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Edge computing is a feasible solution for effectively collecting and processing data in industrial Internet of Things (IIoT) systems,
and edge security is an important guarantee for edge computing. Fast and accurate classification of malicious code in the whole lift
cycle of edge computing is of great significance, which can effectively prevent malicious code from attacking wireless sensor
networks and ensure the stable and secure transmission of data in smart devices. Considering that there is a large amount of
code reuse in the same malicious code family, making their visual feature similar, many studies use visualization technology to
assist malicious code classification. However, traditional malicious code visual classification schemes have the problems such as
single image source, weak ability of deep-level feature extraction, and lack of attention to key image details. Therefore, an
innovative malicious code visual classification method based on a deep residual network and hybrid attention mechanism for
edge security is proposed in this study. Firstly, the malicious code visualization scheme integrates the bytecode file and
assembly file of the malware and converts them into a four-channel RGBA image to fully represent malicious code feature
information without increasing the computational complexity. Secondly, a hybrid attention mechanism is introduced into the
deep residual network to construct an effective classification model, which extracts image texture features of malicious code
from two dimensions of the channel and spatial to improve the classification performance. Finally, the experimental results on
the BIG2015 and Malimg datasets show that the proposed scheme is feasible and effective and can be widely applied used in
various malicious code classification issues, and the classification accuracy rate is relatively higher than the existing better-
performing malicious code classification methods.

1. Introduction

In recent years, the fast expansion of the Internet of Things
(IoT) has led to the industrial IoT (IIoT). Edge computing as
a feasible solution for efficient collection and processing of
data in IIoT has received great attention from academia,
industry, and government departments and has been widely
used in industries such as power, transportation, manufactur-
ing, and smart cities. With the continuous deepening of the
digital transformation process of the industry, the evolution
of the edge computing network architecture will inevitably
lead to an increasing number of security attacks on edge com-
puting nodes, and edge security issues have become one of the
obstacles restricting the development of the edge computing
industry [1]. Nowadays, a large number of smart devices and

sensors constitute a large wireless sensing network that can
monitor, sense, and collect information from various moni-
tored objects, while computing and storing these massive data.
However, malware running on these ubiquitous sensors and
smart devices can affect data security and cause other potential
threats to data and IIoT devices [2]. Currently, the rapid
increase in the types and quantity of malicious code not only
brings property and economic losses but also gradually
threatens national security [3]. For example, in May 2017, a
computer ransomware calledWannaCry spreads inmore than
100 countries around the world. Many universities were
infected and severely spreads to large public service areas such
as airports, customs, and public safety networks [4]. In view of
the weak security protection mechanism and limited comput-
ing resources of edge computing nodes, the detection and
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prevention of malicious code in the entire life cycle of edge
computing is of great significance [5]. Malicious code classifi-
cation is the key to preventing malicious code from running
and improving information security and provides an impor-
tant basis for malicious code detection, control, and removal.

Despite the continuous advancement of malicious code
detection and classification technologies, malicious code
has continuously evolved to generate new variants to avoid
detection and quickly copied and spread, resulting in fre-
quent security incidents in recent years. In most cases, the
malicious code is generated or improved in an automated
or semiautomated manner, and its core modules are reused
during the generation process. Since the vast majority of
new malicious codes are derived from the known malicious
code mutations, there are generally less than 2% code dif-
ferences between malicious codes of the same family [6].
This provides information security researchers with the
basis for malicious code classification, that is, the detection
and classification of different malicious code families can
be achieved through visual feature similarity detection of
malicious code core modules. The current mainstream mali-
cious code detection and classification methods mainly
include static analysis methods [7] and dynamic analysis
methods [8]. The former refers to the analysis of malicious
code without executing binary programs, which often fails
to effectively solve the impact of packing and obfuscation
technologies, while the latter refers to the use of program
debugging tools to track and observe malicious code when
it is executed and to verify the static analysis results according
to the working process of the malware. This method is often
inefficient and has a single execution path when dealing with
large amounts of malicious code. Limited by computing
power and resource consumption, traditional solutions
perform poorly invariant similarity analysis of large-scale
malicious code family samples. With the rapid development
of deep learning technology and the increase in types and
quantities of malicious code, researchers gradually began to
convert the malicious code classification problem into an
image classification problem. Malicious code visualization
scheme based on deep learning has become a current
research hotspot [9–11].

Malicious codes of the same family have similarities in
visual features, but different families are different, which
can be used as the basis for malicious code detection and
classification. Thus, a malicious code visualization scheme
transforms the problem of malicious code classification into
an image classification problem and applies deep learning
technology to solve it. Since different malicious code images
reflect the differences in code data structure and information
volume, the generation method of malicious code images is
very important for malicious code classification. Currently,
most of the existing malicious code visualization schemes
only use bytecode files or assembly files and convert them
into grayscale or RGB images for classification [10]. Some
visualization schemes choose to calculate information
entropy to enhance image information to further improve
classification accuracy [11]. However, these methods have
problems such as the single source of malicious code images
and the large computational complexity of enhanced infor-

mation, which increase the classification difficulty and
reduce the classification accuracy to a certain extent. In addi-
tion, malicious code often exists in the local location of the
program, manifesting as local image features. In malicious
code visualization scheme, the commonly used convolu-
tional neural network (CNN) pays more attention to the
global image features and does not consider the detailed
image features of the key regions. Therefore, it is necessary
to introduce an attention mechanism to assign different
weights to different regions in the image, so that the neural
network can fully exploit and utilize the local detailed feature
information of the malicious code image. In this way, the key
image feature information is extracted through the attention
mechanism, thereby improving the accuracy of subsequent
malicious code detection and classification.

Based on the above analysis, this study proposes an
innovative malicious code visualization classification
method to further improve the classification accuracy and
efficiency and then supports the detection and prevention
of malicious code in edge computing. On the one hand, this
scheme uses both the bytecode file and assembly file of the
malware to visualize the malicious code as an RGBA image
without additional calculation of code information entropy,
which makes up for the defects of a single source of mali-
cious code image information, insignificant image features,
and excessive calculation. On the other hand, the hybrid
attention mechanism is combined with the deep residual
network to build a more accurate classification model. The
deep residual network improves the classification accuracy
while using shortcut connections to alleviate the gradient
disappearance problem, accelerate model convergence, and
improve the model’s discriminative ability. Especially, each
residual unit adopts a hybrid attention mechanism to extract
more critical deep features from the two dimensions of
channel and spatial to further improve the classification
accuracy.

This study is organized as follows: Section 2 reviews the
related work on malicious code classification. Section 3
introduces the core method, showing the detailed imple-
mentation of the proposed malicious code classification
method from the malicious code visualization module and
classification module, respectively. Section 4 presents the
related experimental verification and performance analysis.
The last section is the conclusion and future work.

2. Related Work

As mentioned above, edge security is an important guaran-
tee for edge computing, wherein malicious code detection
and prevention in the entire life cycle of edge computing is
of great significance [1]. At present, malicious code visuali-
zation schemes have been developed on the basis of static
analysis and dynamic analysis. Researchers have conducted
extensive exploration and research on classification methods
based on malicious code visualization. The key to improving
the classification accuracy lies in how to extract reasonable
and effective feature images to represent the program fea-
tures of original malicious code as much as possible.
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Conti et al. [12] pointed out that the malicious sample
visualization method can help security analysts to quickly
identify malicious code files. On this basis, Nataraj et al.
[13] proposed a complete visual classification scheme for
malicious samples, which mapped the malicious code to a
grayscale image and extracted GIST features from it and
finally implemented the malicious code classification
through the K nearest neighbor (KNN) algorithm. They
[14] also pointed out that the malicious code images of the
same family have similar texture features, while the texture
features of malicious code images of different families are
quite different. Kornish et al. [15] found that appropriate
improvements to images can improve the malware classifica-
tion accuracy. Since then, malicious code visualization
schemes have been enriched, the source of image informa-
tion was no longer limited to bytecode files, and RGB images
[16, 17] and RGBA images [18] were widely used. Wang
et al. [16] divided the binary sequence of the malicious code
file into RGB three-color channel values and converted the
malicious sample into RGB images. Meanwhile, Sun et al.
[17] used ASCII character information and PE structure
information to convert malicious samples into RGB images
and used VGG16 model to train and predict malicious code
images. Chen et al. [18] used the bytecode file and local
information entropy to convert the malware into RGBA
images with larger information capacity, but this scheme
increases the amount of calculation, and the image informa-
tion source is single. These malicious code visualization
schemes based on image features make up for the shortcom-
ings of static analysis methods that are difficult to solve the
problem of sample packing and confusion, as well as the
long feature extraction time of dynamic analysis methods.
Most of the aforementioned visualization schemes still fol-
low Nataraj’s grayscale scheme, using only bytecode files or
assembly files, converting them to grayscale or RGB images
for classification, or choosing to calculate information
entropy to enhance image information to improve the clas-
sification accuracy. However, there are still the problems of
single source of code images and high computational com-
plexity. The feature information of malicious code images
is not fully utilized, and the classification accuracy and effi-
ciency still need to be improved.

