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Nuclear power plant (NPP) is a highly complex engineering system which has typical internal feedback and strong component
coupling. With these features, most NPP systems have high risk of radioactive release, which makes it essential to perform
fault detection (FD) to the NPP systems. To address this challenge, this paper proposes a FD mechanism named characteristic
time-series convolutional neural network (CT-CNN) based on principal component analysis (PCA), time-series analysis, and
convolutional neural network (CNN) mechanisms. First, the models of NPP FD system are formulated. Then, the PCA
mechanism is applied to extract the features of the NPP system. Next, the time-series analysis and CNN approaches are
applied to realize FD to the NPP system. With the above mechanisms, the proposed approach has not only shown strong
stability and become adaptive to different data set, but also preserves both time and state characteristics of the NPP system. In
experiment, it shows the proposed approach can achieve better performance in both detection accuracy and variance than the
classic back propagation, LSTM method, and standard CNN algorithms. More significantly, its optimal accuracy can be as high
as 99.8%.

1. Introduction

The structure of industrial nuclear power plant (NPP) con-
trol system is rather complex as it consists of many inter-
connected systems and equipment [1]. Due to the high
complexity, the internal feedback phenomenon is obvious
in NPP system [2], e.g., the change of coolant temperature
affects the coolant volume, and this effect further puts pres-
sures to the steam generator, etc. In other words, any small
deviation in the NPP system may cause a failure quickly and
then makes this failure spread throughout the whole NPP
system, which can consequently result in disasters [3].
Therefore, the fault detection (FD) to the NPP system is of
great significance.

Since FD technology can ensure the safety and reliability
of the NPP system, this technology has been extensively
studied in recent years. Currently, the related studies on
FD can be divided into two kinds: model-based methods
and model-free methods. Model-based methods commonly
rely on ideal assumptions and physical knowledge to estab-
lish mathematical models, e.g., the differential equation
model based on thermodynamic equation and nuclear reac-
tor point dynamics equation can simulate the internal state
of NPP to a certain extent through numerical operation
and residual evaluation. However, in practice, the model-
based method cannot establish a sufficiently accurate math-
ematical model, especially for highly complex coupling
systems like NPP. The idealized assumptions are likely to
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deviate from the actual situation, and the numerical opera-
tion is likely to delay the valuable diagnosis time. These
problems limit the application of this method in many appli-
cation scenarios.

Compared with model-based methods, model-free
methods are more popularly applied. This method is mainly
divided into expert system methods and data-driven
methods. The expert system models represented by fault tree
analysis (FTA) [4] and random forest (RF) [4] have achieved
good results. However, the expert system also faces some
problems in the practical applications, such as the impossi-
bility of exhaustive knowledge base caused by the limitation
of expert knowledge and the contradiction between the poor
adaptability and expert knowledge caused by the limitation
of empirical knowledge. Different from the expert system,
the data-driven method is more flexible and concise [5]. It
does not need to carry out essential theoretical analysis and
empirical rule summary, and it only needs to collect the his-
torical operation data of NPP to establish a relatively feasible
diagnosis model.

Since the data-driven approaches show the above advan-
tages, many data-driven methods have been proposed for
the FD of NPP system, such as k-nearest neighbor (KNN)
method [6], support vector machine (SVM) [7], principal
component analysis (PCA) [8], and other classical statistical
machine learning methods. These methods are effective and
have achieved good performance. However, they have the
problems of poor anti-interference ability, low recognition
accuracy, and high time complexity. The determined map-
ping function and linear classifier make many approaches
unable to use the massive operation state data to extract
the state features and summarize the system experience of
NPP. Improved classic back propagation network [9], deep
belief network (DBN) [10], and recurrent neural network
(RNN) [11] are applied to this problem, but these methods
still have the problem of unstable training.

