
Review Article
A Survey of Browser Fingerprint Research and Application

Desheng Zhang ,1 Jianhui Zhang ,2 Youjun Bu ,2,3 Bo Chen ,2 Chongxin Sun ,2,3

and Tianyu Wang 1

1School of Cyber Science and Engineering, Zhengzhou University, Zhengzhou 450000, China
2Information Technology Institute, PLA Strategic Support Force Information Engineering University, Zhengzhou 450000, China
3Purple Mountain Laboratories, Nanjing 210000, China

Correspondence should be addressed to Youjun Bu; buyoujun@pmlabs.com.cn

Received 13 July 2022; Revised 28 October 2022; Accepted 29 October 2022; Published 9 November 2022

Academic Editor: Pierre-Martin Tardif

Copyright © 2022 Desheng Zhang et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

With the development of modern browsing, the convenience brought by rich browser features has also produced a large number
of features, which are called browser fingerprints. This article surveys the latest research results on browser fingerprinting, hoping
to provide a convenient navigation for newcomers to research or apply this technology in the future. This paper first briefly
introduces the browser fingerprinting technology itself, then classifies the related research on browsers, and analyzes the
development of different research directions of browser fingerprinting in detail. And through the analysis of the existing
results, the problems faced by different research directions are pointed out. After that, this paper introduces the application of
browser fingerprint technology in detail and discusses the application achievements and technical challenges of this technology.
Next, this paper introduces the theoretical tools related to the research of browser fingerprinting technology and introduces the
application of different theoretical tools and practical significance. Finally, the research achievements of browser fingerprint
recognition are summarized, and the future development trend is pointed out.

1. Introduction

Websites often need to keep track of visitors for a variety of
reasons, such as maintaining log-in status or implementing
shopping cart functionality. The traditional user identity
tracking method is based on cookies, but cookie technology
has exposed more and more problems in recent years. For
example, many websites abuse cookies for advertising [1].
And because cookies are stored in the local end of users, it
is easy to lead to user information leakage and tampering
[2]. These problems have led to a growing distrust of cook-
ies, with many people installing add-ons to clear cookies or
simply using private mode. While cookie technology is
becoming more and more inefficient [3], browser fingerprint
technology has gradually developed and become a new
mainstream user tracking technology.

Browser fingerprinting technology is an associated prod-
uct of web technology, and its historical premise lies in the
rapid development of web technology. In the ancient era of

static web pages, in order to distinguish the Nexus browser
and the Mosaic browser, the developers proposed UserA-
gent, which was initially used to indicate what browser,
operating system, and respective version numbers the user
was using. Then, with the development of JavaScript, CSS
(Cascading Style Sheets), and back-end languages, the func-
tions of web pages have become richer and more interactive,
but the rich functions bring the possibility of exposing more
user information. After all, personalized services need to be
provided with personalized information. Then, with the
emergence of mobile devices such as mobile phones and tab-
lets, history has brought technologies such as HTML5 and
CSS3. The website can even directly call hardware interfaces
such as graphics cards. Diversified device adaptation also
requires more software and hardware information for the
web. The ways in which these characteristic information
are obtained are different, such as information about the
browser User-Agent field, by obtaining the HTTP message
header, and the IP address is requested by the user through

Hindawi
Wireless Communications and Mobile Computing
Volume 2022, Article ID 3363335, 14 pages
https://doi.org/10.1155/2022/3363335

https://orcid.org/0000-0003-3005-9305
https://orcid.org/0000-0001-6680-0949
https://orcid.org/0000-0002-1132-0937
https://orcid.org/0000-0002-0612-9257
https://orcid.org/0000-0003-1809-2524
https://orcid.org/0000-0002-9308-6856
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/3363335


the header of the IP packet is obtained, the screen resolution.
Such information requires JavaScript to obtain and so on.
Finally, a browser feature vector containing multiple features
is obtained. For example, Table 1 is a sample of browser
fingerprints.

The wheel of history is rolling forward, and the emer-
gence of browser fingerprint technology is a historical neces-
sity. When users obtain personalized, rich, and dynamic
services, they must expose more characteristic information.
This is not a loophole or a backdoor but a functional
trade-off.

1.1. Definitions. The browser fingerprint is a collection of all
feature information that can be collected through the
browser, but the feature information does not include the
data that the user actively fills in and submits. Browser fin-
gerprints and fingerprint similar to humans rely on the
uniqueness of fingerprints browser browsing device itself,
and it does not change with changes in the environment.
Therefore, even in the case of encrypted network, anony-
mous network, mobile network, and even crossdomain, it
can be identified. Modern browsers are very complex, each
component has different characteristics, and these character-
istics combined to form a unique fingerprint of the browser.

1.2. Organization. The main structure of this paper is as fol-
lows. Section 1 introduces the background of browser finger-
printing, related definitions, and contributions of this paper.
Section 2 briefly introduces browser fingerprinting, and then
according to different research directions, it introduces the
existing research results and research challenges. Section 3
summarizes the existing application achievements and the
application problems faced according to different applica-
tion scenarios. Section 4 enumerates the mathematical tools
and methods in browser fingerprint research, and points out
its practical significance. In Section 5, the general situation of
browser fingerprinting technology is discussed.

2. Related Research

2.1. Origin. Before 2010, if the unique identity of a browser
was mentioned, people would think of cookie technology.
The cookie technology is to store the user’s unique identity
in the browser locally and return the cookie when a request
is made. While this solved some problems and is still an
important part of browser fingerprinting today, it was inev-
itable that cookie technology would decline. Cookie technol-
ogy is the data stored on the client; after all, the security and
availability cannot be guaranteed. To protect their privacy,
many users add plug-ins that prohibit the use of cookies
when using browsers, and modern browsers also provide
privacy modes to invalidate cookies.

In 2009, Mayer [4] published a study on Internet ano-
nymity. In a small sample experiment, he pointed out that
users can be identified by collecting characteristic informa-
tion of browsers, but the concept of browser fingerprints
was first proposed in 2010 by Eckersley [5] of the Electronic
Frontier Foundation. It takes advantage of the various fea-
tures offered by modern browsers. When a user requests a

web page, the Web server obtains and sends back some
unique information about the user’s browsing device by
embedding JS code or another way. The information
includes the de browser version, whether cookie is enabled,
screen resolution, browser plug-in, system font, time zone,
and so on. It can identify unique user entities. Browser fin-
gerprint technology is stateless; that is, the use of browser
fingerprints does not require any information to be stored
on the client-side, and naturally, users cannot invalidate
browser fingerprints by disabling cookies or privacy modes.
In addition, browser fingerprints have high information
entropy and are easy to obtain, and users will generate the
same fingerprint for multiple visits and can be used for
crossdomain identification and other excellent features.