As mentioned before, deep learning technology has
power feature learning and expression ability, which makes
it has outstanding advantages in extracting global features
and contextual information of images. Currently, deep
learning technology is widely used in various classification
and prediction problems in different fields, such as hyper-
spectral image classification, IIoT security, and malicious
code classification and detection [19–22]. Cheng et al. [9]
explored an ensemble interpretable framework for automatic
and efficient malicious code detection based on the knowl-
edge graph of malware. Peng and Lu [23] proposed a dis-
criminative extreme learning machine with supervised
sparsity preserving (SPELM) model and verified the effec-
tiveness of this model on four widely used image benchmark
datasets. Pitolli et al. [24] proposed a novel approach for
malware family identification based on an online clustering
algorithm, which efficiently updates clusters as new samples

are fed without rescanning the entire dataset. Cakir and
Dogdu [25] used a shallow neural network based on the
Word2Vec vector space model to represent the malicious
code and finally applied the gradient search algorithm to
classify the malicious code. Turnip et al. [26] proposed the
eXtreme Gradient Boosting (XGBoost) to identify Android
malware types. Liu et al. [27] combined graph neural
networks with expert knowledge to realize smart contract
vulnerability detection. Choi [28] proposed a malicious
PowerShell detection method using GCN, which increased
the detection rate of malicious PowerShell by approximately
8.2%. Wu et al. [29] proposed an attack-agnostic method
based on cascaded self-supervised learning models [30]
and achieved effective defense performance. With the devel-
opment of the IIoT technology [31, 32], more and more
users are beginning to use smart mobile terminal devices.
Jaigirdar et al. [33] proposed the Prov-IoT model to main-
tain the data security of IoT devices. Zhou et al. [34] pro-
posed a security defense system to protect the security of
intelligent systems. However, the Android system is often
attacked by malware due to its open source. Multimodal
deep learning (MDL) performs well in complex scenes cho-
sen to detect Android Malware by Kim et al. [35] and Vasu
and Pari [36]. Ghouti and Imam [37] used principal compo-
nent analysis (PCA) to extract the category and structural
features of the malicious code and then used an optimized
SVM to achieve malicious code classification. However,
due to the structural characteristics of deep neural networks,
such as focusing on global features and ignoring local details,
some emerging research needs to be introduced to compen-
sate for structural defects to comprehensively extract mali-
cious code features and further improve the classification
accuracy.

Since using the attention module in the CNN can focus
on key information and improve the representation ability
of convolution [38], more and more researchers [39] intro-
duce attention mechanism into the field of malicious code
classification and detection. Yakura et al. [40] built an
ACNN malicious code detection model by combining
CNN and attention mechanism to reduce the workload of
analysts. Wang et al. [41] proposed a Depthwise Efficient
Attention Module (DEAM) and combined it with a Dense-
Net to propose a new malware detection and family classifi-
cation model. However, these schemes did not conduct in-
depth research on the classification of malicious code fami-
lies; there is still a huge potential research space for the
application research of attention mechanism in malicious
code visualization-based classification schemes.

3. Malicious Code Visual Classification Method

3.1. Method Overview. In order to solve the above-
mentioned problems in existing malicious code classification
methods, this study proposes a malicious code visualization
classification method based on a deep residual network
and hybrid attention mechanism to achieve the accurate
and efficient classification of malicious code. The overall
flowchart is shown in Figure 1, and the details are as follows:
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(1) Malicious code visualization module: to compensate
for the single source of malicious code image infor-
mation, insignificant image features, and excessive
computational complexity, a malicious code visuali-
zation scheme is proposed, which combines malware
bytecode files and assembly files to form the RGBA
images to enhance image information. This method
converts the bytecode file into a grayscale image with
a specified pixel size and also converts the assembly
file into an RGB image of the same size to facilitate
subsequent image fusion. Then, the value of the
grayscale image as the transparency channel value
is merged with the RGB image to form an RGBA
image, so as to realize the visualization of malicious
code while enhancing the effective information of
the image without increasing the complexity of
information calculation

(2) Malicious code classification module: in order to fully
consider the key features of malicious code images and
further improve the classification accuracy, a mali-
cious code classification method combining a hybrid
attention mechanism and a deep residual network is
proposed. This method uses ResNet50 as the back-
bone network since the residual network can increase
the accuracy by increasing the considerable network
depth. The internal residual module uses shortcut
connection to alleviate the problem of gradient disap-
pearance caused by increasing depth of the network.
Then, the channel attention module and the spatial
attention module constitute a hybrid attention mod-
ule, which is added to the residual unit of each convo-
lution part of ResNet50 to improve the representation
ability of the convolutional network. Combine the two

to build a classification model, train the malicious
code image dataset, and finally, realize the effective
classification of malicious code

3.2. Malicious Code Visualization Module

3.2.1. Visual Problem Analysis. In an image, as the carrier of
the malicious code file, each pixel contains a lot of code file
information, and different malicious code images have
different malicious code data structures and information
amounts. For example, the images of malicious code of the
Kelihos_ver1 family, the Vundo family, and the C2LOP.-
gen!g family are shown in Figure 2. It can be seen that there
are visual similarities between the malicious code images
corresponding to the malicious code variants of the same
family, while there are obvious visual differences between
the malicious code images corresponding to different family
variants. This difference in visual features shows that mali-
cious code classification based on image similarity is feasible
and effective. Thus, the generation method of malicious code
images is very important for malicious code classification.

Generally, bytecode is a complied intermediate binary
code that is independent of specific machine code and imple-
mentation platform. The assembly code is a low-level
hardware-related assembly instruction compiled from the
source code, which has poor cross-platform performance but
relatively high execution performance. Bytecode and assembly
code reflect different information about the code, but there is a
close correlation between them. As a low-level language,
assembly code has high scalability and lengthy code, so the
assembly file of the same malicious code is longer and more
informative than the bytecode file. Therefore, in order to com-
prehensively use image information to support the effective
and accurate classification, in the malicious code visualization

3. Apply the image to deep residual
network with attention mechanism

4. Classify 
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Figure 1: Method overview

4 Wireless Communications and Mobile Computing



module, we innovatively choose to use both the bytecode file
and assembly file information to convert the malicious code
into an RGBA image for subsequent classification. Com-
pared with the grayscale image with only one channel, an
RGBA image is an image with four channels by adding a
transparency channel to an RGB image with three channels.
Consequently, the effective information amount of RGBA
images is 4 times that of grayscale images, which can provide
more comprehensive and accurate image features for subse-
quent detection. Furthermore, RGBA images can not only
carry more channel features but also can effectively fuse
bytecode and assembly files.

3.2.2. RGBA Image Generation. Considering the differences
in the amount of information between the assembly file
and the bytecode file and the composition of the RGBA
image, firstly, the assembly file and the bytecode file are con-
verted to the same size (224 ∗ 224 pixels) RGB image and
grayscale image, respectively. Then, the grayscale image
value is used as the transparency channel and merged with
the RGB image generated by the assembly file to form an
RGBA image. The RGBA image contains 4 channels, which
are red, green, and blue color channels and transparency

channel. Each channel has 8 bits and a total of 256 color
levels. The malicious code file is read according to the binary
data stream, and each 8-bit length ranges from 0 to 256,
which exactly matches the length of each channel. In this
case, the bytecode and assembly files are not added or
deleted, and the bytecode and assembly features are similar
in each local detail of the RGBA image after they are con-
verted to images and fused. Thus, RGBA images can not
only carry more channel features but also can effectively fuse
bytecode and assembly files.

Based on the above analysis, suppose that the malware’s
.byte file is .byte = (..., 01101110, 10011100, 11010011,
...) = (..., 110, 156, 211, ...), and the .asm file is asm= (...,
01101100, 10011101, 11010010 ...) = (..., R:108, G:157,
B:210, ...). The RGBA image generation flowchart and algo-
rithm are shown in Figure 3 and Algorithm 1, and the spe-
cific steps are as follows:

(1) Read the malware’s .bytes file by reading a binary
data stream, and every 8 bits is converted to an
unsigned integer vector. The value range of 8-bit
unsigned integer is 0~255, which exactly corre-
sponds to the pixel gray value 0~255. According to

Grayscale image of family kelihos_ver1

(a)

Grayscale image of family vundo

(b)

RGBA images of family C2LOP.gen!g

(c)

Figure 2: Images of different families of malicious code.
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Figure 3: RGBA image generation flowchart.

