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Authenticated key exchange (AKE) is a classic problem in cryptography, where two participants want to exchange their secret keys
without being guessed feasibly. Recently, there has been renewed interest in this problem in the smart city since millions of devices
and servers in this environment may involve the problem. New challenges are raised at the same time. One of the greatest
challenges is how to facilitate communication between participants. Traditionally, a trusted third party (TTP) is needed to
provide a trusted way to exchange keys. However, devices in the smart city environment are usually distributed and trustless.
A central trusted mechanism is not suitable for many applications in it. The second challenge is that the requirements in the
applications of the smart city are diverse. Finally, a practical AKE protocol should be efficient and easy to integrate. To address
these challenges, we provide a fully decentralized AKE protocol framework called DAKEs. To the best of our knowledge,
DAKEs enjoy the most comprehensive security properties to fulfil diverse requirements. The decentralization of DAKEs is
captured by using the blockchain while avoiding the availability problem of other similar blockchain-based schemes. Our test
is conducted in a real-world test network of Ethereum. The result shows that DAKEs are efficient and at a low cost.

1. Introduction

As a classic cryptography problem, authenticated key exchange
(AKE) is prescribed for sharing secret keys over insecure chan-
nel [1] and providing a way to authenticate the identity of the
participants. Recently, there has been renewed interest in this
topic as the concept of “Smart City” goes viral [2]. “Smart City”
introduces a large number of participants (devices and servers,
etc.) sharing data with each other. AKE protocol as a basic
cryptography protocol can be used to secure the system for
authentication, access control and data confidentiality, etc.
Moreover, participants in a smart city are usually distributed
and mutual untrusted. The trust and consensus for a digital
economy activity in a smart city need to be more transparent.
Thus, new challenges are raised in designing an AKE protocol
fitting for a smart city.

One of the greatest challenges is how to facilitate commu-
nication between participants in a trustless environment.
Traditionally, the two participants in an AKE protocol should

build their communication under the assistance of a trusted
third party (TTP). The TTP plays a role to manage the digital
identities of the participants who have no prior relationship
[3]. The trust and consensus are based on a central party. How-
ever, in a trustless and transparent environment like a smart
city, a distributed trust paradigm is essential for a wide range
of applications. In 2015, Patrick McCorry et al. [4] presented
an AKE protocol via Bitcoin [5]. As an early study to realize
AKE without any TTP, the paper showed us the potential
power of blockchain technology. Thereafter, many researchers
tried to explore blockchain as a facility of decentralized trust in
a smart city. In 2020, Yavari et al. [6] proposed a blockchain-
based authentication protocol for secure communication
between IoT equipment. In 2022, privacy-preserving problem
has become an important component in secure communica-
tion [7] [8].

Meanwhile, the capacity and availability limitation in
blockchain technology becomes a primary concern, especially
in Bitcoin-alike systems [9]. A long time might be taken to
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wait for accepting a transaction in these systems. Yifei Hu et al.
[10] provided a way to construct a specialized blockchain for
building AKE protocols. Apparently, this is too expensive for
constructing a basic protocol. Perhaps, a more practical way
to design an authenticated key exchange protocol is to pro-
gram on the blockchain instead of constructing transactions
directly. Ethereum smart contract [11] provides such an
approach. Indeed, there have been thousands of decentralized
applications built via the Ethereum smart contracts. Recently,
Robert Muth et al. [12] proposed a Diffie-Hellman Key
Exchange with Smart Contracts. But the security requirements
in the applications of the smart city can be diverse. And the
demands for AKE protocols in different scenarios may be dis-
tinct. A considerate AKE protocol should take all the security
properties into account. The smartDHX in [12] only fulfills a
static security property. Chen et al. [13] provided the first
post-quantum blockchain construction for securing a smart
city. However, they only design the theoretical protocol but
supply no real deployment.

To address these essential problems, we present DAKEs,
a decentralized authenticated key exchange protocol frame-
work via Ethereum smart contract. Specifically, our contri-
butions are summarized as follows:

(i) We have proposed a blockchain-based decentralized
authenticated key exchange protocol design frame-
work and implemented five protocols with different
security properties. The proposed framework called
DAKEs provides a practical method to design fully
decentralized authenticated key exchange protocols
which avoid the problem of availability when using
the Bitcoin-alike blockchains

(ii) To the best of our knowledge, the implemented proto-
cols are the first work to take most key security prop-
erties in AKE into account. Not only DAKEs is fully
decentralized, but also can be used in various applica-
tions which may have different security requirements

(iii) We conduct experiments in a live testnet of the
Ethereum blockchain. The experiment shows that
the protocols in DAKEs are effective and low-cost.
We also gave a comprehensive comparison of the
protocols, and anyone who wants to use a decentra-
lized authenticated key exchange protocol can
choose a suitable protocol in DAKEs according to
his/her requirements

The rest of this paper is arranged as follows. In Section 2,
we introduce the necessary preliminary knowledge. In Sec-
tion 3, we give system model and the detail design of our
framework. In Section 5, we provide the implementation of
our protocol based on the testnet of the Ethereum block-
chain. Finally, in Section 6, we draw a brief conclusion.

2. Preliminaries

2.1. Authenticated Key Exchange (AKE). Key exchange (KE)
may happen when two participants want to build a secure
channel to communicate with each other. To build a secure

channel, they could use a common secret key and encrypt all
the messages. Here comes the problem: How to exchange the
secret key over an insecure channel? Moreover, the two par-
ticipants should know the identity of the counterparty at the
end of a key exchange protocol. We call this kind of protocol
as authenticated key exchange (AKE) protocols [14].