In the ensuing time, scholars continued to conduct
research on browser fingerprinting technology, trying to fur-
ther tap the potential of this technology. For example, Mow-
ery and Shacham [6] in 2012 explored the fingerprint
features brought by Canvas in HTML. In 2015, FaizKhademi
et al. [7] studied the detection and defense of browser finger-
prints. In 2018, Vastel et al. [8]studied the long-term evolu-
tion of browser fingerprints. According to different research
directions, we have classified and summarized the existing
browser fingerprint-related research, which can be roughly
divided into three aspects: feature acquisition research, fin-
gerprint defense research, and fingerprint evolution
research. These three directions are discussed separately in
the following sections.

2.2. Feature Acquisition Research. The ultimate goal of
browser fingerprinting is to track the unique user entity.
Therefore, obtaining high-entropy, long-lasting, and prefer-
ably crossbrowser-related fingerprint features is the main
research direction for scholars in obtaining browser finger-
prints. Due to the powerful functions and rich interfaces of
modern browsers, it also provides many possibilities for
researchers to obtain browser fingerprints. At the end of this
section, Table 2 is given, which summarizes the characteris-
tics of the various browser fingerprint acquisition methods.

2.2.1. JavaScript-Based Fingerprints. Due to the powerful
function of JavaScript, JavaScript code can be easily used to
obtain many fingerprint information of the client’s browser,
such as browser version, operating system, and system archi-
tecture. Many researchers use JavaScript technology to
obtain browser fingerprint [2–5]. Among them, Mowery
et al. also used the NoScript plug in the literature [9] to
obtain its whitelist as part of the characteristic fingerprint.
Mulazzani et al. [10] later optimized for JavaScript engine
recognition, using the different characteristics of the com-
plex JavaScript parsing engine, and reliably identifying a
given browser through JavaScript engine fingerprints.

2.2.2. CSS-Based Fingerprints. While JavaScript can be easily
accessible for many features, there are negative effects of
JavaScript being too powerful, such as many browser plug-
ins that disable all or part of JavaScript scripts. Unger et al.
began to use CSS (Cascading Style sheet) as a part of finger-
print in 2013 [11], and Takei et al. made full use of CSS

2 Wireless Communications and Mobile Computing



features of browsers in 2015 [12] for fingerprint acquisition.
The principle is that when different rendering engines of
browsers parse CSS, the implementation states of each attri-
bute are different. Differences occur in Web browser
requests, and these differences are exploited to construct
unique browser fingerprints. In 2021, Laperdrix et al. [13]
proposed a new method to obtain fingerprint features by

injecting style sheets. It can uniquely identify browser exten-
sions from the context of the visited page. This is a new way
to get plugin features via CSS.

2.2.3. Canvas-Based Fingerprint. Modern browser for
HTML5 support offers many powerful features to the user
but also left a risk, in order to further exploit the browser

Table 1: Browser fingerprint sample.

User-Agent
Mozilla/5.0 (Windows NT 10.0; Win64; ×64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/92.0.4495.0 Safari/

537.36

Accept text/html, application/xhtml+xml, application/xml; q = 0:9, image/webp, ∗/∗; q = 0:8

Accept-language zh-CN, en-US; q = 0:5
IP 104.193.88.123

Platform Windows

Vendor Google Inc.

appName Netscape

Product Gecko

appVersion 5.0 (Windows NT 10.0; Win64; ×64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/92.0.4495.0 Safari/537.36

cookieEnabled True

Logical
processors

8

Local time Mon Jul 05 2021 09 : 57 : 32 GMT+0800 (China Standard Time)

Resolution 1920 × 1080
colorDepth 24

WebGL vendor Google Inc.

WebGL renderer ANGLE (Intel(R) HD Graphics 4600 Direct3D11 vs_5_0 ps_5_0)

… …

Table 2: Summary of browser feature research.

Ways to get fingerprints
Representative

work
Features

JavaScript-based fingerprints
[2, 3] Its essence is to use JS to call various APIs to obtain various information.

[10] Use the features of the JS engine as the browser feature to identify users.

CSS-based fingerprints [11, 13] Use the parsing feature of CSS as a feature to avoid the problem of users banning JS.

Canvas-based fingerprint [14]
Canvas fingerprints have the characteristics of consistency, high entropy, and

orthogonality with other fingerprints.

Hardware-based fingerprints [15, 16]
Most of them have formulated different tasks for the hardware to execute and infer the

hardware characteristics based on the results.

Fingerprint based on Audio API [20] Use the difference in audio processing of different browser devices as a feature.

Plugin-based fingerprint [22–24]
The browser plug-in will modify the web page and the browser itself, because these are

all features. However, the ways of obtaining them are more diversified.

Other browser fingerprint
acquisition technologies

[26]
The author’s goal is to capture the position of the user’s gaze, but since the gaze is

difficult to obtain, the replacement of the mouse track is used.

[27]
The reason is that different browsers parse some HTML differently. The author

constructs multiple XSS vectors, and the generated parsing features are returned as
fingerprints.

[30]

The author uses JS code to construct a bunch of computing tasks and combines the
system’s time API to obtain the running time of the user’s browser, which can
distinguish user devices by task execution, but this method requires a certain

performance cost on the web front end.

[31]
The author uses network delay as a fingerprint feature. Obviously, this technology
cannot cope with network proxy and VPN technology and has strong limitations.

3Wireless Communications and Mobile Computing



get more unique fingerprint, Mowery and 2012 documents
in [6]. By rendering the text and WebGL scene to the <can-
vas> element, a brand new fingerprint is obtained. The new
fingerprint having uniformity, high entropy, orthogonal to
the other fingerprints, transparent to the user, and easily
accessible is good property. Then, Acar et al. [14] on the can-
vas on a large scale study and the use of modern literature
browsers fallback font mechanism to generate more between
devices fingerprint high entropy.

2.2.4. Hardware and Software-Based Fingerprints. The char-
acteristics of WebGL have been mentioned before [5], but it
is mainly used to prove the difference of different hardware
rendering WebGL. In a 2015 study by Nakibly et al. [15], it
was proposed that the device be fingerprinted by measuring
the relative clock deviations of the device’s CUP and GPU
through some complex rendering task. In Laperdrix et al.’s
research [16], it is mentioned that the precise device model
can be obtained directly through the WEBGL_debug_ren-
derer_info interface. In 2016, Bursztein et al. [17] of Google
designed a browser fingerprint protocol by using JS and
Canvas, which can accurately distinguish the software and
hardware stack of mobile or desktop clients. In 2017, Cao
et al. further improved WebGL’s recognition of hardware
fingerprints in literature [18]. Through a series of 31 render-
ing tasks, they were able to uniquely identify more than 99%
of the test devices in 1,903. In 2019, Schwarz et al. made use
of many JavaScript features not mentioned in MDN docu-
ments in literature [19]. The system architecture, memory
allocation, operating system fingerprint, and to a certain
extent can be immune to the browser fingerprint technology.