5Wireless Communications and Mobile Computing



length :width equal to 1 : 1, to generate a grayscale
image

mgray ∈ R
1×n×n =

⋯ 110 156 211

⋯ ⋯ ⋯ ⋯

⋯ ⋯ ⋯ ⋯

⋯ ⋯ ⋯ ⋯

2
666664

3
777775
, ð1Þ

n = sqrtðfile:lengthÞ, and then, scale the original
grayscale image to gray image mgray ∈ R1×224×224 =
Image:resizeðð224, 224Þ, Image:ANTIALIASÞ

(2) Read the malware’s .asm file by reading the binary
data stream as well, each 8 bits corresponds to the
R, G, and B values of a pixel (Rk =∑7

i=0bi+16 × 2i; Gk

=∑7
i=0bi+8 × 2i; Bk =∑7

i=0bi × 2i), according to
length :width equal to 1 : 1 to generate RGB image

mrgb ∈ R
3×n×n =

⋯ R : 108 ⋯ ⋯

⋯ ⋯ ⋯ ⋯

⋯ ⋯ ⋯ ⋯

⋯ ⋯ ⋯ ⋯

2
6666664

3
7777775

8>>>>>><
>>>>>>:

�

⋯ G : 157 ⋯ ⋯

⋯ ⋯ ⋯ ⋯

⋯ ⋯ ⋯ ⋯

⋯ ⋯ ⋯ ⋯

2
6666664

3
7777775

�

⋯ B : 210 ⋯ ⋯

⋯ ⋯ ⋯ ⋯

⋯ ⋯ ⋯ ⋯

⋯ ⋯ ⋯ ⋯

2
6666664

3
7777775

9>>>>>>=
>>>>>>;

,

ð2Þ

n = sqrtðfile:length/3Þ and then scale the original
RGB image to RGB image mrgb ∈ R3×224×224 = Image
:resizeðð224, 224Þ, Image:ANTIALIASÞ

(3) The gray value of the gray image is used as the trans-
parency channel of the RGBA image, and it is
merged with the RGB image generated by the .asm
file to form an RGBA image mrgba ∈ R4×224×224

When the malicious code file is converted into an image,
the zero-padded operation is performed instead of inter-
cepting part of the file content, which ensures the source
integrity of the malicious code image information to a cer-
tain extent. The parameter of the resize() function is set to
Image.ANTIALIAS, which will perform high-quality com-
pression on the image to ensure that the image quality will
not be reduced when the image size changes. In this way,
the RGBA image contains 4 channels, and the effective

information contained is 4 times that of the grayscale image,
which can provide more potential malicious code features
and effectively support the subsequent malicious code
classification.

3.3. Malicious Code Classification Module. After obtaining
the malicious code image dataset through the above mali-
cious code visualization module, the next step is to build
an accurate malicious code classification model. In the mali-
cious code classification module, we propose an innovative
malicious code classification model based on the deep resid-
ual neural network - ResNet50 [42] and the attention mod-
ule structure of Woo et al. [38], which combines a hybrid
attention mechanism with the deep residual network to
further improve classification accuracy. On the one hand,
the deep neural network is used to improve classification
accuracy by increasing the structural depth. Meanwhile, the
residual structure can effectively avoid the problem of gradi-
ent disappearance through the shortcut connection. On the
other hand, a hybrid attention mechanism is applied and
injected into the residual network to effectively capture the
key features of malicious code images and assign different
learning weights, so that the model can learn the image fea-
tures that need to be focused to further improve the classifi-
cation accuracy. Moreover, the application of the attention
mechanism adds less parameters and calculation amount,
which can ensure the classification effect of the model with-
out affecting the classification efficiency.

The overall network architecture of the classification
model Mcs - ResNet is shown in Figure 4, containing 5 con-
volution parts (conv1~conv5). Among them, conv2_x,
conv3_x, conv4_x, and conv5_x are formed by adding a
hybrid attention module to the residual unit of the convolu-
tion part, to ensure the full integration of the hybrid atten-
tion module and the deep residual network to further
enhance the mining of deep features. Moreover, the detailed
parameter information of the model is shown in Table 1.
Here, a 50-layer ResNet model with 3 layers of bottleneck
blocks is chosen as the base network for malicious code clas-
sification. Therefore, the model complexity is about 3.8 bil-
lion FLOPs (floating-point operations) and so is the
parameter size.

The convolutional layer implements the feature extrac-
tion and feature mapping, weight sharing, and local connec-
tion of the input image through the convolution filter in
CNN. Generally, in the convolution process, the convolution
filter often has multiple channels, and the filters of multiple
channels usually perform feature extraction at the same
time. For example, when the input image is mi,j,kð0 ≤ i ≤W
, 0 ≤ j ≤H, 0 ≤ k ≤ KÞ, that is, the image size is W ×H and
the channel is K , the convolution processing is shown in

m′i,j,k = 〠
K−1

l=0
〠
M−1

p=0
〠
M−1

q=0
mi+p,j+q,k+lwp,q,l + bi,j,k, ð3Þ

where bi,j,k represents the bias of the neural network and
wp,q,l represents the weight of K convolution filters with a
size of M ×M.
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As shown in the lower part of Figure 4, the hybrid atten-
tion module is composed of a channel attention module and
a spatial attention module to simultaneously obtain the
channel feature weights and spatial feature weights of the
malicious code image, thereby enhancing the obtained
important features. After that, the enhanced features and
the original input image features are connected through
the shortcut connection structure to obtain the final output
features. The channel attention module and the spatial
attention module emphasize the special regions of the mali-
cious code image to enhance the accuracy of malicious code
image classification. The following describes the residual
module and hybrid attention module and their combination
in detail.

3.3.1. Residual Module. The deep learning model is usually
composed of multiple layers, and its deep structure has pow-
erful learning capabilities and efficient feature expression
capabilities to automatically learn features from a large
amount of data. It is widely used in image recognition,
speech recognition, and other fields, and has become an
important part of computer vision technology. The network
depth of a deep learning model determines whether it can
extract deeper features, but as the network depth continues
to deepen, it will cause network degradation and gradient
disappearance problems. The residual network proposes a
shortcut connection technique to solve the above problems.
The input is transferred across layers and added to the result
of the convolution, and the identity mapping is added, as
shown in Figure 5(a). When the network input is x, the
learned feature is FðxÞ + x, that is, the unit input and output
are directly added, and then activated by the ReLU activa-
tion function. This network structure does not add addi-
tional parameters, which facilitates the subsequent network
optimization and greatly improves the training efficiency.
Based on these characteristics of the residual network, the

attention module is injected into the residual network to
construct a residual attention network to simultaneously uti-
lize the advantages of both, as shown in Figure 5(b).

Here, the proposed malicious code classification model
Mcs-ResNet uses the ResNet50 residual network as the back-
bone network. ResNet50 is a deep residual network formed
by adding a shortcut connection mechanism on the basis
of the VGG19 network. The network structure of the tradi-
tional CNN model is directly stacked, which is equivalent
to multiplication calculation. In this ResNet model, the net-
work structure is connected through a shortcut connection,
and the calculation is changed from multiplication to addi-
tion. The feature calculation under this structure will be
more stable, so the original feature information in the mali-
cious code image and the key feature information processed
by the attention module will flow to the next layer more sta-
bly, and the malicious code image classification will be more
efficient.

Based on the above analysis, the expression of the RGBA
image m ∈ R4×224×224 processed by the residual module is as
follows:

m′ =m + f FS FC mð Þð Þð Þ, ð4Þ

where f represents operations such as feature mapping, acti-
vation, and attention weighting; FS is the spatial attention
weight; and FC is the channel attention weight. The specific
calculation of FS and FC will be described in the next sec-
tion. At this time, the features of the RGBA image are not
compressed, so that the channel and spatial features can be
learned more fully after adding the attention module. This
ensures that more critical deep features in the two dimen-
sions flow more stably to the next layer.

3.3.2. Hybrid Attention Module. As mentioned earlier, the
use of attention mechanism in CNNs can focus on key

Input: The bytecode file filebytes and assembly file fileasm of the malicious code;

Output: The final training dataset RGBA images mrgba ∈ R4×224×224.
For each sample filebytes:

Calculate the width of the image widthbytes = sqrtðfilebytes:lengthÞ;
Calculate the gray value corresponding to each pixel, grayn =∑7

i=0b × 2i, form a grayscale image;
Scale the original grayscale image to 224 ∗ 224 pixel size gray image mgray ∈ R1×224×224 = Image:resizeðð224, 224Þ, Image

:ANTIALIASÞ:.
End
For each sample fileasm:

Calculate the width of the image widthasm = sqrtðfileasm:length/3Þ;
Calculate the R, G, B value of each pixel, Rk =∑7

i=0bi+16 × 2i; Gk =∑7
i=0bi+8 × 2i; Bk =∑7

i=0bi × 2i, form an RGB image;
Scale the original RGB image to 224 ∗ 224 pixel size RGB image mrgb ∈ R3×224×224 = Image:resizeðð224, 224Þ, Image:

ANTIALIASÞ.
End
For each image mgray and mrgb ∈ R3×224×224:

The gray value of mgray is used as the A value of the RGBA image;

Merged with mrgb to form an RGBA image mrgba ∈ R4×224×224.
End

Algorithm 1:RGBA image generation algorithm.
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information and improve the convolutional representation
ability. Therefore, an attention module is added after the
residual module to focus on key information and weaken
the useless information. The one-dimensional channel atten-
tion feature matrix and the two-dimensional spatial atten-
tion feature matrix are derived in turn, and then, the
generated attention feature matrix is multiplied with the
original input feature matrix to form the output feature
matrix, which enables the classification model to focus on
key areas with higher correlation with malicious behaviors
for more accurate classification.

