-target pairing sys-
tem includes a set of basic sensors fs1, s2,⋯, sng and a
set of targets ftar1, tar2,⋯, tarmg, where n and m, respec-
tively, refer to the numbers of sensors and targets. For n

basic sensors are able to form 2n − 1 sensors’ combinations
which are named tracking unit. The basic sensors are signed
from 1 to n, and the combinations are signed from n + 1 to
2n − 1. Therefore the m targets are tracked by 2n − 1 sensors’
combination. Here, the symbol Si is used to present the com-
binations. For an example, 3 sensors are able to form a set of
7 tracking units named, contained S1 = fs1g, S2 = fs2g, S3 =
fs3g, S4 = fs1, s2g, S5 = fs2, s3g, S6 = fs1, s3g, S7 = fs1, s2, s3g.

An integer set JðbÞ = fjjsb ∈ Sjgðb = 1, 2,⋯,nÞ refers to

the numbers of the tracking unit which the bth basic sensor
belongs to. The assignment decision mathematical model
of target tracking under low radiation control can be
expressed as a multiobjective optimization linear program-
ming model with multiple constraints. The objective func-
tions are composed of total tracking benefit and active
sensors’ radiation interval. The first optimal solution set D1
is obtained for maximizing for the active sensor radiation
interval, and the second optimal solution set D2 is obtained
for maximizing the total tracking benefit. The total tracking
benefit can be expressed as a function of target tracking pri-
ority index, tracker coordination coefficient, information
gain, and sensor-target pairing matrix. The objective func-
tions are as follows

max
C = 〠

m

i=1
Rj · 〠

2n−1

i=1
Fi · Iij · Xij

 ! !
,

Δtk,

8>><
>>: ð2Þ

s:t: 〠
i∈J bð Þ

〠
j

Xij ≤ τb, b = 1, 2,⋯, n, ð3Þ

〠
2n−1

i=1
Xij = 1, j = 1, 2,⋯,m, ð4Þ

Table 1: Fuzzy attribute membership value table of target attribute.

Fuzzy attribute Attribute value

Target distance Far (F), middle (M), and near (N)

Target entry angle Head on (H) and tail rear (T)

Lock status Lock (L) and unlock (U)

Target fuzzy attributes and mode
selection results

Fuzzy decision tree
Real time target

Mode management results

Prior knowledge

Inference rules

Fuzzy tree learning

Fuzzy tree reasoning

Figure 4: Radar mode management system based on fuzzy decision tree.
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Xij ∈ 0, 1f g,∀i, j, ð5Þ

P kð Þ = f Δtk, R PT kð Þ, TOT kð Þ½ �, POFð Þ ≤ Pex: ð6Þ
In Eq. (2), the first equation refers to the maximum

matching matrix C of the total tracking benefit of the sensor
and target pairing. In this equation, Rj refers to the priority
indicators for tracking targets. From [35, 36], we have the
following property: the larger Rj is, the higher the priority
indicator of the target j is. Fi refers to the coefficient of the
ith tracking unit which is according to the sensor coefficient
function. Iij refers to the information gain between the ith

tracking unit and the jth target. Xij is an element of the solu-
tion matrix, whose value is only 0 or 1. If the value of Xij is 1,

the ith tracking unit tracks the jth target, and if the value is 0,
the ith unit does not track the jth target. Δtk represents the
covariance of the track filter and the recurrence rate of the
active sensors’ radiation discontinuity required to achieve
the specified tracking accuracy.

In constraints, τb in Eq. (3) refers to the maximum num-
ber of tracking targets of the bth basic sensor. Eq. (4) ensures
that the number of targets tracked by the tracking unit will
not exceed the maximum tracking number of each basic sen-
sor. Equation (5) ensures that one target is tracked by one
tracking unit at most. In Eq. (6), PðkÞ is the targets’ state
covariance matrix at the moment tk and related to the sensor
measurement noise covariance function Rð·Þ. Pex is the given
expected covariance matrix which is the specified target
tracking accuracy of the sensors, and the value of Pex can
be selected according to different control measurements.

3.4. Multitarget and Multi-UAV Allocation Method for
Cooperative Tracking. In order to solve the model intro-
duced in Section II-A, a hierarchical sequence optimization
method is proposed in this paper. First, the stealth control
model is solved by taking the active sensor radiation time
as the target and the coordinated tracking accuracy as the
constraint. Then, on the basis of this solution set, the alloca-
tion optimization model is solved by taking the synergy coef-
ficient and the target priority to weight the information
entropy as the goal. The hierarchical sequence optimization
effectively reduces the dimensionality of the optimization
problem and the probability of falling into a local optimum.
According to the output state estimation and covariance
estimation of the active and passive sensors’ cooperative
tracking algorithm, the predicted covariance is compared
with the previous covariance to control the radar radiation.
When the predicted covariance is less than the threshold
which means Pkjk−1 ≤ Pex, the radar does not radiate; when
the predicted covariance exceeds the threshold, the radar
radiates, where Pkjk−1 refers to the predicted position error
for the moment k at the moment k − 1.