2.2.5. Fingerprint Based on Audio API. Similar to the above
WebGL technology, Englehardt et al. proposed the finger-
print based on Web Audio API in literature [20] in 2016.
In this paper, the signal generated by Oscillator Node, a
script for processing audio, is used as the unique audio fin-
gerprint. Queiroz et al. went a step further [21]. The author
tested various browsers and related hardware and software
combinations in detail to obtain detailed fingerprint data,
but the author still pointed out that using Web Audio API
alone as a fingerprint is not very reliable.

2.2.6. Plugin-Based Fingerprint. Browser plugins bring con-
venience to users but also bring more characteristic informa-
tion. In 2017, Sjosten et al. [22] proposed to use Web
Accessible Resources to detect whether the specified browser
plug-in is installed. Both Chrome and Firefox require exten-
sion resources referenced in regular web pages. That is, you
can determine whether the specified plug-in exists by acces-
sing the URL in the form “extension:///.” While most plug-
ins can already be detected this way, not every extension
has this accessible resource; so, there will still be some
plug-ins that will not be detected by this technique. In the
same year, Starov et al. [23] adopted different methods to
detect the installation of browser plug-ins. The principle is
that many plug-ins will modify the DOM of web pages. By
detecting the relevant modifications, the plug-in installation
of relevant users can be learned, and then the unique user

can be determined. In the same year, Sanchez-Rola et al.
[24] proposed a new time-side channel attack for access con-
trol to detect the installation of browser plug-ins. The author
claimed that his detection effect was better than all previous
extended fingerprint detection methods. In 2019, Starov
et al. [25] further advanced the previous research on the side
effects of browser plug-ins modifying web elements, includ-
ing the possibility of injecting empty placeholders, injecting
script or style tags, or sending messages on the page. The
authors analyzed 58,034 extension stores from Chrome
and found that 5.7% of them contained fingerprint able
bloat. 61% of these extensions are recognized.

2.2.7. Other Browser Fingerprint Acquisition Technologies.
Recently, Fuhl et al. [26] did some very groundbreaking
work. The author first did the correlation between the
human eye and the mouse movement trajectory and then
demonstrated the possibility of using the mouse movement
as a fingerprint, but the author only proves this research.
There are still many areas to be studied for the possible effec-
tiveness of future applications. In 2012, Abgral et al. used
XSS attacks in a different way in the literature [27] to obtain
the characteristics of different browsers’ HTML parsers as
fingerprints. The fingerprints obtained in this way are diffi-
cult to be deceived, and it is very difficult to simulate a
behavior without running the HTML parser itself. In 2015,
Fifield and Egelman [28] proposed a web browser finger-
print recognition technology based on measuring the screen
size of font glyphs. The author mainly uses different
browsers and fonts to achieve different final rendering
effects. The author tested more than 1,000 web browsers.
Users finally able to identify 34% of them. In 2016, Egelman
et al. [29] analyzed HTML5’s abuse of battery API, and
short-term battery can be used as a sign of short-term user
identification. In 2018, Sanchez-Rola et al. [30] proposed a
time-based device fingerprint recognition, which is to mea-
sure the execution clock difference through a series of Java-
Script codes, and finally achieve the effect of identifying
users. In 2021, Wu et al. [31] proposed a characteristic fin-
gerprint based on the time delay of users to websites. For
users to switch browsers and use virtual machines, the recog-
nition rate still exceeds 80% after IP transformation.

By summarizing and sorting out the above content, we
can roughly see that there are three problems to be solved
in browser fingerprint research:

(1) JS dependency problem: Most of the above finger-
print feature acquisition relies on JavaScript technol-
ogy. The first part of the feature is directly based on
JS, Canvas relies on JS drawing, and the fingerprint
feature based on audio or hardware either depends
on JS to call the operating system API or depends
on JS to build rendering tasks. Putting eggs in the
same basket is not a good thing; although, in the
short-term, there is no possibility that JS will be
eliminated like Flash, but user disabling and throt-
tling and normalization of OS API calls are already
happening. How to reduce the dependence of JS
and develop a feature acquisition method that does

4 Wireless Communications and Mobile Computing



not depend on JS is the first problem faced by the
future research of browser fingerprinting. Takei
et al. [12] and Wu et al. [31] gave us a good start
in this regard, using CSS and network latency to con-
struct fingerprints, respectively. These two technolo-
gies still have the potential for further development
in both application scenarios and application effects

(2) Crossbrowser fingerprinting issues: a large part of
the characteristics of browser fingerprinting is
beyond the specific browser, such as screen resolu-
tion, operating system, time zone, and IP, which
reveal the possibility of crossbrowser fingerprinting
applications. Articles [3, 11], respectively, show two
challenges in implementing crossbrowser finger-
printing, one is how to reasonably set the weights
of different features in matching recognition, and
another is how to obtain more stable and higher
entropy fingerprint features

(3) Obtain differential fingerprints in a homogeneous
environment: from the above introduction, we can
intuitively understand that more than 90% of the
above fingerprint features are based on the hardware
and software information of the device. For homoge-
neous environments, such as Internet cafes and com-
puter rooms, all computers have the same hardware
and software devices and are in the same subnet.
Most of the above methods can effectively distin-
guish them. For this problem, Fuhl et al.’s research
[26] is creative, and they use the user’s behavioral
characteristics to construct fingerprints and demon-
strate the feasibility of the method through experi-
ments. It is believed that future scholars can
propose more creative solutions to the problem of
fingerprint acquisition in a homogeneous
environment

2.3. Fingerprint Defense Research. Browser fingerprints are a
huge hazard to privacy for identification, especially finger-
print acquisition in most cases without the user noticing it.
The use of browser fingerprints is best to be safe and con-
trollable; that is, in addition to accurately tracking users
when they need to be identified, they can also be protected
when users do not want to expose their browser fingerprints.
Scholars’ technical research on browser fingerprint protec-
tion is dedicated to providing safe and effective protection
methods when users want to hide themselves. At the end
of this section, Table 3 is presented to compare the advan-
tages and disadvantages of various protection methods.