To improve the FD performance, many approaches try
to combine the concepts of different FD methods. Yao
et al. [12] proposed a full-range FD method based on state
information imaging. With this method, the state informa-
tion of NPP is expressed by gray image, and the image
features are extracted by Kernel Principal Component Anal-
ysis (KPCA). Then, the FD is realized by using various clas-
sification methods. Peng et al. [13] proposed a method
combining correlation analysis (CA) and deep belief net-
work (DBN), in which CA was used to reduce the dimension
and DBN was in charge of training and diagnosis. Wang
et al. [7] realized the diagnosis of coolant circuit of NPP sys-
tem by using SVM and improved particle swarm optimiza-
tion (PSO). Li and Lin [14] used the convolutional neural
network (CNN) algorithms to extract the characteristics of
instantaneous data of NPP system and realized the diagnosis
of eight types of faults. The above methods are effective in
realizing FD of NPP, yet they still have the limitation in
ignoring the time relationship of NPP system data as well
as the relationship between time and state. To solve this
problem, many studies use the time-series approach in the
mechanical failure analysis [15]. Yao et al. [16] integrated
the time-domain and frequency-domain characteristics of

multichannel acoustic signals through CNN and realized
the diagnosis of gear fault. Chen et al. [17] input the mechan-
ical monitoring signal of rolling bearing into 1DCNN for
training and obtained the FD model of rolling bearing.

With the time-series approaches, the FD performance
can be improved. However, this approach cannot be applied
directly to the NPP system, and this is because the NPP sys-
tem has multiple state characteristics. To address this chal-
lenge, many new FD approaches based on CNN [18, 19]
and long short-term memory (LSTM) network have been
proposed for the NPP system. He et al. [20, 21] used Markov
to process the multistate data. They transformed the data
into color images after flatting the multistate data into one-
dimensional data and extracted features through the CNN
image processing functionality. The results showed that this
approach could realize the diagnosis of eight types of faults
of NPP system. Choi and Lee [11] combined the online
monitoring technology based on signal reconstruction as
well as the LSTM network to achieve FD of NPP system.
However, most of these methods do not mine the time fea-
tures well, or they destroy the continuity of the time series
and eliminate the relationship between time series and mul-
tidimensional states. Moreover, less work has considered the
relationship between NPP state data and faults from a global
perspective.

To address the above challenges, this paper proposes a
data-driven FD method based on time-series analysis. On
the one hand, the method uses PCA method to reduce the
dimension to exclude some irrelevant features and inte-
grated some related features but not lose much information;
on the other hand, the method considers the connection
between the features and time series, arranged these data
into a matrix, and used the convolution method to extract
both partial features and partial time series at the same time,
which preserves the structure compared with [20] so that it
can realize the FD of NPP system more accurately and effi-
ciently. The method does not have strict requirement on
the setting of the parameter values, which makes it have high
adaptability and can be applied to different NPP application
scenarios.

The structure of this paper is as follows: Section 2
describes the problem of realizing FD in the NPP system;
Section 3 builds the FD model and presents the solutions
to find the optima of this model. In Section 4, the experi-
ments are conducted and the results are discussed. Finally,
in Section 5, a conclusion is drawn.

2. Problem Description

The operational status data of NPP system, which reflects
the health status and fault information, is collected online
in real time through the instrumentation and control system
(I&C) system. This section gives the following definitions
about the operational status data of NPP system.

Definition 1. Let X = ½x1, x2, x3,⋯,xM� ∈ℝM . Then, xi(i ≤M)
denotes the operation state data of NPP collected by the ith

sensor at a certain time t, such as the water level and pres-
sure of the pressurizer, the steam flow of the steam
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generator, the opening and feedwater flow of the feedwater
regulating valve, the water level, and the exhaust steam flow
of the main condenser.

Definition 2. Let

P =

Xt1

Xt2

⋮
XtT

2
666664

3
777775 ∈ℝM×T ð1Þ

denote the operational status data set collected in time
period t1 − tT , where Xtj

(j ≤ T) is the state vector in Defini-

tion 1. Suppose the sampling time-interval of the sensors is
equal, that is, for any j, there is t j+1 − t j ≡ hðh > 0Þ, where h
is the sampling period.