(1) Channel Attention Module. Compared with grayscale
images or RGB images, RGBA images contain richer infor-
mation and more channels. Using the CNN with channel
attention for classification can assign different weights to each
channel, thereby effectively improving the classification accu-
racy of malicious code. In the CNN, the two-dimensional
malicious image will generate an image feature matrix (H,
W, C) after the convolution kernel operation, where H,W
represent the image height and width, and C represents the
image feature channel. Introducing the channel attention
mechanism into the malicious code classification model can
effectively strengthen the model’s extraction of global texture
features of malicious code images. The channel attention
module can pay attention to the importance of different fea-
ture channels of the input image. By modeling the impor-
tance of each feature channel, assign different weights to
the channel features, and strengthen or suppress different
channels according to the degree of correlation with mali-
cious behavior.

The operation process of the channel attention module is
shown in Figure 6, and the specific steps are as follows:
firstly, the output feature matrix of the previous layer of con-
volution is used as the intermediate input feature. Then, the
intermediate feature matrix obtains two-channel descrip-
tions in the form of 1 × 1 × C through average pooling and
maximum pooling based on spatial dimensions to compress
the spatial dimensions of the input feature matrix and gather
spatial information. The feature information is extracted
from different angles, the importance of each feature chan-
nel is modeled, and the channel features are assigned
weights, thereby effectively utilizing the special interaction
relationship between the channels of the intermediate fea-
ture matrix obtained after convolution. Afterwards, through
the adjustment of the shared network multilayer perceptron,
the output vector dimension should match the number of
channels of intermediate feature matrix, and the adjusted
vector elements are added together and activated by the

Conv1 Conv2_x Conv3_x Conv4_x Conv5_x

...

Input: 224 × 224 × 4

Average pool, 1000 – d fc, softmax

Average pool,
1000 – d fc,

softmax

Attention module
Bottleneck

Channel attention
Spatial attention

Conv
F F'

F
F' Ms

Mc

F''… …ConvConvConv

Figure 4: The network architecture of Mcs-ResNet.

Table 1: Network architecture parameter information.

Layer name Output size Model

conv1 112 × 112 7 × 7, 64, stride 2

conv2_x 56 × 56

3 × 3 max pool, stride 2

1 × 1, 64

3 × 3, 64

1 × 1, 256

2
664

3
775 × 3 ⊕Attention

conv3_x 28 × 28

1 × 1, 128

3 × 3, 128

1 × 1, 512

2
664

3
775 × 4 ⊕Attention

conv4_x 14 × 14

1 × 1, 256

3 × 3, 256

1 × 1, 1024

2
664

3
775 × 6 ⊕Attention

conv5_x 7 × 7

1 × 1, 512

3 × 3, 512

1 × 1, 2048

2
664

3
775 × 3 ⊕Attention

1 × 1 Average pool, 1000-d fc, softmax

FLOPs 3:8 × 109
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Sigmoid function, realizing the enhancement or suppression
of different channels as needed. The expression of the chan-
nel attention module is shown in formula (5).

MC Fð Þ = σ MLP AvgPool Fð Þð Þ +MLP MaxPool Fð Þð Þð Þ,
= σ W1 W0 FC

avg

� �� �
+W1 W0 FC

max
� �� �� �

,

ð5Þ

where σ denotes the Sigmoid function, W0 ∈ RðC/rÞ×C and
W1 ∈ RC×ðC/rÞ, r is the compression ratio. Note that W0
and W1 are weights of the multilayer perceptron (MLP),
shared by the input features and the ReLU activation func-
tion ofW0. F

C
avg and FC

max represent the spatial matrix gener-
ated by the average pooling and the maximum pooling.

Finally, the channel attention module output matrix and
the input intermediate feature matrix are weighted and
summed channel by channel to complete the channel atten-
tion calculation of the output feature matrix. On the basis of
the residual module, combined with the channel attention
module, it can retain more global texture information in
the input malicious code image, greatly improving the mali-
cious feature representation ability.

(2) Spatial Attention Module. Since most new malicious
codes are derived from existing malicious code mutations,
their core modules are repeatedly rewritten to generate
new malicious code. Hence, the key to malicious code vari-
ant detection is how to extract the core module feature infor-

mation and how to assign different weights to different
regions in the image to focus on key feature information to
improve the detection and classification accuracy of mali-
cious code variants. The spatial attention module focuses
on the importance of different feature spatial locations,
generates spatial attention weights for the output feature
map, and enhances the spatial location features with higher
correlation with malicious behavior according to the feature
weights.

The operation process of the spatial attention module is
shown in Figure 7, and the specific steps are as follows:
firstly, take the feature matrix processed by the channel
attention as the intermediate input feature, and perform
average pooling and maximum pooling, respectively, based
on channel dimensions to obtain two spatial description
matrices in the form of H ×W × 1. This will not only con-
sider the contribution of local malicious code image space
but also can capture the contribution of global space. Next,
the two spatial description matrices are merged into a fea-
ture matrix, and a two-dimensional spatial attention map
is generated through the convolutional layer to better fit
the spatial complexity correlation. Thus, adding a spatial
attention module to the classification model can improve
the learning ability in key regions with higher correlation
with malicious behavior and complements the channel
attention, thereby further improving the classification accu-
racy. Finally, the spatial attention map can be generated after
the activation of the Sigmoid function. The spatial attention
module is shown in formula (6), where σ represents the

Identity
x

Weight layer

Weight layer

ReLU

ReLU

F (x)

H (x) = F (x) + x

x

Original residual module

(a)

Identity
x

Weight layer

Weight layer

ReLU

ReLU

F (x)

H (x) = Mcs (F’ (x)) + x

x

Attention layer

F’ (x)

Residual attention module

(b)

Figure 5: Residual module.

Sigmoid

Shared MLP
F∈RH×W×C F'∈RH×W×C

Mc∈RH×W×C
Fmax

C
∈R1×1×C

Favg
C

∈R1×1×C

W1 (W0(Fmax))C

W1 (W0(Favg))C

Figure 6: The operation process of the channel attention module.
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sigmoid function, f 7×7represents the convolution operation,
and the size of the convolution kernel is 7 × 7. FS

avg and

FS
max also represent the matrices generated by the average

pooling and maximum pooling.

MS Fð Þ = σ f 7×7 AvgPool Fð Þ ; MaxPool Fð Þð Þ� �
,

= σ f 7×7 FS
avg ; F

S
max

� �� �
:

ð6Þ

(3) Hybrid Attention Mechanism. The classification model
proposed in this study extracts malicious code features by
fusing channel attention and spatial attention. The channel
attention module focuses on the global feature information
between each channel, and the spatial attention module
focuses on the local feature information within the channel.
The combination of the two forms a hybrid attention mech-
anism, which supports the learning of key features and
further improves classification accuracy. Woo et al. [38]
proved that the channel attention module and the spatial
attention module can be arranged in parallel or sequentially,
but the sequential arrangement has better performance, and
the model performance with the channel attention module
priority is slightly better than the spatial attention module
priority. The reason is that the channel attention focuses
on “what” is critical and meaningful in an input image,
and the spatial attention focuses on “where” is an informa-
tive part, which is complementary to the channel attention.
Therefore, the priority order of the channel attention mod-
ule is used in the proposed classification model.

3.3.3. Classification Model Structure. Based on the above
analysis, the classification model structure that combines
the residual module and hybrid attention mechanism is
shown in Figure 8. Firstly, perform a convolution operation
on the features generated in the previous layer to generate
the input feature F. F passes through the channel attention
module to obtain the importance of each feature channel,
so that the model pays more attention to the channel related

to malicious behavior with high weight and suppresses the
channel with low correlation, so as to obtain the channel
attention feature Mc. The corresponding matrix elements
are multiplied by F and Mc to extract the features from
the spatial dimension, improve the classification model’s
ability to extract local texture features, and obtain the new
feature F ′. Then, the F ′ is used as the input feature of the
spatial attention module to obtain the spatial attention fea-
ture Ms. Ms and F ′ are multiplied by the corresponding
matrix elements to obtain the mixed feature F″. Finally, F
″ is added to the features generated in the previous layer to
generate feature F″′ as the input of the next module.

The whole attention calculation process is shown in for-
mulas (7)–(9). This process strengthens the feature informa-
tion between channels in the global features of the malicious
code and the local location information within the channels,
thereby improving the classification performance.

F ′ =MC Fð Þ ⊗ F, ð7Þ

F″ =MS F ′
� �

⊗ F ′, ð8Þ

F″′ = F″ ⊕ f : ð9Þ

In order to fully learn the image characteristics of mali-
cious code and improve the performance of the attention
module, a hybrid attention module is added after each resid-
ual unit instead of just adding it once. Therefore, when the
next module performs the deep convolution operation, the
features learned by the attention module in the previous
module will be retained to continue learning. Moreover,
although channel attention and spatial attention are
arranged sequentially, they are also connected by identity
mapping, which can prevent information of different dimen-
sions from interfering with each other.