2.3.1. Browser Protection Plugin. After the publication of
Eckersley et al.’s study [5], people became more and more
aware of the harm of browser fingerprint to privacy, and
more and more researches on browser fingerprint protection
began to be carried out. Boda has released a browser plug-in
for browser fingerprints called Firegloves [32]. The plug-in
returns random values when querying certain properties,
but because the same properties can be retrieved through
different browser API, users of Firegloves are easier to iden-

tify than users who have not installed the extension. Torres
et al. developed FP-Block [33] to address the problem of
crossdomain tracing of browser fingerprints. It generates dif-
ferent fingerprints for different sites, without affecting con-
tinuous tracking and isolating cross-domain tracking. Faiz
Khademi et al. proposed [7] to detect whether websites were
collecting fingerprints by monitoring web objects running
on users’ browsers, protect users from fingerprint identifica-
tion by randomization strategy and two filtering technolo-
gies, and put relevant websites into blacklist, but this
approach relies on the ability to identify anomalies on the
site. Since both of these plug-ins return random values, they
have similar problems with Firegloves.

2.3.2. Randomization Method. Besson et al. pointed out in
the 2014 literature [34] that the idea of randomization is
not a problem, but how to randomize is a problem that
should be further studied. In this paper, the author uses
information theory channels to model the knowledge of
trackers and fingerprint recognition programs and finally
proposes a randomization mechanism to ensure the privacy
of any program, reducing the need to provide fingerprints.
In 2015, Nikiforakis et al. [35] introduced the concept of
randomization strategy. Different randomization strategies
can cope with different environments, making it convenient
for developers and their own needs to balance effectiveness
and usability. Laperdrix et al. [36] adopts the idea of mobile
target defense for the randomized return of fake fingerprints,
using software diversity and dynamic reconfiguration to
automatically assemble diverse browsers. However, its spe-
cific implementation is through a virtual machine, and the
performance consumption cannot be ignored. Aiming at
the fingerprint of the browser plug-in, Trickel et al. [37]
designed CloakX. The author randomized the network
accessible resource path. Through static rewriting of the
extended JavaScript code and dynamic DOM proxy Droxy,
it instantly intercepts and rewrites extension requests to
achieve protection in the user’s browser plug-in installation
situation.

2.3.3. Uniform Methods. The opposite of randomization is
unification. Wu et al. proposed a method of unifying
WebGL [38] to combat browser fingerprints. The author
analyzed the reasons for the differences in WebGL and pro-
posed a new system called UNIGL to rewrite GLSL. The pro-
gram is that WebGL presents the same rendering effect to
erase the fingerprint of WebGL. Also in 2014, Fiore et al.’s
idea [39] is even simpler. The author directly constructs a
set of fake fingerprint information to deal with browser fin-
gerprint tracking, but if it cannot be changed reasonably, the
goal of tracking the user’s identity, regardless of true and
false fingerprints, will provide tracking effects.

2.3.4. Other Protective Way. In 2015, Yokoyama and Uda
[40] proposed a method of using local agent to rewrite the
browser fingerprint value to prevent the third party from
pursuing individual users. Its advantage is that for a single
user in the LAN, there is no need to install redundant hard-
ware and software locally, but the disadvantage is that there

5Wireless Communications and Mobile Computing



is nothing you can do with a local technique that returns a
HASH value after calculating the fingerprint. In Baumann
et al.’s literature [41], the author made a revision to protect
browser fingerprint directly based on Chromium, so that
Flash and Canvas fingerprint recognition can be prevented
without disabling Flash and HTML5 canvas functions, and
the returned fingerprints are all real collected fingerprints,
which are fixed in the whole browsing session. It reduces
the possibility of being identified by the site as an abnormal
fingerprint. Later, Laperdrix et al. [42] also adopted the same
idea and proposed a revision based on Firefox, adding fin-
gerprint protection against AudioContext. As for obtaining
browser fingerprints from XSS attacks mentioned above
[27], Mitropoulos et al. proposed a training method in the
literature [43] to deal with known XSS attacks. Later,
ElBanna and Abdelbaki proposed a framework to reduce
browser fingerprint [44], which is mainly aimed at finger-
print tracking of WebGL and Canvas.

Although there seems to be a lot of research on browser
fingerprint defense, for individual users, there are almost
only random ways to protect themselves, that is, using
plug-ins or browsers that randomly generate fingerprints.
The reason lies in two aspects:

(1) It is almost impossible for the client to determine
whether the website’s call to feature information is
illegal or legal. For example, for a request for screen
resolution information, the user cannot determine
whether the website is for adapting the web page lay-
out or just for recording user device information

(2) The unification of a small number of users is mean-
ingless: the unification of the interface requires the
cooperation of various manufacturers and related
technical institutions to achieve, such as formulating
a unified WebGL and Canvas rendering effect, which
seems to be a very ideal solution, but there is almost
nothing individual users can do about it

2.4. Fingerprint Evolution Research. In life, we judge whether
a person has touched something by directly comparing his
fingerprint with the fingerprint on the object. But with

browser fingerprinting, the situation gets more complicated,
and leaving aside the issue of fake fingerprints, a single user’s
browser fingerprint can change even if he uses the same
browser on the same device for multiple visits. We call this
the evolution of browser fingerprinting. There may be vari-
ous reasons for this, such as upgrading the browser version,
installing certain plug-ins, and using only certain settings,
which may cause changes in the browser fingerprint of the
same user. At the end of this section, Table 4 compares the
browser fingerprint evolution tracking algorithms proposed
by different articles.

In the early days of browser fingerprinting concepts, at
the time of Eckersley’s original article [5], the author stated
that 37.4% of users who allowed cookies to visit the site mul-
tiple times showed more than one fingerprint over time. But
fortunately, the paper also points out that these changes are
not random, and a reasonable matching algorithm can be
used to continuously track the evolving fingerprint. A simple
correlation algorithm is given in this paper, and the feasibil-
ity of tracking the evolving fingerprint is proved by
experiments.

Munoz-Garcia et al. [45] put forward a clustering algo-
rithm in 2012, which can cluster different fingerprints of
the same browser, but its clustering algorithm needs to com-
pare more times, and the amount of extra JavaScript code in
the web page to obtain some fingerprint attributes. The
interpretability of the clustering algorithm is not particularly
strong. The author analyzed disagreement decay of various
features in his research on browser fingerprint evolution pat-
terns, and its data and research methods are very instructive.
In 2015, Yamada et al. [46] used enhanced editing distance
to measure the degree of evolution of browser fingerprint.
However, the limitation is that the authors only use this
method to measure a list of browser plug-ins and do not
extend it to all fingerprint features of the browser. Later,
Vastel et al. [8] propose two methods to track browser fin-
gerprint evolution, one is based on rules, and the other is
based on the random forest algorithm. It can track browsers
for 54.48 days and can track 26% of browsers for more than
100 days. Given that browsers change with time, Li et al.
constructed time series based on browser fingerprint sam-
ples with different time steps as input vectors in reference

Table 3: Summary of browser fingerprinting defense.