P is a time-series matrix which has the following fea-
tures: ① the data of the row or column of the matrix repre-
sents the same characteristic, and② the data are arranged in
chronological order.

Definition 3. Let E = fe1, e2, e3,⋯,eDg denote the set of fault
types, where ei(i ≤D) denotes a certain type of fault, such
as heat pipe water loss accident, cold pipe water loss acci-
dent, rupture of steam pipe inside the containment, rupture
of steam pipe outside the containment, loss of water supply
accident, and closing of the main steam isolation valve. e0
indicates normal operational state, E′ = e0 ∪ E.

The characteristic information of the fault is stored up
not only in the operating state vector Xtj

at the time t j, but

also in the trend Xtj
, Xtj+1

, Xtj+2
,⋯, e.g., when the pressure

data of steam generator B drops sharply, there is a fault of
steam line B pipe rupture. Therefore, this paper fully con-
siders the time sequence characteristics and uses the sliding
time window to intercept the time subsequence for FD.

Definition 4. Let

W =

Xtl

Xtl+1

⋯
Xtl+w

2
666664

3
777775 ð2Þ

denote the sliding time window, where W is the continuous
submatrix of P and the number of columns is equal, ℓ is the
starting index of sliding window, and w is the size of sliding
time window. Then, the sliding time window represents the
fault state of time tl+w. Supposing that the starting index of
the sliding window increases ℓ each time, the number of slid-
ing windows generated from a state data set P is Q = bðT −
wÞ/l + 1c.

The objective is to establish a fitting mapping G : W
⟶ ei that makes its output close to the real operational
state of NPP as much as possible.

3. Model Design

3.1. Architecture Design of FD Model. To establish the map-
ping G : W ⟶ ei, this paper designs a FD model based on
the CNN feature extraction, PCA and sliding window mech-
anisms, as is shown in Figure 1. Firstly, PCA dimensionality
reduction to the original data set is performed, and then the
time-series submatrix is intercepted through the sliding win-
dow. Next, the CNN coder is used to analyze the features of
the input sequence shaped by the sliding window. Finally, a
small-size feature matrix is output to realize the classification
of the input sequence.

The specific implementation process is shown in
Figure 2, and the working process is as follows:

(1) Obtain the initial samples from NPP system and
standardize the samples

(2) Establish the PCA model matrix to reduce the
dimension, and then obtain the principal component
state characteristics

(3) Reconstruct and reshape the principal component
state characteristics by the sliding window method,
and ensure the characteristics available to the input
structure of CNN network

(4) Carry out convolutional operation and fuse time
characteristics and state characteristics

(5) Pool operation and highlight key features

(6) Repeat Steps ④ and ⑤

(7) Flatten the output features

(8) Fully connect the output eigenvector, calculate the
value of relevant neurons by forward propagation,
and optimize the model according to the cross-
entropy loss function

(9) Repeat ④ to ⑧ until the loss function reaches the
target range

3.2. Data Preprocessing. Generally, the status data of NPP
monitored by the I&C system cannot be directly used for
the input data of the model. It is necessary to standardize
the data based on different unit systems. Moreover, it is
essential to reduce the dimension of high-dimensional status
data and extract the fault features.

3.2.1. Data Standardization Processing. To realize the feature
extraction of NPP operational state time series, this paper
uses Z-score regularization method to convert the sample
data to the same dimension. The standardized conversion
formula of Z-score is as follows:
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x̂i =
xi,t j − xi

si
, ð3Þ

where xi,t j denotes the state data collected by the ith sensor

at time t j, xi = ð1/TÞ∑T
j=1xi,t j denotes the average value of

the ith state data in time period T , and si =ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1/ðT − 1ÞÞ∑T

j=1ðxit j − xiÞ2
q

denotes the standard deviation

of xi,t j .