3.5. UAV and Target Pairing Algorithm Based on
Information Entropy. Pseudocode based on multiaircraft
cooperative tracking sensor and target pairing algorithm is
proposed by using traversal target list method to achieve.
Consider a scenario that there is a formation networked sen-

sor system with S sensors, and the number of tracked targets
is N . At the moment k, it needs to be tracked according to
the estimated accuracy of NðkÞ targets. First, the predicted
covariance matrix of each target is calculated and used to
compare with the preset expected covariance to determine
whether the active sensor will participate in the collabora-
tion at the next moment. Then, according to whether the
active sensor participates in the next moment of coordina-
tion, it traverses the optional tracking units and constructs
a feasible target tracking scheme based on the maximum
total tracking benefit. Note that the scheme must meet the
constraints of the model. Its main functions are described
in Table 2.

4. Experimental Results

Consider the following scenario for simulation experiments:
a single UAV to track four target UAVs, and the UAV is
equipped with three types of space-based platform sensors,
i.e., the first sensor S1, the second sensor S2, and the third
sensor S3. Build a 1-to-4 oriented digital simulation platform
to support simulation verification. Figure 6 shows the
deployment diagram of the digital simulation platform,
which supports the 1-to-4 confrontation scenario. One com-
puting node on the red side simulates one aircraft, four com-
puting nodes on the blue side simulate four aircraft, and the
middle station is the white node (integrated with the red
node) for comprehensive evaluation, where the computer
adopts PC and is connected through Ethernet. The PCs used
in the experiments are desktop computer with Win7 opera-
tion system, Intel (R) Core (TM) i7-7700T CPU, and 16GB
of RAM.

4.1. Simulation of Fuzzy Decision Tree Algorithm. Take the
following scenario as an example to demonstrate the imple-
mentation process of sensor management plan generation
technology. The scene is shown in Figure 7. First, the scene
is defined, and the airborne photoelectric sensor is used. Its
visual range is 20 km, the detection probability is set to
90%, the field of view (FOV) range is 15 degrees, and the
scanning angle is 120 degrees to track the moving target.
The target moves in a two-dimensional horizontal plane,
and its starting position is located at ð500m, 2000mÞ and
moves at a speed of 20m/s in the X direction and 1.35m/s
in the Y direction within ½0, 20� time steps. Within ½21, 50�
time steps, it provides an acceleration of 5m/s in the X
direction, and the speed in the Y direction remains
unchanged. Within ½51, 65� time steps, it provides an accel-
eration of -5m/s in the X direction, and the speed in the Y
direction remains unchanged. Within ½66, 73� time steps, it
performs steering operation, in which the speed in the X
direction is ðvxTstep−1 − 5Þ ∗ ðT step − 73Þ2/15, and the speed in

the Y direction is vxTstep−1 ∗ ðTstep − 65Þ2/80, within ½73, 90�
time steps, the speed in X direction remains unchanged,
and the deceleration in Y direction is -5m/s.

Set up a control group, and compare the azimuth error
of beam pointing under the two ways of not using sensor
control feedback technology and using sensor control
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Figure 5: Fuzzy decision tree of RD to empty pattern management.

Table 2: The list of main functions.

Number Software name Function description

1 Sensor usage plan
Provide automatic start and stop control for sensor usage and status
maintenance; provide control management based on stealth level.

2 Sensor scheduling
Provide the ability to control all sensor functional models; provide

sensor active state maintenance function.

3 Display control
Provides control and monitoring of sensors; provide the display function of
two-dimensional situation map (red/blue platform running track display)

4 Simulation model Provide sensors’ function model; provide communication function model.

5
Simulation operation configuration

management

Configuration management of environment parameters required for system
operation; graphical configuration management of simulation model

interaction.

6 Evaluation software Provide real-time analysis and evaluation of measurement error.

Red and white square

Blue square 1

Blue square 2

Blue square 3

Blue square 4

Figure 6: Digital simulation deployment diagram.
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feedback technology. For multisensor fusion, this index is
reflected by track quality evaluation. The data fusion in the
process of target tracking is carried out through the IMM
Kalman filter. According to the fused data information, the
beam pointing azimuth errors (i.e., error k and error k − 1
between the current time and the previous time) are calcu-
lated and sent to the sensor using the plan generation mod-
ule. The sensor uses the plan generation module to request
the azimuth error from the data fusion system as the input.