Formally, suppose there are two users O and C who want
to exchange a secret key called a session key, a secure AKE
protocol should at least fulfil two requirements: Firstly, pro-
viding a way for the originator O to generate a random ses-
sion key effectively and the key can only be known to the
counterparty C eventually. Secondly, following the protocol,
both O and C will know which person they are exchanging
the session key with at the end of the protocol.

2.2. Threat Model. In our protocols, the certificates of the
users and public security parameters are written on the
blockchain. Firstly, we assume that there is an adversary
who can eavesdrop on the data transferred between the
two participants since the data on a public blockchain can
be analyzed by anyone. The data on the blockchain is
tamper-proof and traceable due to the feature of blockchain
technology. However, we shall assume the adversary can
delay or block the transactions since the adversary may be
a powerful node of the blockchain and participate in the
consensus. Under these assumptions, we then give the
potential threats as follows:

(1) Man-in-the-Middle Attack [15]. In this type of
attack, the adversary is able to recover a session key
by blocking the message transferred between the
two participants. To make this clear, we illustrate
an insecure protocol as an example. Suppose a user
O as the originator of the protocol want to exchange
a session key with a user C as the counterparty of the
protocol. In step one, O sends a random number r
and his/her certificate CertO to C. In step two, C
query the certificate of O and verify its validity.
Then, C sign on the data δ≔ SigCðr, idOÞ and
encrypt the session key data c≔ EncCðk, idCÞ by C’s
public key. Eventually, C sends ðδ, c, CertCÞ to O.
To attack this, the adversary R as a middle man
can block the message which C send to O in step
two and replace c with c′ ≔ EncCðk′, idRÞ. At the
end of the protocol, O will get a session key k′, which
is generated by the adversary

(2) Replay Attack [16]. In this type of attack, the adver-
sary attacks the protocol by re-using the old infor-
mation. Similarly, we give an insecure protocol
example here. In step one, O only sends his/her cer-
tificate CertO to C without the random number r. In
step two, C sends ðc≔ EncCðk, idCÞ, δ≔ SigCðc, idOÞ
, CertCÞ to O. Then, the adversary can use a replay
attack like this. First, the adversary collect the mes-
sage between O and C, and record ðc, δ, CertCÞ.
Later, the adversary starts a new exchange with O
and sends ðc, δ, CertCÞ recorded before. Suppose a
stream cypher is used later to encrypt the message
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with the shared key k. The adversary then gets two
ciphertexts from O which encrypts two different
messages m1 and m2. Let O encrypt c1 ≔m1 ⊕ GðkÞ
and c2 ≔m2 ⊕ GðkÞ in the stream cipher. The adver-
sary who gets c1 and c2 can compute Δ≔ c1 ⊕ c2 =
m1 ⊕m2. Redundancy in English text makes the
adversary able to recover the two messages

(3) Identity misbinding attack [17]. In this type of attack,
the adversary tries to mislead the participants into
thinking they are talking to the expected counterparty.
However, they are talking to the adversary indeed.
Again, we give an insecure protocol example. In step
one, O sends r, CertO to C. In step two, C sends c≔
EncCðk, idCÞ, δ≔ SigCðr, cÞ, CertC to O. The adver-
sary can attack this protocol like this. First, the adver-
sary blocks the message which O sends to C in step
one and sends r, CertR to C. Then, the adversary will
get c, δ, CertC from C. And he then delivers c, δ, Cer
tC to O. Finally, O will deem that C is his/her counter-
part while C is talking to another originator R

(4) Chosen ciphertext attack [18]. An encryption
scheme will usually be used in an AKE protocol.
There is a kind of attack on encryption schemes
called chosen ciphertext attack (CCA). In a CCA,
the adversary is supposed to be able to choose some
ciphertexts to ask for the corresponding decryptions.
But there is a restriction that the adversary cannot
ask for the plaintexts of any ciphertexts. If an
encryption scheme used in an AKE protocol cannot
resist CCA, it may suffer a number of potential
threats. For instance, suppose a stream cipher is used
in an AKE protocol. Firstly, the adversary gets a
ciphertext c which is encrypted by a unknown string
m and a secret key k, c =m ⊕GðkÞ. Then, the adver-
sary can construct a ciphertext c′ = c ⊕ Δ, where Δ
can be an arbitrary string. c′ can be taken as a legal
ciphertext because the decryptor will decrypt it as c
′ ⊕GðkÞ and c′ ⊕GðkÞ =m ⊕GðkÞ ⊕ Δ ⊕GðkÞ =m ⊕
Δ. Now assume the length of k is n-bit, m = kkidC
and Δ≔ 0nkðidC ⊕ idRÞ. The adversary can easily
construct an encryption c′ = kkidR from c = kkidC

2.3. Security Properties. In the part of the threat model, we
have already hinted at some of the properties we want for a
secure AKE protocol. Let us try to make these just a bit more
precise in this part. First of all, we suppose in an AKE protocol;
the keys for authenticating an identity of a participant may be
used for a long time. For example, a public key for a certificate
Cert and its corresponding secret key may be used quite the
long term; we call this kind of key a long-term key. Contrarily,
the session key exchanged by the participants may be used for
just a short time. And we call this kind of key the short-term
key. The security properties of an AKE protocol can be dis-
tinct. And we give a comprehensive consideration of these
security properties in our protocols. One can choose a proper
security level for his own application. In general, there are six
security properties [19] overall as follows:

(i) Static secrecy. This is the weakest security property
where we assume that an honest participant’s
long-term secret key can never be compromised by
the adversary. However, we assume that the adver-
sary can query a session key from an instance of
an AKE protocol except the one he/she tries to com-
promise. For a new instance, the session key k of an
AKE protocol should be indistinguishable from a
random key in the view of the adversary. Then, we
say the protocol has a static secrecy property

(ii) Perfect forward secrecy. This is a stronger security
notation than static secrecy where we assume an
honest participant’s long-term secret key can be com-
promised by the adversary. However, before the par-
ticipant’s long-term key is compromised, the session
keys generated in the previous instances remain secret
and cannot be distinguished from a random key.
Although the protocol is no longer safe after the
adversary gets a long-term key, this security property
can limit the damage to the time after that

(iii) Explicit authenticity. This is a security property
where the two participants O and C should be sure
that they are talking to the other one when sharing
the session key k. It means that they can know the
identity of the counterparty explicitly

(iv) Implicit authenticity. It is a weaker security notation
than explicit authenticity and sometimes may be
enough for some applications. Suppose there are
two participants O and C. At the end of the proto-
col, the originator O can make sure that the coun-
terparty C was online following the protocol and
hold the same session key with him/her, whereas
C cannot get the same guarantee. He/she cannot
be sure about whether there is a counterparty hold-
ing the same session key. Moreover, he/she also has
no idea whether the counterpart was online. But if
he/she can make sure that if someone gets the same
session key, then that must be O

(v) Identity protection. This is a security property
where the privacy of the participants can be pro-
tected under the AKE protocol. The adversary can-
not get any useful information about the identities

(vi) Deniability. This security property means both the
two participants cannot provide valid evidence to a
third party to prove that the other one has
exchanged the key with him/her in the protocol.
This could be useful in some applications. For
example, when a mobile device O gets a shared ses-
sion key from a base station C with an AKE proto-
col, O might not want to be known that he/she was
nearby the station at that time. Deniability of an
AKE protocol makes sure that no matter what evi-
dence gathered by C cannot be convincing. For
example, with the protocol, the evidence can be gen-
erated on C′s own without exchanging with O
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2.4. ElGamal Encryption. In this part, we introduce the encryp-
tion scheme used in our protocols. ElGamal encryption [20] is a
probabilistic encryption scheme first proposed by ElGamal et al.
ElGamal encryption consists of several components: a cyclic
group G of prime order q with generator g ∈G, the key gener-
ator, the encryption algorithm, and the decryption algorithm.

(i) Key generator. The key pairs are computed as fol-
lows: Randomly choose x, where sk = x ∈ℤq. Then
compute pk = h = gx

(ii) Encryption algorithm. Given pk = h ∈G and m ∈M,
the algorithm encrypts the message m as follows:
Randomly choose y, where y ∈ℤq. Compute s = hy,
c1 = gy , and c2 =m · s. Finally, the ciphertext is ðc1,
c2Þ

(iii) Decryption algorithm. Given sk = x ∈ℤq and ðc1, c2Þ
, the algorithm decrypts the ciphertext as follows:
Compute s = c1

x and m = c2 · s−1

2.5. Digital Signature Algorithm (DSA). In this part, we
introduce the digital signature scheme used in our protocols.
Actually, the digital signature algorithm (DSA) is a variant of
ElGamal signature schemes. DSA is also a digital signature
standard proposed by the National Institute of Standards
and Technology (NIST) [21]. Following the standard, we
describe a DSA digital signature as follows:

(i) Parameters. There are a group of domain parame-
ters used by a DSA as follows: A prime modulus p
has a bit length of L, where 2L−1 < p < 2L; a prime
divisor q has a bit length of N , where qjp − 1 and
2N−1 < q < 2N ; a multiplicative group GFðpÞ; a sub-
group SubGðqÞ in GFðpÞ with a order of q; a gener-
ator g of SubGðqÞ, where 1 < g < p; a randomly
choosed private key x, where x ∈ℤq; the corre-
sponding public key y, where y = gx; and a ran-
domly chosen number k, where k is unique to
each message and k ∈ℤq. The choices for the pair
L and N follow the standard

(ii) Signature generation. Given private key x and mes-
sage m, the algorithm generates the signature for m
as follows: r = ðgk mod pÞ mod q; z = lmðmin ðN , o
utlenÞ,HashðmÞÞ; s = ðk−1ðz + xrÞÞ mod q. Output
the signature ðr, sÞ. Here, lm means the leftmost
min ðN , outlenÞ bits of the hash output, where outl
en is the bit length of the hash function output block

(iii) Signature verification. Given a triplet ðm′, r′, s′Þ, the
algorithm verifies the signature as follows: Check that

0 < r′ < q and 0 < s′ < q; w = ðs′−1 mod qÞ; z = lmð
min ðN , outlenÞ,Hashðm′ÞÞ; u1 = ðzwÞ mod q; u2 =
ððr′ÞwÞ mod q; and v = ððgu1yu2Þ mod pÞ mod q. If
v = r′, then the signature is verified