3.2.2. Data Dimensionality Reduction Processing. In terms of
the coupling and correlation of the operational state data of
NPP, the PCA method is used to reduce the dimension of
the sample data.

The PCA method divides the state vector space ℝM in
which the sample data set is located into principal subspace
and residual subspace. The principal subspace represents the

change trend of the data, and the residual subspace repre-
sents the data disturbance. Then, any sample can be decom-
posed into the projection of two subspaces, and the
projection difference between samples in the residual sub-
space is small. Therefore, it can ignore the projection differ-
ence in the residual space and select a vector to replace the
projection of all samples in the residual subspace, so as to
reduce the dimension.

Considering the orthogonal base U = ðu1, u2, u3,⋯,
uM−1, uMÞ, U can be spanned into an ℝM ; then, the sample
data set state vector X̂tk

can be written as

X̂tk
= 〠

M

i=1
akiui, ð4Þ

where aki = X̂tk
ui

T .
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Figure 1: FD architecture for NPP system.
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Let ~Xtk
denote the target vector of dimension reduction,

which can be expressed by

~Xtk
= 〠

m

i=1
zkiui + 〠

M

i=m+1
biui, ð5Þ

where m is the dimension of the principal subspace, ∑m
i=1

zkiui is the linear representation of ~Xtk
based on U in the

principal subspace, and ∑M
i=m+1biui is the linear representa-

tion of ~Xtk
based on U in the residual subspace.

Let J denote the objective function of dimension reduc-
tion, which can be expressed by

J = 1
M

〠
M

k=1
X̂tk

− ~Xtk

�� ��2: ð6Þ

That is:

J = 1
M

〠
M

k=1
X̂tk

− ~Xtk

� �
X̂tk

− ~Xtk

� �T
: ð7Þ

By solving the partial derivative of the coordinates of ~Xtk
,

the minimum of J [22] can be denoted as

J = 〠
M

i=m+1
ui

TSui, ð8Þ

where S = ð1/MÞ∑M
k=1ðX̂tk

− �Xtk
ÞTðX̂tk

− �Xtk
Þ is the covari-

ance matrix of the data vector.
ui is linearly independent. Thus, when each ui

TSui takes
minimum value, it can get the minimum value of J . Next,
Lagrange multiplier method can be used for each ui

TSui:

F uið Þ = ui
TSui + λi 1 − ui

Tui
� �

: ð9Þ

The solution is

Sui = λiui: ð10Þ
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Equation (10) is to decompose the state sequence by sin-
gular value and solve the eigenvalue of the covariance
matrix. After obtaining the eigenvalue and eigenvector,
Equation (8) can be expressed as

J = 〠
M

i=m+1
λi: ð11Þ

In order to minimize the objective function J , the mini-
mum M −m eigenvalues are used. In this case, the basis of
the principal component subspace is the eigenvector corre-
sponding to the maximum m eigenvalues. At this time, it
can get a characteristic time-series set with m principal com-
ponent state features from the original data set though the
orthogonal transformation method.

3.3. Sliding Time Window Design. The process of generating
W from time-series matrix P is shown in Figure 3.

The form of sliding window W depends on window size
w and sliding step ℓ in terms of Definition 4: The smaller w
is, the less information a single window W contains, and the

less accurate and faster fault classification is. The larger ℓ is,
the smaller Q value is, and the more accurate training speed
is. This is because less information is contained in the time
series and the reduced total amount of data set. Therefore,
the specific value of W and ℓ needs to be adjusted according
to the characteristics of the data set.

3.4. CNN Model Design. The key point to fit the mapping G
is to obtain the state and time features of W. In this study,
the CNN is used to extract the state and time features and
then fuse these feature data. The network structure of
CNN is shown in Figure 4.

The CNN consists of two parts: (1) The convolutional
computation of feature extraction and (2) pool the charac-
teristic matrix.