Methods of
defense

Representative
work

Advantage Disadvantage

Browser
protection
plug-in

[32, 33]
Development and application are

convenient
The browser plug-in itself can also become an identified

feature

Randomization
method

[35–37]
Randomization can disguise as a desired
feature while protecting user privacy

Abnormal combinations of random features are quickly
identified as false identities

Uniform
methods

[38, 39]
Unification facilitates application
development and processing

The unification of a single or part of the user still has the
recognition value, and the advantages of unification

require industry-wide efforts

Other
protective way

[40–44]
Hiding browser fingerprints through

browsers or modifying network agents is
generally better defensive

Users are required to change their browser or modify their
network devices

6 Wireless Communications and Mobile Computing



[47] and adopted the LSTM (Long Short-Term Memory)
algorithm to track fingerprint evolutions, achieving better
results than reference [8]. Recently, Bird et al. [48] proposed
a semisupervised machine learning method for detecting fin-
gerprint scripts. The method is extended to detecting
unknown scripts by candidate scripts that may contain fin-
gerprint recognition. This semisupervised learning method
is robust to incomplete and small tag sets. Also in 2020, Qixu
et al. [49] adopted Bi-RNN (bidirectional cyclic neural net-
work) and added attention mechanism to deal with long-
term fingerprint evolutions. And the author tried to use
the gradual web application and browser fingerprint com-
bined to improve the stability of recognition. Li and Cao
[50] conducted the first large-scale study on millions of fin-
gerprints. The author not only analyzed the algorithm to
track the evolution of fingerprints but also analyzed the rea-
sons for the changes of different features of fingerprints and
paid attention to the impact of browser fingerprints on
information leakage, such as some fonts will reveal whether
the user has Office installed, while the time zone and IP may
reveal the user’s physical address. The research of Pugliese
et al. [51] is a fortune. The author conducted a three-year
survey on more than 1,300 users. In addition to studying
the feasibility of tracking users by tracking the browser fin-
gerprint evolutions, they also studied users’ privacy behav-
ior, their perception of browser fingerprinting, the
countermeasures they apply, and the impact of their study.

In general, the research on browser fingerprint evolution
still has the following problems:

(1) The long-term fingerprint evolution dataset prob-
lem: due to the privacy problem of browser finger-
printing, many researchers refuse to disclose their
own datasets, and in the article [8], the author only
open-sources some of the data. However, new
researchers often lack enough time to collect long-

term fingerprint evolution data. This supply-
demand conflict looks set to continue in the short-
term

(2) Matching algorithm performance issues: in the arti-
cle [50], it is pointed out that for many matching
algorithms, once the data set is expanded to the mil-
lions level, the time consumption cannot be ignored.
Considering the number of daily visits to large com-
mercial websites, this is an unavoidable problem

(3) Long-term tracking of browser fingerprint evolution:
track users’ browser fingerprinting for as long as
possible, and there is always room for reoptimization

3. Browser Fingerprint Application

3.1. Commercial Advertisement Recommendation. When the
browser fingerprint was first proposed [5], it was pointed out
that it could be used to track users, and its characteristics
were similar to cookies. It was pointed out in the article that
the browser fingerprint could be used as a unique identifica-
tion mark alone or in combination with other marks to
uniquely locate users. So, browser fingerprints can generally
be used to do all the things that require identifying a user. Its
workflow is shown in Figure 1. One of the first and largest
applications is that commercial companies use to target
users for advertising, price discrimination, and to collect
users’ physical and financial status and other privacy [52].
In 2013, Nikiforakis et al. conducted a large-scale study on
the application of browser fingerprint in business [53]. The
author captured as many as 20 pages from each of the top
10,000 Alexa sites for analysis, and the final results showed
that the research results showed that fingerprint identifica-
tion has become a part of some of the most popular Internet
sites.

Table 4: Fingerprint evolution tracking algorithm.

Algorithm Ref. Feature processing method The experimental results

Rule-based
algorithm

[5]
Eight features such as User-Agent and http-accept are

selected.

The algorithm requires some prerequisites, there is a 65%
probability that the algorithm will start, and the accuracy

rate after startup will be 99.1%.

Clustering
algorithm

[45]

Four feature weight distribution methods were selected:
(1) average weight, (2) entropy as a weight, (3)

disagreement decay as a weight, and (4) consider both
entropy and disagreement decay.

It is best in the case of feature processing scheme 4, with
an accuracy rate of 99.98%, the precision is 93%, and the

recall is 87%.

Algorithm
based on
feature
similarity

[46]
Measured by Levenshtein distance of Pluginlist in the
browser, the author selected different thresholds and

access intervals for the experiment.

When the threshold is set to 60, the accuracy reaches
97.94%. When the threshold is 53, the accuracy is still
97.57 when the access interval exceeds four weeks

Random forest [8]
Eight features were selected according to their influence
on the classification results. Random forest selects 10

trees and 3 features.

The best ownership of the article is 0.985, which means
that for long-term tracking of each browser, only 1.5%

match errors.

LSTM [47]
In this paper, fingerprint features are transformed into
one-dimensional vectors, and the latest three fingerprints

are input into a group each time.

The best accuracy of the training set is 92.4%, and the
best accuracy of the test set is 93.3%.

Bi-RNN [49]
The authors split the UserAgent attributes and then

weighted the sum. The Canvas element is CRC replaced.
The best F1-score of this method reached 99.25%.

7Wireless Communications and Mobile Computing



3.2. Strengthen Safety Certification. Browser fingerprint not
only threatens user privacy but can also be used to
strengthen security authentication. For example, Unger
et al. use browser fingerprint to strengthen HTTP and
HTTPS identity authentication [11]. Preuveneers and Joo-
sen’s literature [54] propose a protocol that detects various
parameters in session authentication and then uses adaptive
and dynamic context fingerprints based on Hoeffding trees
to continuously determine whether the user’s identity is real
or not. In 2019, Joosen et al. [55] used Canvas fingerprints
made from software and hardware stacks, combined with
deep learning technology, to authenticate users and thus
protect against replay attacks. The entire authentication pro-
cess is supported natively by any major browser, client-side
stateless, transparent to the user, and very user-friendly to
the user experience. In the same year, Laperdrix also adopted
Canvas fingerprint to strengthen identity authentication
[56]. Unlike Rocket, which uses deep learning to extract fea-
tures and then compare them, Laperdrix, like Cooke, gener-
ates unique, unpredictable, and highly diverse canvas images
each time a user logs into the service. The next user link
must check that the current Canvas image is a perfect match
for each pixel previously generated or reauthenticate. In
2021, Andriamilanto et al. [57] conducted a large-scale
experiment on browser fingerprints to strengthen web
authentication. Users will verify the fingerprints of the login
browser each time they log in. The error rate in the author’s
experiment is only 0.61%, but browser fingerprint verifica-
tion is best just a secondary verification; otherwise, users
may fall into the river with their web accounts and mobile
phones.