Sigmoid

Conv layerF'∈RH×W×C F''∈RH×W×1MS∈RH×W×1

Favg
S

∈RH×W×1

Fmax
S

∈RH×W×1

f7×7

Figure 7: The operation process of the spatial attention module.

Channel attention
Spatial attention

Previous
conv blocks

Next
conv blocks

conv
F F'

F F' Ms
Mc

F'' F'''
f

Figure 8: Local structure of the classification model.
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4. Experiment and Performance Analysis

4.1. Experimental Preparation

4.1.1. Experimental Dataset. The experimental dataset used
in this study are the BIG2015 dataset (https://www.kaggle
.com/c/malware-classification/data) and the Malimg dataset
(https://www.kaggle.com/keerthicheepurupalli/malimg-
dataset9010). The BIG2015 dataset is a 500G malware file
dataset released by Microsoft on Kaggle during its malware
classification challenge in 2015, which includes assembly
files and bytecode files of more than 20,000 malware samples.
In addition to providing services in Kaggle competitions, the
BIG2015 dataset has become a standard benchmark for
studying malware behavior modeling. So far, it has been cited
by more than 50 research papers. Therefore, this dataset is
used here to verify the performance of the proposed mali-
cious code classification model. In order to facilitate the per-
formance verification, the labeled training dataset which
consists of 10868 malware samples from 9 families is selected
as the experimental dataset, as shown in the upper part of
Table 2, and divided into a training dataset and test dataset
according to the ratio of 8 : 2.

The Malimg dataset is released by the Advanced Visual-
ization Research Project of the Visual Research Laboratory
under the University of California-Santa Barbara. They first
proposed a malicious code visualization method for mali-
cious code detection and classification. In 2011, this team
constructed the Malimg dataset and published the code visu-
alization method to promote software security research. This
dataset contains a total of 9342 samples from 25 family cat-
egories, as shown in the lower part of Table 2. Furthermore,
the Malimg dataset is composed of grayscale images con-
verted from malware bytecode files.

4.1.2. Experimental Settings. The experimental environment
is shown in Table 3.

The stochastic gradient descent (SGD) algorithm with
momentum can effectively suppress the oscillation of SGD
and accelerate the convergence speed. The data distribution
of the model in this paper is relatively uniform and can be
well adapted to the SGD algorithm for model optimization.
Therefore, the experiment uses the SGD algorithm with
momentum optimization to update the model parameters
to improve the computational efficiency, and the momen-
tum is set to 0.9. A total of 2000 epochs are trained, and
the training batch samples are 16. The dynamic attenuation
learning rate is used, and the initial learning rate is set to
0.01, and the classification function is softmax.

Since the classification of malicious code families is a
multiclassification problem, in order to facilitate comparison
with other models and better measure the classification per-
formance, the arithmetic average of the accuracy of various
malicious code families is taken as the standard for perfor-
mance evaluation. Here, TP is defined as the number of
malicious samples classified as malware, TN is defined as
the number of benign samples classified as benign, FP is
the number of benign samples classified as malware, and
FN is the number of malicious samples classified as benign.
Thus, accuracy (Acc) is defined as follows:

Acc = 1
n
〠
n

i=1

TPi + TNi

TPi + FNi + TNi + FPi
: ð10Þ

4.2. Ablation Experiment and Analysis. Two sets of ablation
experiments are conducted to verify the feasibility and effec-
tiveness of the proposed malicious code visualization and
classification module, which includes visualization scheme
validity verification and hybrid attention module perfor-
mance analysis. The comparative experiments all use the
classification accuracy (Acc) as the evaluation index to facil-
itate comparison.

4.2.1. Visualization Scheme Validity Verification. The first
experiment applied the malicious code images obtained
from different visualization schemes to the classic classifica-
tion models and the proposed classification model - Mcs-
ResNet for comparative analysis. The classic classification
models include VGG16, VGG19, and ResNet50 pretraining
models for feature extraction. The KNN model is used as
the classifier, where k is 5. This group of experiments uses
the bytecode files and assembly files provided by the

Table 2: Malware dataset.

Dataset Family
Number

of
samples

Family
Number

of
samples

BIG2015

Gatak 1013 Ramnit 1541

Kelihos_ver1 398 Simda 42

Kelihos_ver3 2942 Tracur 751

Lollipop 2478 Vundo 475

Obfuscator.ACY 1288

Malimg

Adialer.C 125 Lolyda.AA2 184

Agent.FYI 116 Lolyda.AA3 123

Allaple.A 2949 Lolyda.AT 159

Allaple.L 1591 Malex.gen!J 136

Alueron.gen!J 198 Obfuscator.AD 142

Autorun.K 106 Rbot!gen 158

C2LOP.gen!g 200 Skintrim.N 80

C2LOP.P 146 Swizzor.gen!E 128

Dialplatform.B 177 Swizzor.gen!I 132

Dontovo.A 162 VB.AT 408

Fakerean 381 Wintrim.BX 97

Instantaccess 431 Yuner.A 800

Lolyda.AA1 213

Table 3: Experimental equipment environment.

Hardware Description Software Description

GPU GTX1060 6GB CUDA 10.0

CPU Intel i7-7700 cuDNN 7.6.5

RAM 16GB Language Python
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BIG2015 dataset for verification. In addition to using the
proposed visualization scheme to convert it into RGBA
images, only bytecode files or assembly files are converted
into grayscale and RGB images, and the image size is chan-
ged to show the classification effect based on different visu-
alization schemes.

The experimental results are shown in Table 4, wherein
the grayscale image and RGB image generated from the
bytecode file are marked as Byte-gray and Byte-RGB, respec-
tively, and the grayscale image and RGB image generated
from the assembly file are marked as ASM-gray and ASM-
RGB, respectively, and the RGBA images are RGB images
that contain transparency information, and 224 ∗ 224 repre-
sents the image size. And according to the experimental
results, the following conclusions can be drawn:

(1) According to the experimental results of nos. 1-4, the
classification effect of converting bytecode files into
grayscale or RGB images is almost the same, while
the classification effect of converting assembly files
into RGB images is better than that of grayscale
images. For example, in the classification model
ResNet50+KNN5, the accuracy of the bytecode file
converted into the two types of images is 89.17%
and 89.98%, respectively, with a difference of only
0.81%, while the accuracy of RGB image converted
from the assembly file is 2.27% higher than that of
grayscale image. The reason is that the assembly file
size of the same malware code is much larger than
that of the bytecode file. The grayscale image can
effectively represent the bytecode file but not the
assembly file. Therefore, the classification effect of
the bytecode file converted into two kinds of images
is similar, and the classification effect of the assembly
file converted into RGB image is better.

(2) From the comparison of nos. 5-8 and nos. 1-4, it can
be seen that the classification effect of prescaling the
image to a uniform size (224 ∗ 224 pixels) with high
quality is significantly better than that of directly
inputting the original pixel size image. In the classi-
fication model composed of VGG19 and KNN5,
the accuracy on the original images are 87.33%,
88.41%, 90.77%, and 90.19%, while the accuracy on

the corresponding 224 ∗ 224 pixel images improved
by 6.51%, 4.11%, 2.72%, and 4.22%, respectively.
Meanwhile, in the Mcs-ResNet model, it also
improves 7.69%, 1.15%, 7.86%, and 6.66%, respec-
tively, all of which are significantly improved. The
reason is that when the image is scaled in the prepro-
cessing, the parameter of the resize() function is set
to Image.ANTIALIAS. This is an operation for
high-quality image compression, and the original
image features can be preserved to the greatest
extent. But the original image is directly compressed
to 224 ∗ 224 pixel size when the data is loaded. This
is low-quality processing, resulting in the loss of a
large amount of effective information in the original
image and poor classification effect. In addition, the
performance of the Mcs-ResNet model is better than
other models, i.e., in the no. 7 and no. 8 experiments;
its accuracy is 3.49% and 2.29% higher than that of
the VGG19+KNN5 model, respectively.

(3) It can be seen from no.8 and no. 9 that the classifica-
tion effect based on RGBA images is better than
those based on other images. All four models
achieved the best classification accuracy on RGBA
images. Especially, the classification accuracy of the
proposed model is 97.21%, which is 2.95%, 2.8%,
and 2.51% higher than the previous three models
based on RGB images (no.8). It is also 2.52%,
1.98% and 2.09% higher than the previous three
models based RGBA images (no.9). The information
source of RGBA image is composed of bytecode files
and assembly files. Therefore, the information source
is richer, and the amount of information contained is
larger than the grayscale image and RGB image,
which can better describe the features of malicious
code images.

Based on the above analysis, the proposed visualization
scheme is feasible and effective and shows good classification
performance in different classifiers. Thus, when fusing byte-
code files and assembly files, it is a reasonable choice to use
bytecode files as the data source of the transparency channel
and the assembly files as the R, G, and B channel data
sources. This operation can deeply exploit and utilize the

Table 4: Classification effect of different visualization schemes.