3. DAKEs: The Framework

3.1. Overview. As is shown in Figure 1, we give a decentra-
lized framework for designing authenticated key exchange
protocols. In this framework, we have implemented five pro-
tocols with different properties. These protocols are DAKE1
to DAKE5. There are two kinds of users in this framework,
namely, the originator who starts a protocol at the beginning
and the counterparty who communicates with the origina-
tor. Thus, O denotes the originator and C denotes the coun-
terparty. The originator O is on the left side of the figure,
while the counterparty C is on the right side. The direction
of each line with an arrow represents the direction of the
data flow. For example, the first line of DAKE1 represents
that a random number r is sent from the originator O into
the blockchain. And then a group of information r, pko, ido
is by the counterparty C from the blockchain. Before giving
the details of each protocol, we will explain the whole design
of the framework and the basic notations as follows:

(i) Random number. r represents a random number
generated under the domain parameters

(ii) Public key. pk with a subscript denotes the public
key of a user. For example, pko denotes the origina-
tor’s public key. Especially, pkR denotes a random
public key generated by the user. Since we used
the ElGamal encryption and DSS in our framework,
the authenticated public key of the originator and
the counterparty can also be denoted as the gα

and gβ separately. Other notations like gν, gμ, gγ,
and gσ are the exponential computation in the
ElGamal encryption and DSS. We will give more
explanation when describing the specific protocol

(iii) Identity. id with a subscript denotes the public key
of a user. For example, ido denotes the originator’s
identity

(i) Encryption algorithm. Enc with a subscript denotes
an asymmetric encryption algorithm with a public
key. For example, EncoðmÞ denotes encrypting the
message m using the originator’s public key. EncpkR
ðmÞ encrypts the message m using the randomly
generated public key. E with a subscript denotes a
symmetric encryption algorithm using a symmetric
secret key. For example, EkðmÞ denotes encrypting
the message m using a symmetry secret key k

(iv) Digital signature algorithm. Sig with a subscript
denotes a signature algorithm generated by a user.
For example, SigoðmÞ denotes generating a signa-
ture on the message m using the originator’s secret
key. And the notation δ represents a signature

(v) Others. k is the session key shared between O and C.
H is a hash function

In this framework, we have implemented three smart
contracts for the users in the protocols to interact with
the blockchain. In the initialization stage, all users
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submit their identification documents (e.g., passport or
drivers license) and their public key for the system. They
agree on the security parameters ðG, g, p, q,N , LÞ men-
tioned in Sections 2.4 and 2.5. Therefore, at the begin-
ning of each protocol, there have been
ðIDs, PKs, ParamsÞ on the blockchain where IDs
denotes the identities of the users, PKs denotes the pub-
lic keys, and Params denotes ðG, g, p, q,N , LÞ

3.2. Protocol Design. After the initialization, we can start to
design the protocols. Note that when we say send the mes-
sage to the blockchain “explicitly,” anyone in the system
can find out the identity of the message receiver. When we
say send the message to the blockchain “implicitly,” any
others cannot get the identity of the message receiver. We
will explain how to realize this in the Section 3.3. In this part,
we focus the process of the protocols.

(IDs, PKs, Prams)

Block 1

Originator Counterparty

DAKE1

DAKE2

DAKE3

DAKE4

DAKE5

Block 2 Block n

(IDs, PKs, Prams)

Block 1

Originator Counterparty

Block 2 Block n

Initialization

Initialization

Figure 1: The framework of the proposed decentralized authenticated key exchange protocols.
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In DAKE1, the detailed description of the first protocol
is as follows:

(1) O chooses a random number r, where r ∈R. Then,
he/she sends r to the blockchain explicitly

(2) C gets the r, pkO, idO from the blockchain; chooses a
random session key k, where k ∈K ; encrypts ðk, idCÞ
using O′s public key, namely c = EncOðk, idCÞ; signs
on ðr, c, idOÞ, namely, δ = SigCðr, c, idOÞ; and sends
ðc, δÞ to the blockchain explicitly. At this time, C ter-
minates. He/she gets the session key k and his/her
counterparty identity idO

(3) O gets the c, δ, pkC , idC from the blockchain and then
verifies the validity of δ using C′s public key. If δ is a
valid signature on the message ðr, c, idOÞ, O decrypts
the ciphertext c. If the decryption is successful, O will
gets the session key k and his/her counterparty iden-
tity id idC

Here, the encryption EncOðk, idCÞ is used to bind the
identity idC and the session key k to the ciphertext c. To
avoid a misbinding attack, the encryption algorithm should
be able to resist the chosen ciphertext attack (CCA). We
use the ElGamal encryption scheme (see Section 2.4) to
encapsulate the session key. Let G be a cyclic group, q be
the prime order of G, g is a generator of G, IDSpace be the
user identity space, and H be a hash function H : G3 × IDS
⟶K . Then, we get the implementation of the key
exchange protocol DAKE1 as follows:

(1) O chooses a random number r, where r ∈R. Then,
he/she sends r to the blockchain explicitly

(2) C gets the r, pkO, idO from the blockchain, where p
kO = gα and α denotes the secret key of O and then
signs on ðr, pkC , idOÞ, namely, δ = SigCðr, pkC , idOÞ
and sends δ to the blockchain explicitly. At this time,
C terminates. He/she gets the session key by com-
puting k =HðpkO, pkC , pkOβ, idCÞ

(3) O gets the δ, pkC , idC from the blockchain, where p
kC = gβ and β denotes the secret key of O. Then, O
verifies that δ is a valid signature; if not, O aborts;
otherwise, O terminates and gets the session key by
computing k =HðpkO, pkC , pkCα, idCÞ

In DAKE2, the detailed description of the second proto-
col is as follows:

(1) O uses a key generator algorithm to generate a new
random key par ðpkR, skRÞ. Then he/she signs on p
kR and gets δ1 = SigOðpkRÞ. At last, he sends ðpkR,
δ1Þ to the blockchain explicitly