3.4.1. Step 1: Convolutional Computation. The convolutional
computation extracts the features in the two dimensions
through the local linear and nonlinear transformation of
the time-series matrix. This process can be expressed by
the following formula:

Convid Convid Convid

M
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g

M
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ol
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M
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g

Figure 4: CNN network structure for feature extraction.
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z r+1ð Þ
u,v = 〠

∞

i=−∞
〠
∞

j=−∞
x rð Þ

i,j ⋅ k
r+1ð Þ

u−i,v−j, ð12Þ

a r+1ð Þ
u,v = f z r+1ð Þ

u,v + b r+1ð Þ
� �

: ð13Þ

Equation (12) represents the part of linear transforma-
tion of the input time-series matrix, where zðr+1Þ represents
the linear transformation of the time-series matrix in the
ðr + 1Þth layer, xðrÞ represents the input of the time-series

matrix of the rth layer, and kðr+1Þ represents the coefficient
matrix of the linear transformation in the ðr + 1Þth layer.

Equation (13) represents the part of nonlinear transfor-
mation based on linear transformation, where matrix bðr+1Þ

represents the offset added to the time-series matrix zðr+1Þ,
f represents an activation function, namely a nonlinear
function which uses ReLu function, and aðr+1Þ represents
the time-series matrix output.

3.4.2. Step 2: Pooling Process. The dimension of this matrix
needs to be scaled after the convolutional process. Since
the size of the time-series characteristic matrix is still the
same as the original matrix, it is necessary to perform the
pooling operation to make the network lightweight.

The pooling method in this study uses the maximum
pooling mechanism. This method can perceive the small
changes in the time series compared with other time series.
After extracting time-series features via CNN, the number
of parameters becomes less, and the interference such as
noise becomes lower. This enables the speed of the model
to be faster and the prediction of model to be more accurate.

The output of the time-series matrix of layer r + 1
through the pooling operation can be expressed as

x r+1ð Þ
u,v = β r+1ð Þ ⋅ a r+1ð Þ

i,j,

β r+1ð Þ =
1
0

(
a r+1ð Þ

i,j =max ∂a r+1ð Þ
� �

others
:

ð14Þ
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where ∂aðr+1Þ refers to the perception domain in the pooling
process and the extraction of the maximum value of the per-
ceptual submatrix domain reflects the feature of the maxi-
mum pooling.

3.4.3. Step 3: Full Connection. The full connection layer clas-
sifies the feature data extracted from the CNN layer and out-
puts the corresponding result, which can be expressed as

z k+1ð Þ = f z kð ÞW k+1ð Þ + b′ k+1ð Þ� �
, ð15Þ

where zðkÞ represents the one-dimensional data sequence
input in the k layer. Specifically, when k is equal to 0, it
represents the one-dimensional sequence flattened from
the output result of CNN network. WðkÞ represents the coef-

ficient matrix of the k layer of the network, and b′ðkÞ repre-
sents the offset of the k layer of the full connection layer.

3.5. Case Study. This paper uses the random time-series
faults to verify the functionality and performance of the pro-
posed model. Figure 5 shows one of the original data used in
this study case; this time-series matrix has 91 × 300 in the
dimension.

The study case sets the indexes W=M= 30 and ℓ = 1 to
construct the sliding window sequence. 271 sliding time

windows will be generated under this parameter selection,
and these submatrices will be marked in terms of the rela-
tionship between the time series and the fault state.
Figure 6 shows the classification process after selecting one
of the windows.

After the time-series submatrix with L = 30 is intercepted
in Step ①, the dimension of the submatrix is reduced. And
then, it produces a time-series submatrix with n = 30 dimen-
sion, with the gray image shown in Step② of Figure 6. After
the feature extraction is performed by CNN, the time-series
submatrix becomes a 4 × 4 submatrix as is shown in the Step
③ in Figure 6.

The output result is an abstract description of the original
submatrix. Some original features of the characteristic subma-
trix can still be shown in the output feature extraction matrix
(such as vertical gradient color bands, and horizontal gray dif-
ference). After the feature extraction is completed, the number
of parameters is reduced from 900 to 256. In this case, the first
full connection layer with 256 hidden layers could reduce
164864 hidden layer parameters, which greatly improves the
detection performance and achieves high accuracy.