3.3. Protection Service Provider. Web service providers can
also use browser fingerprint technology to protect them-
selves. Traditional intrusion detection and other network
attack defense methods are relatively passive, whose main
purpose is to prevent attackers and protect servers. The
addition of browser fingerprint technology can trace the
source of network attackers to a certain extent, so as to find
out the real identity of the attackers, which, to some extent,
gives web service providers the active defense ability,
increases the attack cost of the attackers, and can deter the
attackers to a certain extent. In 2016, Liu et al. [58] proposed
to use enhanced browser fingerprint to track attackers,
mainly introducing secondary attributes that are helpful for
correlation judgment but are not easy to change and utiliz-
ing the storage technology of the browser. Later, Jia et al. fur-
ther combined browser fingerprint and honeypot [59] and
proposed a mini honeypot for browser fingerprint, which
is more convenient for users to deploy and use. On the inter-
nal network of a service provider, there may be a complex
intranet, and the configurations of different devices may be
complex and full of vulnerabilities. Browser fingerprint tech-
nology can quickly and easily reflect the hardware and soft-
ware configuration of different devices. Network
administrators can perform security configuration and
monitoring.

3.4. Browser Fingerprints Prevent Robot Accounts. Many
companies have already adopted a variety of methods to
detect robots and scripts, such as ThreatMetrix [60], Distil
Networks [61], MaxMind [62], which all use browser finger-
prints to detect robots and abnormal activities. In the

Te script gets 
the value of the 

browser 
fngerprint

Database

Historical data
Real-time 

data

Data storage

Feature extraction and 
identity matching of 
browser fngerprints

Web server User PC

GET https://www.example.com/

Sen the value to server

HTTP 200/index.html

HTTP 200/js/fngerprint.js

GET /js/fngerprint.js

Figure 1: Browser fingerprint workflow.

8 Wireless Communications and Mobile Computing



literature [8] the authors mentioned that their Picasso sys-
tem can successfully distinguish between the browser series
(Chrome, Firefox, etc.) and the operating system series
(Windows, iOS, OSX, etc.) more than 52 million clients,
100% of which accuracy. It can be used to combat script
abuse in the Play Store or other mobile application markets,
and it can also protect user accounts from logging in from
unknown devices. In 2016, Quanzhu et al. already [63]
aimed at the current hospital’s online registration service
for popular expert accounts that have been robbed by the
scalpers, combined with the characteristics of browser fin-
gerprint technology that can identify the identity of the
browser visiting users, and designed an identifiable registra-
tion system for the prevention of scalpers by the identity of
the registered person. In Qingxuan’s article [64], in response
to the problem of false evaluation, combined with the char-
acteristics of device fingerprints that can identify the identity
of the browser visiting users, an identification system that
can identify the identity of false orders is designed.

3.5. Reverse User Software and Hardware. In the article by
Schwarz et al. [19], it is mentioned that reverse thinking is
adopted, and the characteristics of browser fingerprints are
used to reverse the characteristics of users. The user’s soft-
ware and hardware information can be obtained through
browser fingerprints. Many users cannot install security
patches or upgrade security in time; so, attackers can use
the public CVE [65] vulnerabilities to carry out targeted
attacks. Malwarebyte has extensively documented how mali-
cious advertisements use fingerprints to send malware to
vulnerable devices in the literature [66]. Attackers use
browser fingerprinting technology to check whether users
have exploitable vulnerabilities, and if so, jump to contain
malicious code. Page. In 2016, Saito et al. proposed [67] to
use browser fingerprints to infer the user’s CPU characteris-
tics, mainly to determine whether the CPU supports
Advanced Encryption Standard New Instructions (AES-NI)
and Intel Turbo Boost Technology (Turbo Boost). Later,
the author carried out further advancement [68], able to
identify more CPUs, and the number of CPU cores with
higher precision. After the Spectre and Meltdown vulner-
abilities were exposed, it can be said that the leakage of this
information poses a significant security threat to users. Con-
cerning results were shown in a 2020 [69] study, and
browser extension fingerprinting may lead to personal data
leakage, such as religious and medical. issues. Fortunately,
these are not direct leaks, but the author’s inferences based
on the description of the plug-in, but it is still worth alerting.

Although browser fingerprinting technology has been
applied in many scenarios, it still has not become an almost
necessary technology for the web like cookies, mainly
because of the following reasons.

(1) Performance consumption is a problem: compared
with cookie technology, the performance consump-
tion of browser fingerprinting technology cannot be
ignored. Its main performance consumption is
reflected in three aspects. The first is the acquisition
of web front-end browser features, which usually

requires running a large amount of JS code, which
will consume a lot of user resources to run. The sec-
ond point is that when transmitting fingerprint data,
network delay and bandwidth are unavoidable. The
third point is the performance consumption of the
server for browser fingerprint matching. The con-
sumption of these three stages is unavoidable and
can only be optimized according to the needs

(2) Iterative problem of technology update: browser fin-
gerprinting is an accessory of the rapid development
of web technology, and many ways of acquiring fin-
gerprint features will change or disappear with tech-
nological upgrades. For example, Flash-based
acquisition methods no longer exist. If you want to
use the browser fingerprint technology for a long
time, you need to constantly follow the relevant
web technology to upgrade your browser fingerprint
related code

4. Evaluation and Processing Methods of
Browser Fingerprints

4.1. Browser Fingerprinting Feature Evaluation Tool.
Browser fingerprints are complicated, and different compo-
nents have different occurrence probabilities. How to
describe and measure the uncertainty of this information is
a common problem faced by all scholars. In 1948, Shannon
proposed the concept of “information entropy,” which
solved the problem of people’s quantitative measurement
of information. In the literature [5], the information of the
browser fingerprint is modeled. The article assumes that
there is a browser fingerprint algorithm FðxÞ, which is sim-
ilar to the Hash function, for each input browser fingerprint
x. There is a unique output FðxÞ = f n, n ∈ ½0, 1,⋯,N�. The
probability of each result f n is Pð f nÞ. Then, you can get
the corresponding self-information amount:

I F xð Þ = f nð Þ = − log2 P f nð Þð Þ: ð1Þ

The result IðFðxÞÞ is rounded up to indicate how many
bits are needed to represent the information, and the infor-
mation entropy of the corresponding browser fingerprint is
the expectation of information entropy. Here is the follow-
ing formula:

H fð Þ = −〠
N

n=0
P f nð Þ log2 P f nð Þð Þ: ð2Þ

The browser fingerprint is composed of the hardware
and software components of multiple browsers. A similar
method can be used to define the definition of a single com-
ponent of the browser. The fingerprint of a single compo-
nent is Fsð·Þ, s ∈ S. The self-information amount and
information entropy of its individual components are

9Wireless Communications and Mobile Computing



defined as follows:

Is f n,s
À Á

= − log2 P f n,s
À ÁÀ Á

,

Hs Fsð Þ = −〠
N

n=0
P f n,s
À Á

log2 P f n,s
À ÁÀ Á

:
ð3Þ

If the components are independent of each other, their
information entropy can be linearly added, but this is not
the case. The fingerprint components of multiple browsers
are often related to each other. For example, the Edge
browser is mostly related to the Windows system, while
the Safari browser is often bounded to the IOS system; so,
it is necessary to use conditional self-information to measure
multiple components together:

Is+t f n,s, f n,t
À Á

= − log2 P f n,s f n,t
��À ÁÀ Á

: ð4Þ

The method of information entropy can be used to dem-
onstrate the feasibility of using browser fingerprints to iden-
tify users. Since the actual probability cannot be obtained, a
statistical approximation can only be obtained. Therefore,
when the browser fingerprint algorithm is actually used for
user tracking, it is best to first perform statistical collection
of browser fingerprint information and reasonably evaluate
the information volume and information entropy of each
component of the browser fingerprint. When performing
the comparison of browser fingerprints, a certain weight
can be selected according to different information entropies.

4.2. Browser Fingerprint Evolution Evaluation Tool. But
more often, we hope to quantify the degree of difference
between the two browsers. Yamada uses the edit distance
to describe the degree of difference [46]. Edit distance, also
known as Levenshtein distance, is a quantitative measure-
ment of the degree of difference between two-character
strings (such as English characters): another string. The for-
mula is as follows:

lev a,bf g i,jð Þ =

max i, jð Þ if min i, jð Þ = 0,

min

leva,b i − 1, jð Þ + 1

leva,b i, j − 1ð Þ + 1

leva,b i − 1, j − 1ð Þ + 1ai/=bj

8
>><

>>:
ohterwise:

8
>>>>><

>>>>>:

ð5Þ

In its original edit distance, the unit of comparison is
each character. In Yamada’s paper, the original version was
not used directly. Since the format of each browser plug-in
or version is fixed, such as Firefox 50.0 and Chrome 60.5,
the author regards each plug-in version description as a sin-
gle character when comparing. Then, take the entire list of
plug-ins as a string and compare them according to the edit
distance. The author calls this method YIKS distance.

There is also a time-based difference characterization
called disagreement decay. Disagreement decay is the prob-
ability that an entity changes the value of an attribute s
within the time Δt. This probability is denoted by d≠ðs,ΔtÞ.

We can characterize the probability distribution function
of this probability through mathematical statistics, specifi-
cally expressed as follows:

d≠ A,Δtð Þ = f s≠s,n,Δt
�� ��

f s,n,Δt
�� �� : ð6Þ

The absolute value represents the number of samples,
which corresponds to an agreement decay. As the name sug-
gests, agreement decay is the probability that an entity
remains the same value of an attribute s within the time Δt
. Similar to the above, it is not explained.

4.3. Matching Performance Evaluation Tool. No matter what
feature is used, in order to judge whether the incoming visit
comes from the previous user, the website must match the
browser fingerprints one by one. When the amount of
browser fingerprint data is large, the positive and negative
samples in the matching process are unbalanced, because
the new visit must originate from a certain user, which
means that the rest are negative samples. The traditional
accuracy rate can no longer measure the performance of
the matching algorithm. Usually, selected indicators are
F1-score, G-mean, MCC ,and AUCPRC. Among them,
AUCPRC stands for area under precision-recall curve, and
the other three formulas are as follows:

F1 − score = 2 ·
Recall × Precision
Recall + Precision

,

G −mean =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Recall × Precision

p
,

MCC =
TP × TN − FP × FN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TP + FPð Þ TP + FNð Þ TN + FPð Þ TN + FNð Þp :

ð7Þ

The measurement standard F1-score is based on the har-
monic average of precision and recall, which means that in
fingerprint recognition, the cost of misclassification of posi-
tive and negative samples is the same. While G-mean repre-
sents the geometric mean of classifier precision and recall,
F1-score and G-mean give more importance to smaller
values. MCC is the Matthews correlation coefficient, which
is a relatively balanced indicator, which essentially describes
the correlation coefficient between the predicted results and
the actual results. When the gap between the F1-score of a
classification and the MCC is large, it means that a single
indicator cannot measure all the advantages and disadvan-
tages of classifiers.

5. Discussion

The rise of browser fingerprint technology conforms to the
general trend that people pay more and more attention to
privacy. Traditional cookie-based user tracking technology
has exposed more and more limitations. For example, cook-
ies may be hijacked [70], modified [2], forged, and even
injected from cookies [71]. More and more users choose to
ban cookies or install privacy protection plug-ins, and even

10 Wireless Communications and Mobile Computing



recently, Google announced that it would ban third-party
cookies [72]. Browser fingerprint technology will become
an important way for future user tracking due to its stateless-
ness, no storage, and wide feature sources. We have compre-
hensively analyzed the results of previous studies and believe
that future research will have the following trends:

(1) The application of machine learning technology: this
part is mainly applied to the method of browser fin-
gerprint matching. If it is only to match whether the
fingerprints are the same as in the article [11, 56],
then it is only necessary to match whether the finger-
prints are the same. If the fingerprint evolution is
considered [5, 8, 45–49], a corresponding matching
algorithm is required. Early literatures [5, 8, 58, 73]
built efficient matching algorithms based on rules.
With the development of machine learning and deep
learning, more authors choose to use machine learn-
ing methods to analyze browser fingerprint features.
For example, the literature [4, 7] uses clustering algo-
rithm and further in order to automatically extract
fingerprint signs. Some literatures [8, 9] started to
use machine learning algorithms such as neural net-
works for fingerprint matching. It is believed that
there will be more research on the combination of
browser fingerprinting and machine learning tech-
nology in the future