(2) C gets the pkR, pkO, δ1, idO from the blockchain and
verifies the validity of δ1. If it is valid, C randomly
choose a session key k, where k ∈K . Then, he/she
encrypts ðk, idCÞ using the public key pkR and gets c

= EncpkRðk, idCÞ. Then, he/she signs on ðpkR, c, idOÞ
and gets δ2 = SigCðpkR, c, idOÞ. At last, he/she sends
ðc, δ2Þ to the blockchain explicitly

(3) O gets the c, δ2, pkC , idC from the blockchain and
then verifies the validity of δ2. If it is valid, O
decrypts the ciphertext c. If the decryption is success-
ful, O will get the session key k and the counterparty
identity id idC

Similarly, we encapsulate the key by a mechanism corre-
sponding to the ElGamal encryption scheme. Then, we get
the implementation of the key exchange protocol DAKE2
as follows:

(1) O generates a random public key u = gγ; signs on u
and gets δ1 = SigOðuÞ; and then sends ðu, δ1Þ to the
blockchain explicitly

(2) C gets the u, δ1, pkO, idO from the blockchain, ver-
ifies the validity of δ1, and then generates the signa-
tures δ2 = SigCðu, v = gσ, idOÞ. At last, he/she sends
it to the blockchain explicitly. At this time, C gets
the session key k by computing k =Hðu, v, uσ, idCÞ

(3) O gets the δ2, pkC , idC from the blockchain. Then,
he/she verifies the validity of δ2. If it is valid, O gets
the session key k by computing k =Hðu, v, vγ, idCÞ

In DAKE3, yhe detailed description of the third protocol
is as follows:

(1) O uses a key generator algorithm to generate a new
random key par ðpkR, skRÞ and sends pkR to the
blockchain implicitly

(2) C generates a random session key k and two other
random keys k1, k2 for the symmetric encryption E;
encrypts ðk, k1, k2Þ and gets c = EpkR

ðk, k1, k2Þ; signs
on ð1, pkR, cÞ and gets δ1 = SigCð1, pkR, cÞ; encrypts
ðδ1, idCÞ and gets c1 = Ek1

ðδ1, idCÞ; and at last, sends
ðc, c1Þ to the blockchain implicitly

(3) O gets the c, c1 from the blockchain, decrypts c using
the key skR, and gets k, k1, k2. Then, O decrypts c1
using k1 and gets δ1, idC . Then, O gets pkC corre-
sponding to idC from the blockchain and verifies
the validity of δ1. If it is valid, O computes δ2 = Si
gOð2, pkR, cÞ, c2 = Ek2

ðδ2, idOÞ and sends c2 to the
blockchain implicitly

(4) C decrypts c2 using the key k2 and gets δ2 and idO; C
gets pkO corresponding to idO from the blockchain
and verifies the validity of δ2

As we did for protocols DAKE1 and DAKE2, we can
implement protocol AKE3 using ElGamal encryption as
follows:

(1) O generates a random public key u = gγ and sends u
to the blockchain implicitly
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(2) C gets the u from the blockchain and generates v =
gσ. C computes ðk, k1, k2Þ =Hðgγ, gσ, gγσÞ, δ1 = Si
gCð1, u, vÞ, and c1 = Ek1

ðδ1, idCÞ and sends v, c1 to
the blockchain implicitly

(3) O gets the v, c1 from the blockchain and computes
ðk, k1, k2Þ =Hðgγ, gσ, gγσÞ. O decrypts c1 using the
key k1 and gets δ1, idC . Then, O gets pkC , idC from
the blockchain and verifies the validity of δ1. If it is
valid, O computes δ2 = SigOð2, u, vÞ, c2 = Ek2

ðδ2, idO
Þ and sends c2 to the blockchain

(4) C decrypts c2 using the key k2 and gets δ2 and idO; C
gets pkO corresponding to idO from the blockchain
and verifies the validity of δ2

In DAKE4, the detailed description of the forth protocol
is as follows:

(1) O generates a random public key gμ and sends it to
the blockchain explicitly

(2) C gets the gμ, pkO = gα, idO from the blockchain and
generates gν. C computes ðk, k1, k2Þ =HððgαgμÞβ+ν,
ðgμÞν, gα, gμ, gβ, gν, idO, idCÞ, where gβ is C’s public
key, and sends gν, k1 to the blockchain explicitly

(3) O gets the gν, k1, pkC = gβ, idC from the blockchain
and computes ðk, k1, k2Þ =HððgβgνÞα+μ, ðgνÞμ, gα,
gμ, gβ, gν, idO, idCÞ; then, O compares its computed
value of k1 to the value it received from the block-
chain; if these match, O sends k2 to the blockchain
explicitly

(4) C gets k2 from the blockchain and compares its com-
puted value of k2 to it

In DAKE5, the detailed description of the fifth protocol
is as follows:

(1) O generates random public keys gσ and gμ; O com-
putes α′ = α + σ, where gα is O’s initial public key

on the blockchain. Then, O sends gα′ , gμ to the
blockchain implicitly

(2) C gets the gα′ , gμ from the blockchain and generates
ðgτ, gνÞ; C computes β′ = β + τ where gβ is C’s ini-
tial public key on the blockchain. Then, C computes