No. Image VGG16+KNN5 VGG19+KNN5 ResNet50+KNN5 Mcs-ResNet

1 Byte-gray 88.05 87.33 89.17 89.03

2 Byte-RGB 88.59 88.41 89.98 91.83

3 ASM-gray 89.98 90.77 92.07 89.12

4 ASM-RGB 91.53 90.19 94.34 90.04

5 Byte-gray (224 ∗ 224) 93.64 93.84 93.01 96.72

6 Byte-RGB (224 ∗ 224) 92.54 92.52 91.79 92.98

7 ASM-gray (224 ∗ 224) 93.95 93.49 93.86 96.98

8 ASM-RGB (224 ∗ 224) 94.26 94.41 94.70 96.70

9 RGBA (224 ∗ 224) 94.69 95.23 95.12 97.21
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feature information of malicious code images and effectively
support the accurate classification of malicious codes.

4.2.2. Hybrid Attention Module Performance Analysis. In
order to verify the classification performance of different
attention mechanisms on malicious code image classifica-
tion, four sets of comparative experiments are conducted
here, including the ResNet model without an embedded
attention module; the ResNet model with only the channel
attention module embedded (Mc-ResNet); the ResNet
model with only the spatial attention module embedded
(Ms-ResNet); and the ResNet model with the hybrid atten-
tion module (Mcs-ResNet), as shown in Figure 9.

Except for the embedded attention module, the other
model parameters are consistent with those shown in Sec-
tion 4.1.2. The experimental results are shown in Table 5.
It can be seen that:

(1) The Acc value of the ResNet model without the
attention module is significantly lower than the other
three residual neural network models embedded
with the attention module. The ResNet model has
the lowest accuracy rate on the Byte-Gray dataset
of 78.32%, and the average accuracy rate is 87.39%,
which is the lowest among the four models, and
3.7%, 4.87%, and 6.01% lower than the other three
models, respectively. It also works best on RGBA
images in each dataset, with an accuracy rate of

95.14%, and it is still 0.64%, 1.95%, and 2.07% lower
than other models.

(2) The average Acc value of the Mc-ResNet model and
the Ms-ResNet model is 3.7% and 4.87% higher than
that of the ResNet model. The experiments show

Conv F'''

ResNet

(a)

Channel attention

Conv
F

F Mc

F' F''

Mc-ResNet

(b)

Ms-ResNet

Spatial attention

Conv
F

F Ms
F' F''

(c)

Mcs-ResNet

Channel attention
Spatial attention

Conv
F F'

F
F' Ms

Mc

F'' F'''

attention
p

F'
Mc

(d)

Figure 9: Four models with different attention module structures.

Table 5: Classification results under different attention modules.

No. Image ResNet
Mc-

ResNet
Ms-

ResNet
Mcs-
ResNet

1 Byte-gray 78.32 85.96 88.51 89.03

2 Byte-RGB 80.44 87.15 88.98 91.83

3 ASM-gray 79.38 85.08 87.42 89.12

4 ASM-RGB 85.49 88.11 87.97 90.04

5
Byte-gray
(224 ∗ 224) 94.27 95.78 96.58 96.72

6
Byte-RGB
(224 ∗ 224) 86.88 89.64 92.21 92.98

7
ASM-gray
(224∗224) 95.05 96.43 96.38 96.98

8
ASM-RGB
(224 ∗ 224) 91.54 95.88 95.19 96.70

9
RGBA

(224 ∗ 224) 95.14 95.78 97.09 97.21

Average 87.39 91.09 92.26 93.40
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that the introduction of the attention mechanism is
helpful to the extraction of key image features and
can effectively improve classification accuracy. Simi-
larly, the above two models also work best on RGBA
images.

(3) The average Acc value of the proposed Mcs-ResNet
embedded with the hybrid attention module is
6.01% higher than the ResNet model. Moreover, it
is 2.31% and 1.14% higher than the Mc-ResNet
model and Ms-ResNet model which are embedded
with a single attention module. In general, Mcs-
ResNet, which embeds both the channel attention
module and spatial attention module, achieves the
best classification performance even on different
visualization schemes. Especially on RGBA images,
its classification accuracy is still the best with an
accuracy rate of 97.21%. As shown in the 9th exper-
iment, when using RGBA images, the model after
embedding hybrid attention improves the classifica-
tion accuracy by 2.07% compared to the model with
only residual network. Moreover, the classification
accuracy is also improved compared with the model
embeds channel or spatial attention alone. This fur-
ther verifies the effectiveness of the proposed mali-
cious code visualization scheme.

The running times of the above four models are shown
in Table 6. It can be seen that with the introduction of
channel attention and spatial attention mechanisms, the
training time and prediction time of the model are longer.
But given the improvement in accuracy, the increase in pre-
diction time is small and acceptable within the expected
range. In addition, the training time on the two datasets
are relatively close, 21.7059 seconds and 22.3302 seconds,
while the prediction time are 13.5375 seconds and 5.7758
seconds, respectively, and the residual network model
parameter scale is close to 3.8 billion FLOPs. Therefore,
the experimental results show that the proposed model
can achieve better prediction results within a reasonable
running time.

Based on the above analysis, the attention mechanism
can improve the classification effect, and different attention
mechanisms have different effects on the model. Especially,
the introduction of the hybrid attention mechanism in the

deep residual network can effectively improve the classifica-
tion accuracy. The reason is that a single attention mecha-
nism is not enough to fully characterize key features. If
channel attention is ignored, the ability to extract global tex-
ture features will suffer. If the spatial attention is ignored, it
will have an impact on local texture feature learning, thus
ignoring the local texture information. The hybrid attention
mechanism can learn different weights from the two dimen-
sions of channel and spatial, extract the deep texture feature
of malicious code images from the whole and local perspec-
tive, and strengthen the model’s ability to extract key fea-
tures. Overall, the fusion of channel and spatial attention
mechanism enables the deep features of malicious code
images to be fully represented, enabling the classification
model to have better classification accuracy for different
malicious families.

4.3. Overall Performance Experiment and Analysis. In this
section, two groups of experiments are conducted to analyze
the overall performance of the model: (1) performance anal-
ysis on different datasets: verify the general applicability of
the proposed classification model on different experimental
datasets; (2) performance comparison analysis: compare
the proposed scheme with other malicious code classifica-
tion schemes to verify the superiority of the proposed
scheme.

4.3.1. Performance Analysis on Different Datasets. In order
to verify the general applicability of the proposed classifi-
cation model, the BIG2015 dataset and the Malimg dataset
are selected for comparative experiments, and the experi-
mental results are shown in Figure 10 and Table 7. The
BIG2015 dataset provides both bytecode files and assembly
files that can be directly used in the proposed classification
model, while the Malimg dataset provides the image for-
mat of the malicious code after gray-scale processing.
Since the malicious code file is truncated and other oper-
ations that cause information loss, reverse processing can
be performed to completely restore the image file to a
bytecode file. And then use the IDA PRO disassembly tool
(https://www.hex-rays.com/products/ida/) to analyze the
bytecode files to obtain the corresponding assembly file
and finally use the Mcs-ResNet model to classify malicious
code.

It can be concluded from the experimental results that
when the epoch is 250, the validation accuracy of the
BIG2015 dataset is 81.13%, and the validation accuracy of
the Malimg dataset is 67.19%, so in the initial stage of train-
ing, the optimization of the training effect on the BIG2015
dataset is slightly faster. When the epoch is 500, the valida-
tion accuracy of these two datasets reaches 89.53% and
90.25%, respectively; now, the prediction effect on the Mal-
img dataset is slightly better. And both datasets can reach
stability at 1250 epochs, and the accuracy is basically close
to the maximum. Finally, it achieved an average classifica-
tion accuracy of 97.21% on the BIG2015 dataset and
98.06% on the Malimg dataset.

In addition to the accuracy rate, precision, recall, F1
-score, and confusion matrix are also used to evaluate the

Table 6: Running time (s) under different attention modules.

Dataset Model Training time Prediction time

BIG2015

ResNet 15.1398 10.2272

Mc-ResNet 19.3584 12.0378

Ms-ResNet 18.5872 11.3385

Mcs-ResNet 21.7059 13.5375

Malimg

ResNet 16.4576 3.9875

Mc-ResNet 20.5867 4.7621

Ms-ResNet 19.8541 4.5753

Mcs-ResNet 22.3302 5.7758
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model performance; the formula and experimental results
are shown below (Table 8).

Precision =
1
n
〠
n

i=1

TPi

TPi + FPi
, ð11Þ

Recall =
1
n
〠
n

i=1

TPi

TPi + FNi
, ð12Þ

F1 score = 2 ×
Precision × Recall
Precision + Recall

: ð13Þ

It can be seen that the proposed model performs well
under different evaluation metrics. The number of malicious
code families Skintrim.N and Swizzor.gen!E in Malimg data-
set is only 80 and 128, and the classification effect on these
two families is unstable and is largely affected by the data
imbalance. Data imbalance is not the focus of this paper
and will be studied in the follow-up work. In summary, the
proposed classification model shows good generalization
performance and is not limited to a specific dataset, which
can achieve better classification results on different datasets
while ensuring the classification efficiency (Figure 11).