By constructing the prior knowledge, the prior knowl-
edge is modeled into a fuzzy system to generate a fuzzy con-
troller. As shown in Figures 8 and 9, the fuzzy controller

takes error (k) and error (k − 1) as inputs for discrete fuzzi-
fication and constructs five levels of language values, VL
(very low error), L (low error), M (medium error), H (high
error), and VH (very high error). Each language value corre-
sponds to a specific triangular membership function. The
output of the fuzzy system is constructed. The decision out-
puts the scanning frequency and fuzzy nodes, which are
divided into 13 levels of language values, VL (very low),
MVL (very low), L (low), ML (medium low), M (medium),
MH (medium high), H (high), MVH (very high), VH (par-
ticularly high), MVVH (extremely high), VVH (very, very
high), MVVVH (sky-high), and VVVH (most high).
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Figure 7: Basic setting diagram of scene.
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Trigonometric membership functions are also used to define
specific values.

The closed-loop flow chart of the whole simulation
example is as shown in Figure 10. Case 1: Figure 11 plots
the comparison diagram of sensor tracking error based on
the above scenario using sensor control feedback technology
(fuzzy system) and not using sensor control feedback tech-
nology (fixed rules). Without using the sensor control feed-
back technology, the method of changing 1∘ per time step
is adopted. It can be seen that based on the fixed rule, the
azimuth error is out of tolerance at about 10 s and 50 s,
resulting in the loss of tracking, while based on the feedback

control, the tracking is lost only at about 70 s, because the
target at this time has exceeded the scanning range of the
sensor (set the scanning area of the sensor unchanged). Case
2: based on the above simulation scenario, it is added a sen-
sor, located at (2100,0), pointing at 85 to form a complete
coverage of the target (as shown in Figure 12). For the sensor
configuration at this time, the simulation results are shown
in Figure 13. At about 60 s, the sensor is switched and
tracked by sensor 2. The error is small and relatively stable.

To sum up, take the above scenario as an example to
build the basic closed-loop process of sensor control feed-
back technology. For future practical application scenarios,
it is necessary to reasonably complicate the scenario and
cover the fusion decision of multiple sensors. Accordingly,
for the fuzzy control system and fuzzy rules used in simple
simulation, and for the complexity of specific scenes, the
knowledge base and corresponding reasoning algorithm
described above are used to build a comprehensive model.
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Table 3: Initial parameter setting of tracking units.

Tracking units Coefficient (Distance (m), angle)

S1 1 (100, 0:2292∘, 0:2292∘)
S2 1 (0:4∘, 0:7∘)
S3 1 (100,0:2292∘, 0:2292∘)
S1, S2f g 1.526 −

S1, S3f g 1.607 −

S2, S3f g 1.219 −

S1, S2, S3f g 2.713 −
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4.2. Simulation of Multitarget and Multisensor Allocation
Algorithm. To verify the effectiveness of the multitarget
and multisensor allocation method in this paper, the simula-
tion experiments are carried out according to the following
scenarios. A single UAV platform with multiple sensors is
used to track four target UAVs. The sensor target allocation
of four target tracking processes in the air is simulated. The
airborne radar ranging function completes the angle mea-
surement functions of ESM and infrared search and tracking,
respectively, forming a high synergy coefficient. The param-
eter settings of the tracking unit are shown in Tables 3–5. A
total of 7 tracking units (including four combinations) and
4 UAV platforms are set. Assuming that the current moment
is in the hth management period, the data sampling rate of
each sensor is the same. Tables 4 and 5 show the one-step
information gain of the tracking unit to the target and the
total tracking benefit after pairing. Table 6 is based on the
data in Tables 4 and 5 combined with the final distribution
results of the model algorithm. When considering the target
threat and the detection capacity of each sensor, the result
of the optimal allocation is following: the first radar sensor
S1 tracks the target tar1. Sensors’ combination fS2, S3g tracks
the target tar2 and tar4. Sensors’ combination fS1, S2, S3g
tracks the target tar3. The total tracking benefit is 9.4093.

5. Conclusion

To make full use of the sensors in the formation and
improve the overall tracking performance, it is necessary
to allocate the targets for coordinated tracking units of mul-
tisensors while active sensor radiation is controlled. This
paper proposes an allocation decision model and a match-
ing algorithm based on multisensor and multitarget cooper-
ative tracking under low radiation intensity. The first
situation with the active sensors turned on, the radiation
of the active sensors is controlled according to the tracking
accuracy requirements of task performance, and the active
sensors are used to participate in the radiation interval of
the active sensor. Another situation with the active sensors
turned off, the passive combined sensors are used to per-
form angle tracking or coordinated positioning of targets.
These two situations are combined separately and alter-
nately performed. Through intermittent passive sensor data
and interval active sensor data for sequential coordinated
tracking, a continuous target tracking trajectory is formed,
which completes multisensors rationality for multitargets.
The coordinated formation of UAV swarms based on 6G
communication guarantees the realization of the method
proposed in this paper. Finally, the optimization model
and the matching algorithm are proved to be reasonable-
ness and effectiveness.
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