ðk, k1, k2Þ =Hððgα′gμÞðβ′+νÞ, gμν, gα′ , gμ, gβ′ , gνÞ
and c1 ⟵

R Ek1
ðτ, idCÞ and sends gβ′ , gν, c1 to the

blockchain implicitly

(3) O gets the gβ′ , gν, c1 from the blockchain and com-

putes ðk, k1, k2Þ =Hððgβ′gνÞðα′+μÞ, gνμ, gα′ , gμ, gβ′ ,
gνÞ, c2 ⟵R Ek2

ðσ, idOÞ. O decrypts c1 using the key
k1 and gets ðτ, idCÞ. Then, O gets pkC corresponding

to idC from the blockchain and verifies gβ · gτ = gβ′ ;
if it is valid, O sends c2 to the blockchain implicitly

(4) C gets the c2 from the blockchain decrypts it using
the key k2; C obtains ðσ, idOÞ and then gets the cor-

responding pkO from the blockchain. C verifies gα ·
gσ = gα′

3.3. Smart Contracts. We have given three smart contracts
noted as contracts 1, 2, and 3. All the protocols should use
the contracts to interact with the blockchain. Specifically, con-
tract 1 provides a way to send the message to the blockchain
“explicitly” for DAKE1, DAKE2, and DAKE4. Contract 2 pro-
vides a way to send the message to the blockchain “implicitly”
for DAEK3. Contract 3 provides a way to send the message to
the blockchain “implicitly” for DAEK5. Here, “explicitly”
means that anyone in the system can find out the identity of
the message receiver, while “implicitly”means that any others
cannot get the identity of the message receiver. Now, let us see
how to achieve this.

As is shown in Table 1, the three smart contracts have
common parts in their user data structures. For a user in the
system, there is a public key “PK,” an identity string “ID,” an
Ethereum account address “user,” and a “timestamp” which
is used to indicate whether the public key is expired. These
public parameters are set up in the initialization stage and can-
not be modified later. The data type “mapping(address ⇒
string)” makes contract 1 different from the other two con-
tracts. We have implemented “set” and “get” interfaces in
these contracts separately. For simplicity, we use the pseudo-
code shown in Algorithms 2 and 3 to give the overall design.
An originator can set a communicate message for his/her
counterparty by using Algorithm 2. And the counterparty
can read the message set by his/her originator by using Algo-
rithm 3.

For contract 1, the inputs of Algorithm 2 are ðiO, iC, r, v
ersionÞ, where iO, iC are the public account addresses of the
originator and the counterparty separately. r is the data to be
exchanged, for example, a random number in DAKE1. Lines
1 to 4 will be executed for contract 1. In Algorithm 3, lines 1
to 4 will be executed for contracts 1 and line 2 to make sure
that only the designated counterparty can read the message.
Since the data on the blockchain is thought to be public, every-
one will find out the identity of the counterparty in the con-
tract 1. Therefore, we say that contract 1 provides a way to
send the message to the blockchain “explicitly.”

Contrarily, for contracts 2 and 3, Algorithm 2 does not
designate the account address of the counterparty. The dif-
ference between 2 and 3 is that 3 has two other message to
record in the blockchain, namely, token1 and token2. c, tok
en1, and tonken2 represent the data to be exchanged. For

example, in DAKE5 for O, token1 is gα′ , token2 is gμ, and
c is c2. And for C, token1 is gβ′ , token2 is gν, and c is c1. This
will make sense when we take a look at the detail of the pro-
tocols. And since we set the message without pointing out
the counterparty address, we say that they provide a way
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to send the message to the blockchain “implicitly” in con-
tracts 2 and 3.

4. Soundness and Security Property Analysis

4.1. Soundness. The soundness of each protocol is proven if the
originator O and the counterparty C obtain an identical ses-
sion key k at the end of the protocol. In this sense, the sound-
ness of DAKE3, DAKE4, and DAKE5 are quite straight since
O and C use the same input of a hash function to compute

their session keys. In the implementation of DAKE1, O will
get a session key k =HðpkO, pkC , pkCα, idCÞ, and C will get k
=HðpkO, pkC , pkOβ, idCÞ. Since pkC

α = gβ
α = gαβ = pkO

β, O
and C will hold an identical session key at last. In the imple-
mentation of DAKE2, O will get a session key k =Hðu, v, vγ,
idCÞ, and C will get k =Hðu, v, uσ, idCÞ. Since vγ = gσγ = gγσ

= uσ, O and C will hold an identical session key at last.

4.2. Security Property. Now, we can compare their security
properties shown in Table 2 with the other decentralized
protocols. SmartDHX [12] only has a security property of
Static secrecy since it is actually a Diffie-Hellman key
exchange based on blockchain. Apparently, it should assume
an honest participant’s long-term secret key can never be
compromised by the adversary. Besides, smartDHX does
not provide any way for the participants to authenticate
the identity of their counterparties. Thus, it cannot obtain
other security properties.

In Bitcoin-based AKE [4], the authors provide two proto-
cols over Bitcoin. One of them called Diffie-Hellman-over-Bit-
coin is a non-interactive protocol without perfect forward
secrecy, while another one called YAK-over-Bitcoin is an
interactive protocol with perfect forward secrecy. Bitcoin-
based AKE uses a Schnorr zero knowledge proof algorithm
to provide identity protection and authenticity. However, the
deniability is not taken into account.

Protocol DAKE1 only provides static secrecy and implicit
authenticity since we are assuming that the long-term keys
(initial public key pairs) are never compromised. When O fin-
ishes the protocol, he can be confident that C was online since
Cmust have signed the message containingO’s random num-
ber. However, when C finishes the protocol, he has no such
guarantee. Protocol DAKE2 provides perfect forward secrecy
since a new key pair for the encryption scheme is generated
with each run of the protocol. And user long-term keys are
used only for signing, not encrypting. So the adversary cannot

Table 1: The user data structure of the smart contracts.