4.3.2. Performance Comparison of Malicious Code
Classification Schemes. The last set of experiments compares
the proposed Mcs-ResNet model with several models that
currently perform well in malicious code classification to
verify its classification performance. The experimental
results on two datasets are shown in Table 9. Among them,
Nataraj et al. [13] convert the bytecode file into a grayscale
image, extract the GIST features, and use the KNN algo-
rithm for classification; Wang et al. [16] convert the byte-
code file into an RGB image and use VGGNet model for

classification; Cui et al. [43] convert the malicious code into
grayscale images and use CNN for classification; Cakir and
Dogdu [25] use the assembly file of malicious code, extract
features based on Word2Vec, and then, use Gradient Boost-
ing Machine (GBM) for classification; Ma et al. [39] use both
bytecode files and assembly files of malicious codes and clas-
sify them based on SVM.

It can be seen from Table 9 that the proposed Mcs-
ResNet model reaches 97.21% and 98.06% classification
accuracy on the two datasets, respectively. Compared with
other methods that only use .bytes files, such as Nataraj
et al. [13] and Cui et al. [43], the classification accuracy rate
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Figure 10: The performance of Mcs-ResNet on different datasets.

Table 7: Accuracy in different training epochs.

Epoch
BIG2015 Malimg

Train Valid Train Valid

250 87.5 81.13 75 67.19

500 95.75 89.53 93.75 90.25

750 85.32 93.35 95.32 94.07

1000 93.35 95.28 95.35 95.04

1250 96.77 96.11 99.07 97.14

1500 99.11 96.75 99.01 97.63

1750 97.49 97.21 98.49 97.95

2000 98.79 97.21 99.79 98.06

Table 8: The result of precision, recall, and F1-score.

Precision Recall F1-score
BIG2015 96.55 96.24 96.39

Malimg 97.11 96.93 97.02
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is increased by 1~3%. Compared with methods that only use
.asm files, such as Cakir nad Dogdu [25], the classification
accuracy rate is improved by 1.07%. Therefore, the experi-
mental results of using both .byte files and .asm files are
better than using only one of them, indicating that more file
types can provide more information and further improve the
subsequent classification accuracy. And compared with the
Ma et al. [39] method that uses both .bytes files and .asm

files, the classification accuracy rate is also improved by
1.12%. Ma et al. only use the global attention mechanism
to extract weights of each assembly statement, without
considering the key channels and regions of intermediate
feature maps of the classification model. Therefore, the
hybrid attention module composed of channel attention
and spatial attention outperforms the global attention mech-
anism used by Ma et al. Overall, the proposed method has
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Figure 11: Confusion matrix of different datasets.
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certain advantages in classification accuracy on different
datasets over other malicious code classification methods.
The reason is that this method uses both bytecode files and
assembly files to form RGBA images to obtain more mali-
cious code information, and the proposed hybrid attention
mechanism pays more attention to the extraction of key
regions and local features, which further improves the classi-
fication accuracy.

5. Conclusion and Future Work

Edge security is an important guarantee for edge computing,
and it is of great significance to classify malicious code
quickly and accurately in the entire life cycle of edge com-
puting. Therefore, a malicious code visualization classifica-
tion method based on a deep residual network and hybrid
attention mechanism for edge security is proposed to effec-
tively support the detection and accurate classification of
malicious code. The main contributions are as follows:

(1) A visualization scheme that converts malicious code
into RGBA images is proposed to improve the deep
feature representation ability of malicious code
images. This scheme effectively integrates the byte-
code file and assembly file of the malware, deeply
exploits and utilizes the image feature information,
and solves the problem of a single source of code
images in other visualization solutions without add-
ing additional computational complexity

(2) A classification model - Mcs-ResNet that combines a
hybrid attention mechanism and deep residual net-
work is proposed to accurately classify malicious
code. Due to its powerful feature extraction capabil-
ity and shortcut connection architecture, the deep
residual network improves classification accuracy
while alleviating the problem of model degradation
and gradient disappearance. The hybrid attention
mechanism including channel and spatial attention
can effectively extract the key feature information
of malicious code images. The combination of the
two can further improve the classification accuracy
and effectiveness

The experimental results on the BIG2015 and Malimg
datasets demonstrate the feasibility and effectiveness of the

proposed visualization scheme and classification model.
Compared with the existing malicious code classification
methods, the proposed model performs better in classifica-
tion accuracy and generalization performance. Future work
will start with the serialization of malicious code. Consider
associating the bytecode file of the malware with the assem-
bly file and extracting the features of the sequence informa-
tion in the vertical direction and the associated information
in the horizontal direction to fully utilize the malicious code
information. How to better combine the attention mecha-
nism with malicious code classification is also the focus of
the future work.

Data Availability

The datasets used in the experimental part include the
BIG2015 dataset and the Malimg dataset, from the following
websites: https://www.kaggle.com/c/malware-classification/
data and https://www.kaggle.com/keerthicheepurupalli/
malimg-dataset9010.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

The authors appreciate the support from the Zhejiang Provin-
cial Natural Science Foundation of China (LY20F020015
and LY21F020015), Zhejiang Province Key R&D Project
(2021C02012), the National Science Foundation of China
(61902345, 61972121, 61902099, 61702517, and 61802101),
the Defense Industrial Technology Development Program
(no. JCKY2019415C001), and the Open Project Program of
the State Key Lab of CAD&CG (grant no. 2109), Zhejiang
University.

References

[1] X. Luo, Q. Qin, X. Gong, and M. Xue, “A survey of adversarial
attacks on wireless communications,” Champions, vol. 437,
pp. 83–91, 2022.

[2] Z. Guo, Y. Lu, H. Tian, J. Zuo, and H. Lu, “A security evalua-
tion model for multi-source heterogeneous systems based on
IOT and edge computing,” Cluster Computing, vol. 24, 2021.

[3] Y. Wang, G. Yang, T. Li, L. Zhang, and X. Yu, “Optimal mixed
block withholding attacks based on reinforcement learning,”
International Journal of Intelligent Systems, vol. 35, no. 12,
pp. 2032–2048, 2020.

[4] Wikipedia org, “Wikipedia’s official website,” 2022, https://en
.wikipedia.org/wiki/WannaCry_ransomware_attack.

[5] S. Shen, K. Zhang, Y. Zhou, and S. Ci, “Security in edge-
assisted Internet of Things: challenges and solutions,” Science
China Information Sciences, vol. 63, no. 12, article 220302,
2020.

[6] S. Greengard, “Cybersecurity gets smart,” Communications of
the ACM, vol. 59, no. 5, pp. 29–31, 2016.

[7] P. Seshagiri, A. Vazhayil, and P. Sriram, “AMA: static code
analysis of web page for the detection of malicious scripts,”
Procedia Computer Science, vol. 93, pp. 768–773, 2016.

Table 9: Comparative experimental results.

Method Files used Dataset Accuracy

Nataraj et al. [13] .bytes Malimg 97.18

Wang et al. [16] .bytes Malimg 96.16

Cui et al. [43] .bytes Malimg 94.50

Cakir and Dogdu [25] .asm BIG2015 96.14

Ma et al. [39] .bytes+.asm BIG2015 96.09

Mcs-ResNet (ours) .bytes+.asm BIG2015 97.21

Mcs-ResNet (ours) .bytes+.asm Malimg 98.06

17Wireless Communications and Mobile Computing

https://www.kaggle.com/c/malware-classification/data
https://www.kaggle.com/c/malware-classification/data
https://www.kaggle.com/keerthicheepurupalli/malimg-dataset9010
https://www.kaggle.com/keerthicheepurupalli/malimg-dataset9010
https://en.wikipedia.org/wiki/WannaCry_ransomware_attack
https://en.wikipedia.org/wiki/WannaCry_ransomware_attack


[8] T. Shibahara, T. Yagi, M. Akiyama, D. Chiba, and T. Yada,
“Efficient dynamic malware analysis based on network behav-
ior using deep learning,” in 2016 IEEE Global Communications
Conference (GLOBECOM), pp. 1–7, Washington, DC, USA,
2016.

[9] J. Cheng, J. Zheng, and X. Yu, “An ensemble framework for
interpretable malicious code detection,” International Journal
of Intelligent Systems, vol. 36, 2020.

[10] D. Vasan, M. Alazab, S. Wassan, B. Safaei, and Q. Zheng,
“Image-based malware classification using ensemble of cnn
architectures (imcec),” Computers & Security, vol. 92, article
101748, 2020.

[11] S. Ni, Q. Qian, and R. Zhang, “Malware identification using
visualization images and deep learning,” Computers & Secu-
rity, vol. 77, pp. 871–885, 2018.

[12] G. J. Conti, E. Dean, M. Sinda, and B. Sangster, “Visual
reverse engineering of binary and data files,” in Interna-
tional Workshop on Visualization for Computer Security, J.
R. Goodall, G. Conti, and K. L. Ma, Eds., vol. 5210 of Lec-
ture Notes in Computer Science, pp. 1–17, Springer, Berlin,
Heidelberg, 2008.