Finally, through the full connection, the probability of
the fault detection can be generated, as is shown in Step ④

of Figure 6. It can be seen that the precise fault is the first
type of fault, namely, the heat pipe water loss accident,
which is consistent with the labeled information.

Figure 7: Pctran/AP1000 software for NPP simulation.
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4. Simulation Experiments

4.1. Experimental Setup

4.1.1. Data set for Experiments. The fault data set of NPP in
this study is generated from a simulation software named
PCTran/AP1000, as is shown in Figure 7. The software is a
reactor transient and accident simulation software, and its
reactor model has been widely applied for the NPP system
simulation [23].

In this study, ten fault states are set in PCTran/AP1000
software which supply all the train data set and test data
set in experiment, the sampling period h is 1 s, and the sam-
ple are chosen by 7 different initial conditions, and every
condition has a time series with 5 minutes running data.
These fault states are merged with the normal state, and
the OneHot coding mode is used to code the fault category.
The faults and their parameters which can make the model
detect faults more sensitively are given in Table 1.

4.1.2. Neural Network Parameter Setting. Since the experi-
ment could describe as series of partial differential equations,
the CNN model’s convolution layers can be seen as numer-
ical simulation of partial differential equations so that the
parameters of the layers do not need too many. Therefore,
this study investigates the possible structure of CNN net-
work under this data set and gives a reference structure with
the 3 lays and 3 × 3 convolution kernel shown in Table 2,

4.1.3. Data Preprocessing Settings. This section will discuss
the influence of the sliding time window size w, the pivot
feature number m, and the selection of the sliding window
step size ℓ on the fault detection results. This study will
experiment with different parameters based on the network
structure in Table 2.

Parameters w and m are the key data for preprocessing
the initial samples. On the one hand, their values determine
the number of features retained in the initial sample. On the
other hand, considering the significance of generating a mul-
tiparameter time series that is easy to be processed by the
CNN network, setting w is equal to m so that the input
matrix is a square matrix.

In addition, this study also tests the step ℓ of the sliding
window to prevent over-fitting caused by too dense intervals
and under-fitting caused by too sparse intervals.

The performance of the approach to select these two
parameters is evaluated in this experiment, which noted as
K , and Figures 8 and 9 are the results of the experiments.

Based on the results of Figures 8 and 9, if the K value is
too large, the data have more noise and the convexity of the
optimization model less significant so that make the model’s
accuracy has such large fluctuations. If the ℓ is too large, the
data set is quite less information so that make the model’s
accuracy lower.

Specifically, it can be seen from Tables 3 and 4 that after
comprehensively considering the indicators such as the aver-
age accuracy rate, the best accuracy rate, and variance, the
best fit is to set the parameter K to the value 30.

In addition, the difference of ℓ will generate a different
number of feature time series, and the accuracy shows a

trend that the more images, the higher the accuracy in the
data set. Therefore, in this data set, only the relationship
between training time and accuracy needs to be considered.
Thus, the value of the parameter l is set to 2.

Therefore, the experiment will evaluate the performance
of CNN based on the preset parameter values: K = 30 and
ℓ = 2.

4.2. Discussions on Experimental Results

4.2.1. Fault Feature analysis. Through PCA dimensionality
reduction and sliding window operation, the sliding window
time subsequence of the principal component feature of each
fault sample data is obtained. Figure 10 is the feature gray-
scale image of a typical sliding window selected from 11
types of state faults (including 10 types of faults and 1 type
of normal state). It can be seen from the result that there
are significant differences in the stripes of the grayscale
images of different fault types.

The sliding window time subsequence goes through the
convolutional layer to further extract fault features and gen-
erates a feature submatrix set through convolutional opera-
tion. Figure 11 lists the grayscale images of the
characteristic submatrix at the time of 24 s, 48 s, 72 s, and
96 s for the normal state, the heat pipe water loss accident,
and the Main steam isolation valve closed accident,
respectively.