Contract name Data type Name

Contract I

address user

string PK

string ID

uint timestamp

mapping(address ⇒ string) r

mapping(address ⇒ string) sig

Contract II

address user

string PK

string ID

uint timestamp

string c

Contract III

address user

string PK

string ID

uint timestamp

string token1

string token2

string c

Input ðiO, iC, r, c, token1, token2, version, typeÞ
1: require(users[iP].user == msg.sender);
2: if version ==1 then
3: users[iO].r[iC] = r; /∗ Contract i ∗/
4: end if
5: if version ==2 then
6: users[iO].c = c; /∗ Contract ii ∗/
7: end if
8: if version ==3 then
9: if 100 == type then
10: users[iO].token1 = token1; /∗ Contract iii ∗/
11: end if
12: if 200 == type then
13: users[iO].token2 = token2; /∗ Contract iii ∗/
14: end if
15: if 300 == type then
16: users[iO].c = c; /∗ Contract iii ∗/
17: end if
18:end if

Algorithm 1: set

Input ðiO, iC, typeÞ
1: if version ==1 then
2: require(users[iC].user == msg.sender);
3: return users[iP].r[iC];
4: end if
5: if version ==2 then
6: return users[iO].c;
7: end if
8: if version ==3 then
9: if 100 == type then
10 return users[iO].token1;
11: end if
12: if 200 == type then
13: return users[iO].token2;
14: end if
15: if 300 == type then
16: return users[iO].c;
17: end if
18:end if

Algorithm 2: get
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decrypt any messages by compromising the signing key.
DAKE3 provides identity protection and explicit authenticity.
If the adversary is not one of the participants, he/she cannot
learn the identities of both the participants since they are
encrypted in the communication. Although each participant
will eventually learn the identity of the other, O can withhold
his/her identity until confirming the identity of C. Thus, we
say that DAKE3 has the explicit authenticity property. Note
that we do not consider that DAKE3 provides deniability,
since C and O have signed on the message. Even though all

messages are encrypted, one of the participants can still collect
all the data to prove the existence of another one. Since both
the participants sign nothing, DAKE4 provides deniability.
DAKE5 has an extra property of Deniability. DAKE4 sends

gα in the clear, while in DAKE5, O sends gα′ for blinding
the value. And the exponent σ along with idO are encrypted.
C can verify the blinding value and use a symmetric method.

5. Implementation and
Performance Evaluation

5.1. Implementation. In our implementation, we use smart
contracts written in solidity to store and query the public
data in the blockchain. The other functions are implemented
as Web APIs written in JavaScript. There are several Java-
Script open libraries we used. “ethers.js” is used to interact
with the Ethereum blockchain. To provide the necessary
cryptographic functions, we also imported two other librar-
ies “Crypto.js” and “jsbn.js.” Our test environment is built by
a professional tool called HardHat. You can compile, deploy,
test, and debug your Ethereum software with HardHat. We

Table 2: Security property comparison.

Protocol
Static
secrecy

Perfect forward
secrecy

Implicit
authenticity

Explicit
authenticity

Identity
protection

Deniability

smartDHX [12] √

Bitcoin-based AKE [14] √ √ √ √

DAKE1 √ √

DAKE2 √ √ √

DAKE3 √ √ √ √ √

DAKE4 √ √ √ √ √

DAKE5 √ √ √ √ √ √
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Figure 2: The overall time for key exchange.

Table 3: Number of interactions with blockchain.

Protocol Originator Counterparty Sum

DAKE1 2q + 1t 2q + 1t 4q + 2t
DAKE2 2q + 2t 3q + 1t 5q + 3t
DAKE3 3q + 1t 2q + 1t 5q + 2t
DAKE4 3q + 2t 3q + 2t 6q + 4t
DAKE5 4q + 3t 4q + 3t 8q + 6t
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run our test cases in Hardhat local network and Rinkeby test
network. Once weâ€™re ready to share the decentralized ser-
vices with other people, what we may want to do is deploy it
to a live network. To see the performance of our protocols,
we provide the tests on a live network. Rinkeby is the live
network we chose. It is a testnet of Ethereum based on proof
of authority (PoA) [22]. We used a PC with the OS of
Ubuntu Desktop 18.04 64× as a client PC to run the tests.
The CPU of this computer is dual-core with intel(R) Cor-
e(TM) i7-10510U CPU @ 1.80GHz 2.30GHz on each. The
memory is 4G.

5.2. Efficiency Analysis. In order to give a comprehensive
estimation for our authenticated key exchange framework,
we first gave the overall performance of each protocol and
then provide the test results of the originator and counter-
party separately. The reason is that in some applications,
the computation and network capability are quite different
for the users of the key exchange protocols. For instance,
in a payment application, the bank as a server has a more
large capability than the clients of the application. In this
kind of application, the detailed analysis can help you to
choose a proper protocol in our framework. The originator
as a client can get a similar efficiency as we showed in the
test, while the counterparty as a server may obtain a more
efficient performance since he/she can increase his/her com-
putation and network resource.