[13] L. Nataraj, S. Karthikeyan, G. Jacob, and B. S. Manjunath,
“Malware images: visualization and automatic classification,”
in Proceedings of the 8th international symposium on visualiza-
tion for cyber security, pp. 1–7, Pittsburgh, Pennsylvania, USA,
2011.

[14] L. Nataraj and B. S. Manjunath, “SPAM: signal processing to
analyze malware [applications corner],” IEEE Signal Processing
Magazine, vol. 33, no. 2, pp. 105–117, 2016.

[15] D. Kornish, J. Geary, V. Sansing, S. Ezekiel, L. Pearlstein, and
L. Njilla, “Malware classification using deep convolutional neu-
ral networks,” in 2018 IEEE Applied Imagery Pattern Recogni-
tion Workshop (AIPR), pp. 1–6, Washington, DC, USA, 2018.

[16] B. Wang, H. H. Cai, and Y. Su, “Classification of malicious
code variants based on VGGNet,” Journal of Computer Appli-
cations, vol. 40, no. 1, pp. 162–167, 2020.

[17] B. Sun, P. Zhang, M. Y. Cheng, X. T. Li, and Q. Li, “Malware
detection method based on enhanced code images,” Journal
of Tsinghua University (Science and Technology), vol. 60,
no. 5, pp. 386–392, 2020.

[18] T. Chen, B. Xiang, L. V. Mingqi, B. Chen, and X. Jiang,
“Android malware detection method based on byte-code image
and deep learning,” Telecommunications Science, vol. 35, pp. 9–
17, 2019.

[19] D. Hong, N. Yokoya, J. Chanussot, and X. X. Zhu, “An aug-
mented linear mixing model to address spectral variability
for hyperspectral unmixing,” IEEE Transactions on Image Pro-
cessing, vol. 28, no. 4, pp. 1923–1938, 2018.

[20] H. Gao, W. Huang, and Y. Duan, “The cloud-edge-based
dynamic reconfiguration to service workflow for mobile ecom-
merce environments,” ACM Transactions on Internet Technol-
ogy (TOIT), vol. 21, pp. 1–23, 2021.

[21] Y. Yin, Z. Cao, Y. Xu, H. Gao, and Z. Mai, “QoS prediction for
service recommendation with features learning in mobile edge
computing environment,” IEEE Transactions on Cognitive
Communications and Networking, vol. 6, no. 4, pp. 1136–
1145, 2020.

[22] F. Qin, N. Gao, Y. Peng, Z. Wu, S. Shen, and A. Grudtsin,
“Fine-grained leukocyte classification with deep residual learn-
ing for microscopic images,” Computer Methods and Programs
in Biomedicine, vol. 162, pp. 243–252, 2018.

[23] Y. Peng and B. L. Lu, “Discriminative extreme learning
machine with supervised sparsity preserving for image classifi-
cation,” Neurocomputing, vol. 261, pp. 242–252, 2017.

[24] G. Pitolli, G. Laurenza, L. Aniello, L. Querzoni, and R. Baldoni,
“MalFamAware: automatic family identification and malware
classification through online clustering,” International Journal
of Information Security, vol. 20, no. 3, pp. 371–386, 2021.

[25] B. Cakir and E. Dogdu, “Malware classification using deep
learning methods,” in Proceedings of the ACMSE 2018 Confer-
ence, pp. 1–5, Richmond, Kentucky, 2018.

[26] T. N. Turnip, A. Situmorang, A. Lumbantobing, J. Marpaung,
and S. I. Situmeang, “Android malware classification based on
permission categories using extreme gradient boosting,” in
Proceedings of the 5th International Conference on Sustainable
Information Engineering and Technology, pp. 190–194,
Malang, Indonesia, 2020.

[27] Z. Liu, P. Qian, X. Wang, Y. Zhuang, L. Qiu, and X. Wang,
“Combining graph neural networks with expert knowledge
for smart contract vulnerability detection,” in IEEE Transac-
tions on Knowledge and Data Engineering, IEEE Xplore,
2021.

[28] S. Choi, “Malicious powershell detection using graph convo-
lution network,” Applied Sciences, vol. 11, no. 14, p. 6429,
2021.

[29] H. Wu, X. Li, A. T. Liu, Z. Wu, and H. Y. Lee, “Adversarial
defense for automatic speaker verification by cascaded self-
supervised learning models,” in ICASSP 2021-2021 IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 6718–6722, Toronto, ON, Canada, 2021.

[30] D. Hong, L. Gao, J. Yao, N. Yokoya, and B. Zhang, “Endmem-
ber-Guided Unmixing Network (EGU-Net): A General Deep
Learning Framework for Self-Supervised Hyperspectral
Unmixing,” IEEE Transactions on Neural Networks and
Learning Systems, vol. 32, pp. 1–14, 2021.

[31] G. Cheng, Y. Chen, S. Deng, H. Gao, and J. Yin, “A blockchain-
based mutual authentication scheme for collaborative edge
computing,” IEEE Transactions on Computational Social Sys-
tems, vol. 9, no. 1, pp. 146–158, 2021.

[32] H. Gao, X. Qin, R. J. D. Barroso, W. Hussain, Y. Xu, and
Y. Yin, “Collaborative learning-based industrial IoT API rec-
ommendation for software-defined devices: the implicit
knowledge discovery perspective,” IEEE Transactions on
Emerging Topics in Computational Intelligence, vol. 6, no. 1,
pp. 66–76, 2022.

[33] F. T. Jaigirdar, C. Rudolph, and C. Bain, “Prov-IoT: a security-
aware IoT provenance model,” in 2020 IEEE 19th Interna-
tional Conference on Trust, Security and Privacy in Computing
and Communications (TrustCom), pp. 1360–1367, Guang-
zhou, China, 2020.

[34] C. Zhou, Y. Yu, S. Yang, and H. Xu, “Intelligent immunity
based security defense system for multi-access edge computing
network,” China Communications, vol. 18, no. 1, pp. 100–107,
2021.

[35] T. Kim, B. Kang, M. Rho, S. Sezer, and E. G. Im, “A multi-
modal deep learning method for android malware detection
using various features,” IEEE Transactions on Information
Forensics and Security, vol. 14, no. 3, pp. 773–788, 2019.

[36] B. Vasu and N. Pari, “Combining multimodal DNN and Sig-
Pid technique for detecting malicious android apps,” in 2019
11th International Conference on Advanced Computing
(ICoAC), pp. 289–294, Chennai, India, 2019.

18 Wireless Communications and Mobile Computing



[37] L. Ghouti and M. Imam, “Malware classification using com-
pact image features and multiclass support vector machines,”
IET Information Security, vol. 14, no. 4, pp. 419–429, 2020.

[38] S. Woo, J. Park, J. Y. Lee, and I. S. Kweon, “Cbam: convolu-
tional block attention module,” in Proceedings of the European
conference on computer vision (ECCV), pp. 3–19, Munich, Ger-
many, 2018.

[39] X. Ma, S. Guo, H. Li et al., “How to make attention mecha-
nisms more practical in malware classification,” IEEE Access,
vol. 7, pp. 155270–155280, 2019.

[40] H. Yakura, S. Shinozaki, R. Nishimura, Y. Oyama, and
J. Sakuma, “Neural malware analysis with attention mecha-
nism,” Computers & Security, vol. 87, article 101592, 2019.

[41] C. Wang, Z. Zhao, F. Wang, and Q. Li, “A novel malware
detection and family classification scheme for IoT based on
DEAM and DenseNet,” Security and Communication Net-
works, vol. 2021, Article ID 6658842, 16 pages, 2021.

[42] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 770–778, Las
Vegas, NV, USA, 2016.

[43] Z. Cui, F. Xue, X. Cai, Y. Cao, G. G. Wang, and J. Chen,
“Detection of malicious code variants based on deep learning,”
IEEE Transactions on Industrial Informatics, vol. 14, no. 7,
pp. 3187–3196, 2018.

19Wireless Communications and Mobile Computing


	Malicious Code Classification Method Based on Deep Residual Network and Hybrid Attention Mechanism for Edge Security
	1. Introduction
	2. Related Work
	3. Malicious Code Visual Classification Method
	3.1. Method Overview
	3.2. Malicious Code Visualization Module
	3.2.1. Visual Problem Analysis
	3.2.2. RGBA Image Generation

	3.3. Malicious Code Classification Module
	3.3.1. Residual Module
	3.3.2. Hybrid Attention Module
	3.3.3. Classification Model Structure


	4. Experiment and Performance Analysis
	4.1. Experimental Preparation
	4.1.1. Experimental Dataset
	4.1.2. Experimental Settings

	4.2. Ablation Experiment and Analysis
	4.2.1. Visualization Scheme Validity Verification
	4.2.2. Hybrid Attention Module Performance Analysis

	4.3. Overall Performance Experiment and Analysis
	4.3.1. Performance Analysis on Different Datasets
	4.3.2. Performance Comparison of Malicious Code Classification Schemes


	5. Conclusion and Future Work
	Data Availability
	Conflicts of Interest
	Acknowledgments