It can be seen from Figure 11 that the feature submatrix
sets of the same fault type at different times of the time series
have high similarity, as shown in Figures 11(a)–11(i). The
average grayscale difference between the grayscale images
of each feature submatrix set ranges from the lowest 41.1
to the highest 113.077. However, the feature submatrix gray-
scale images of different fault types have great differences,
and the value range is [188.213, 225.166], as shown in
Figures 11(j)–11(l). In addition, it can be observed that the
image brightness of Figures 11(j)–11(l) is significantly higher
than that of Figures 11(a)–11(i), which fully demonstrates
that the sliding window time subsequence can effectively
extract the fault features after being processed by the convo-
lution layer.

4.2.2. Diagnostic Accuracy Analysis. In order to verify the
accuracy and effectiveness of the model in detecting faults,
the generated data sets are used for 20 independent training
sessions, and the results are compared with the traditional
classic back propagation (BP) algorithm, one part in our
own method, LSTM method, and the classic CNN algorithm
in [14], which just generate image without the time dimen-
sion but simply repeating the single feature vector. The com-
parison indicators include the accuracy and different
training variances, and the results are shown in Figure 12.

The experimental results show that the accuracy and
training variances of the CNN models based on time-series
method and the sliding window mechanism are significantly
better than those of the BP neural network. In terms of accu-
racy, the average accuracy of the BP neural network is only
67%, the average accuracy of the LSTM method is 86.9%,
while the average accuracy of the model proposed in this
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Table 1: Fault category, coding, and parameters.

Condition type Numbers Label Fault setting in
PCTran

1. Normal state 2107 10000000000

−0
0
0
0
0
0
0
0
0

2. Heat pipe water loss
accident 2107 01000000000

1% of 100cm2

1

0

0

0

0

0

0

0

0

0

3. Cold pipe water loss
accident 2107 00100000000

1% of 100cm2

0

1

0

0

0

0

0

0

0

0

4. Steam pipeline inside
containment 2107 00010000000

1% of 100cm2

0

0

1

0

0

0

0

0

0

5. Steam pipeline outside
containment 2107 00001000000

5% of 100cm2

0

0

0

1

0

0

0

0

0

0

Table 1: Continued.

Condition type Numbers Label Fault setting in
PCTran

6. Water supply accident 2107 00000100000

-0
0
0
0
1
0
0
0
0
0

7. Main steam isolation
valve closed 2107 00000010000

-0
0
0
0
0
1
0
0
0
0

8. Coolant pump rotor
stuck 2107 00000001000

-0
0
0
0
0
0
1
0
0
0

9. Turbine accident
shutdown 2107 00000000100

-0
0
0
0
0
0
0
1
0
0

10. Steam pipe A pipe
broken 2107 00000000010

1% of 100cm2

0

0

0

0

0

0

0

0

1

0

11. Steam pipe B pipe
broken 2107 00000000001

1% of 100cm2

0

0

0

0

0

0

0

0

0

1
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paper is increased to 99%. In addition, the optimal accuracy
of the BP neural network is 98.7%, and the optimal accuracy
of the LSTM method is 90.9%, while the proposed model of
this paper is improved to 99.8%. In terms of variance, the
variance of BP neural network is 0.091, and the variance of
LSTM is 0.0027, while the model proposed in this paper is
only 0.0007.

For the comparison of the classification effect, this paper
selects the confusion matrix of the four methods’ one of the
typical experiments for comparison. The results are shown
in Figure 13. It can be seen that in the classification of the
normal state, the CT-CNN method has a very good perfor-
mance that only 1% of the normal state data is misdiag-
nosed; this conclusion is better than other methods. The
difference between the normal state and the fifth fault, steam

Table 2: CNN network parameters.