As is shown in Figure 2, the overall performance of each
protocol is quite stable when the size of the security parame-
ters increases from 1024 bits to 3072 bits. According to
Table 2, the security properties of the protocols from DAKE1
to DAKE5 increase one by one. Intuitively, a protocol should
cost more exchange time for obtaining more properties as
well. However, we can find out that there is an exception
where protocol DAKE2 has a better performance thanDAKE3
in general. To figure out this, we then listed the number of

interactions with Ethereum blockchain for each protocol. As
shown in Table 3, the letter “q” represents an operation to
query data from the blockchain, and the letter “t”means send-
ing a transaction to the blockchain to write data on it. Thus,
the “t” operation will take more time than the “q” operation.
Although protocol DAKE3 has an extra cryptographic encryp-
tion function than protocol DAKE2, it needs fewer transac-
tions. Besides, we can infer that the time to perform a
cryptographic function locally is quite less than to execute a
transaction on the blockchain.

Furthermore, when we see the time for the originator
and the counterparty separately, we find out that more than
one protocol having fewer security properties can obtain
quite better performance for one of the participants. The
results are given in Figures 3 and 4. Except for the protocol
DAKE5, all protocols have obviously distinct costs between
the originator and the counterparty. Thus, when the users
of the application play different roles and have distinct com-
putation resources, one can choose a more proper protocol
according to the performance of the originator and the
counterparty. Table 3 can also be used to explain this result.

5.3. Gas Cost Analysis. Like the efficiency analysis, we first
gave the overall gas cost of each protocol and then provide
the gas cost for the originator and counterparty separately.
The gas cost includes deploying a smart contract on the
Ethereum blockchain and sending transactions to it. Note
that it is costless to query data from the blockchain, namely,
the “q” operation is gas-free.

As is shown in Table 4, the gas costs for deployment in
protocols DAKE1, DAKE2, and DAKE4 are equal since they
use the same smart contract. When the size of the security
parameters increases for each protocol, the gas cost for
exchange will go higher. It is easy to understand, for a large
parameter size means a longer string to exchange. Then, we
can take a look at different protocols with identical parameter
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Figure 3: Time for the originator to exchange keys.
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sizes. We can find out the two highest gas cost protocols are
DAKE3 and DAKE5. To figure out this, we can review the
protocols in Section 3. The difference between these two pro-
tocols with others is that they both need an encryption func-
tion which makes their exchange data get larger than others.

As is shown in Table 5, the gas cost for the originator
and the counterparty of the same protocol in DAKE3,
DAKE4, and DAKE5 are equal. Note that the situation in

gas cost seems a slice different from that in the efficiency
analysis where most protocols have obviously distinct time
costs between the originator and the counterparty. It is
because both the computation and blockchain network
capability will affect the efficiency and the time for complet-
ing the protocol may be a little fluctuated. However, the gas
cost for executing a transaction is only related to the size of
the transaction and is quite stable.
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Table 4: The overall gas cost comparison.

Protocol Deployment Exchange Sum

DAKE1 (1024, 160) 1,254,118 208,154 1,462,272

DAKE1 (2048, 224) 1,254,118 230,836 1,484,954

DAKE1 (2048, 256) 1,254,118 253,326 1,507,444

DAKE1 (3072, 256) 1,254,118 253,326 1,507,444

DAKE2 (1024, 160) 1,254,118 459,585 1,713,703

DAKE2 (2048, 224) 1,254,118 686,405 1,940,523

DAKE2 (2048, 256) 1,254,118 731,385 1,985,503

DAKE2 (3072, 256) 1,254,118 912,841 2,166,959

DAKE3 (1024, 160) 926,738 2,316,224 3,242,962

DAKE3 (2048, 224) 926,738 4,493,720 5,420,458

DAKE3 (2048, 256) 926,738 4,493,696 5,420,434

DAKE3 (3072, 256) 926,738 6,671,180 7,597,918

DAKE4 (1024, 160) 1,254,118 643,464 1,897,582

DAKE4 (2048, 224) 1,254,118 1,006,376 2,260,494

DAKE4 (2048, 256) 1,254,118 1,006,376 2,260,494

DAKE4 (3072, 256) 1,254,118 1,369,288 2,623,406

DAKE5 (1024, 160) 1,078,513 2,505,604 3,584,117

DAKE5 (2048, 224) 1,078,513 3,862,800 4,941,313

DAKE5 (2048, 256) 1,078,513 4,683,076 5,761,589

DAKE5 (3072, 256) 1,078,513 6,860,536 7,939,049
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6. Conclusion

In this paper, we propose a novel decentralized authenticated
key exchange framework via blockchain. In this framework,
we implement five protocols with different security properties.
To the best of our knowledge, our framework is the first one to
take different kinds of security properties into account and
construct a decentralized authenticated key exchange protocol
framework which can be used in different applications in the
smart city. To resist the potential threat, we combine the
CCA-secure ElGamal encryption algorithm and the digital
signature algorithm (DSA) in some of the protocols. Com-
pared with other decentralized key exchange protocols, our
protocols enjoy more security properties and get rid of the
problem caused by the availability of Bitcoin-like blockchain.
Finally, we conduct our test cases in the live testnet of Ether-
eum and give a comprehensive analysis. The results can help
someone who wants to use the proposed framework to choose
which protocol is suitable for his application.

Since the decentralization of the proposed protocol
framework is based on the blockchain technology, a natural
progression of this work is to improve the framework as the
blockchain technology evolves. For example, an improved
blockchain technology [23] [24] may provide specialized
features for IoT to design a more efficient protocol. A further
study could assess the compatibility of the protocols in the
applications of the smart city. More information about the
compatibility of the protocols in the applications of the
smart city would help us to establish a greater degree of
availability on the protocols.
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