Structure name Network structure

Convolution layer 1
Number of filters:8
Kernel size: 3 × 3

Activation function:ReLu

Max-pooling layer 1 Pool size: 2 × 2

Convolution layer 2
Number of filters:16
Kernel size: 3 × 3

Activation function:ReLu

Max-pooling layer 2 Pool size: 2 × 2

Convolution layer 3
Number of filters:16
Kernel size: 3 × 3

Activation function:ReLu

Max-pooling layer 3 Pool size: 2 × 2
Fully-connected layer Nodes: 32; activation function: ReLu

Output layer Nodes:14; activation function: Softmax

Optimization algorithm
Adam algorithm (learning rate: 0.001;

beta1: 0.9; beta2: 0.99)

Loss function Sparse_categorical_crossentropy
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Figure 8: Accuracy of different K values when ℓ is equal to 2.
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Figure 9: Accuracy of different ℓ values when K is equal to 30.

Table 3: Accuracy of the different K values when l is equal to 2.

K value 10 20 30 40 50

Average accuracy 0.804 0.967 0.961 0.951 0.859

Best accuracy 0.839 0.987 0.994 0.997 0.999

Table 4: Accuracy of different l values when K is equal to 30.

ℓ value 1 2 3 4 5

Average accuracy 0.979 0.961 0.932 0.947 0.923

Best accuracy 0.999 0.994 0.980 0.977 0.960

(0) (1) (2) (3)

(4) (5) (6)

(8) (9) (10)

(7)

Figure 10: Subsequence grayscale image of sliding window for 11
types of faults (including normal state).
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t1=24s t2=48s t3=72s t4=96s

① Normal state

t1=24s t2=48s t3=72s t4=96s

② Loss of coolant accident (hot leg) 

t1=24s t2=48s t3=72s t4=96s

③ Accident of main steam isolation valve closure

– –

–

-

–

–

– – –

– – –

(a) diff between t1 and t2

Average gray diff: 54.584
(b) diff between t2 and t3

Average gray diff: 58.143 
(c) diff between t3 and t4

Average gray diff: 67.106 

(d) diff between t1 and t2

Average gray diff: 41.100
(e) diff between t2 and t3

Average gray diff: 40.661
(f) diff between t3 and t4

Average gray diff: 39.461

(g) diff between t1 and t2

Average gray diff: 84.916
(h) diff between t2 and t3

Average gray diff: 49.215
(i) diff between t3 and t4

Average gray diff: 113.077

(j) diff between ① and ②
Average gray diff: 189.515

(k) diff between ① and ③
Average gray diff: 188.213

(l) diff between ② and ③
Average gray diff: 225.166

Figure 11: Grayscale comparison of different faults at different times.
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pipeline outside containment, can be divided, and all faults
can be predicted more accurately.

Compared with the standard CNN method, the model
proposed in this paper also shows the improvement in accu-
racy. The highest accuracy rate of the standard CNN method
is 99.3%, and the average accuracy rate is 98.0%. By using
the approach in this paper, the highest accuracy rate is
improved by 0.5%, and the average accuracy is increased
by 0.8%. In addition, the variance of the two methods is
almost the same.

The above results show that the model proposed in this
paper has strong stability and accuracy.

5. Conclusion

This paper proposes a FD mechanism for NPP control sys-
tem, which is based on PCA, time-series analysis, and CNNs.
The CNNs process the time-series data collected by the NPP
system through the time window, which not only retains the
organic features of the internal time and state information of
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Figure 12: Accuracy comparison with four methods.
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Figure 13: Confusion matrix comparison with four methods.
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the data, but also reduces the processing difficulty and
improves the feasibility of the fault data. In addition, the
proposed approach can be adaptive to different data set
and demonstrates a stable training process. The experimen-
tal results show that the proposed approach can achieve bet-
ter performance in both detection accuracy and variance
than the classic back propagation (BP), LSTM, and standard
CNN algorithms. More significantly, the optimal accuracy of
the proposed model can be as high as 99.8%.
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