(2) Browser fingerprint application research: although
many applications of browser fingerprinting have
been listed above [52–55, 58, 59, 63, 64], these appli-
cations mainly take advantage of two aspects: one is
the immutability of fingerprints, and the other is the
use of fingerprints. Get feature information. How-
ever, with the advancement of related research on
software and hardware fingerprinting [15, 16] and
related research on browser fingerprinting evolution
[8, 45–49], there are more potential applications of
browser fingerprinting that can be tapped, such as
crossbrowser fingerprinting. Tracking, crossdomain
tracking, and user portrait characterization

(3) Research on fingerprint characteristics of modern
browsers: as browsers and related network technolo-
gies are constantly iterating, many technologies will
be discontinued. For example, Microsoft [74], Goo-
gle [75], and even Adobe [76] themselves have
announced the discontinuation of flash technical
support. With the rapid development of technologies
such as HTML5 and CSS3, the fingerprints of the
browser in the metropolis have different characteris-
tics in different eras

The hidden worries of browser technology development
are as follows: although browser fingerprinting technology is
relatively mature, relevant laws, regulations, and technical
specifications have long lagged behind practice [77]. If the
information leakage of the previous studies [66–68] is con-
cerned, it is still about the technical security of device infor-
mation. The research of the article [69] shows the social

harm of browser fingerprinting technology to personal pri-
vacy. For related solutions, in the short-term, manufacturers
should continuously update versions and prohibit the acqui-
sition of some features. In the long run, the fundamental
solution still requires governments to establish relevant laws
and regulations to constrain and guide relevant technology
development.

6. Summary

The current research on browser fingerprints has made cer-
tain achievements, which can be used as an important part
of user identity tracking technology. Although browser fin-
gerprints are used alone as a sign of user identity, there are
still many problems, but the combination of browser finger-
prints and traditional user identity tracking technology can
be applied in many directions, such as identity tracking, user
authentication, and security defense. This article summa-
rizes the relevant research status from three aspects of
browser fingerprint acquisition, defense, and long-term
tracking, proposes to further discuss the application of this
technology in various aspects, and finally summarizes the
related research theoretical methods of browser fingerprints.

Data Availability

The experimental data used to support the findings of this
study are available from the corresponding author upon
request.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This work was supported by the National Natural Science
Foundation of China (No. 62176264).

References

[1] K. Mathews-Hunt, “CookieConsumer: tracking online behav-
ioural advertising in Australia,” Computer Law and Security
Review, vol. 32, no. 1, pp. 55–90, 2016.

[2] H. Kwon, H. Nam, S. Lee, C. Hahn, and J. Hur, “(In-)security
of cookies in HTTPS: cookie theft by removing cookie flags,”
IEEE Transactions on Information Forensics and Security,
vol. 15, p. 1204, 2020.

[3] L. F. Cranor, “Cookie monster,” Communications of the ACM,
vol. 65, no. 7, pp. 30–32, 2022.

[4] J. R. Mayer, Any person… a pamphleteer: Internet Anonymity
in the Age of Web 2.0, Princeton University, 2009, Undergrad-
uate Senior Thesis.

[5] P. Eckersley, “How unique is your web browser?,” in Interna-
tional Symposium on Privacy Enhancing Technologies Sympo-
sium, pp. 1–18, Springer, 2010.

[6] K. Mowery and H. Shacham, “Pixel perfect: Fingerprinting
canvas in HTML5,” in Proceedings of W2SP, pp. 1–12, San
Francisco, CA, USA, 2012.

11Wireless Communications and Mobile Computing



[7] A. Faiz Khademi, M. Zulkernine, and K. Weldemariam,
“FPGuard: detection and prevention of browser fingerprint-
ing,” in DBSec 2015: Data and Applications Security and Pri-
vacy XXIX, pp. 293–308, Springer, Cham, 2015.

[8] A. Vastel, P. Laperdrix, W. Rudametkin, and R. Rouvoy, “FP-
STALKER: tracking browser fingerprint evolutions,” in 2018
IEEE Symposium on Security and Privacy (SP), San Francisco,
CA, USA, 2018.

[9] K. Mowery, D. Bogenreif, S. Yilek, and H. Shacham, “Finger-
printing information in JavaScript implementations,” in Pro-
ceedings of W2SP, vol. 2, Krakow, Poland, 2011.

[10] M. Mulazzani, P. Reschl, M. Huber et al., “Fast and reliable
browser identification with javascript engine fingerprinting,”
in Web 2.0 Workshop on Security and Privacy (W2SP), vol. 5,
Citeseer, 2013.

[11] T. Unger, M. Mulazzani, D. Fruhwirt, M. Huber,
S. Schrittwieser, and E. R.Weippl, “SHPF: enhancing HTTP(S)
session security with browser fingerprinting,” in 2013 Interna-
tional Conference on Availability, Reliability and Security,
Regensburg, Germany, 2013.

[12] N. Takei, T. Saito, K. Takasu, and T. Yamada, “Web browser
fingerprinting using only cascading style sheets,” in 2015
10th International Conference on Broadband and Wireless
Computing, Communication and Applications (BWCCA),
pp. 57–63, Krakow, Poland, 2015.

[13] P. Laperdrix, O. Starov, Q. Chen, A. Kapravelos, and
N. Nikiforakis, Fingerprinting in style: detecting browser exten-
sions via injected style sheets, 2021, https://www.usenix.org/
conference/usenixsecurity21/presentation/laperdrix.

[14] G. Acar, C. Eubank, S. Englehardt, M. Juarez, A. Narayanan,
and C. Diaz, “The web never forgets: persistent tracking mech-
anisms in the wild,” in Proceedings of the 2014 ACM SIGSAC
Conference on Computer and Communications Security,
pp. 674–689, Vienna, Austria, 2014.

[15] G. Nakibly, G. Shelef, and S. Yudilevich, “Hardware finger-
printing using HTML5,” 2015, http://arxiv.org/abs/1503
.01408.

[16] P. Laperdrix, W. Rudametkin, and B. Baudry, “Beauty and the
beast: diverting modern web browsers to build unique browser
fingerprints,” in 2016 IEEE Symposium on Security and Privacy
(SP), pp. 878–894, San Jose, CA, USA, 2016.

[17] E. Bursztein, A. Malyshev, T. Pietraszek, and K. Thomas,
“Picasso: lightweight device class fingerprinting for web clients,”
in Proceedings of the 6th Workshop on Security and Privacy in
Smartphones and Mobile Devices, Vienna, Austria, 2016.

[18] Y. Cao, S. Li, and E.Wijmans, “(Cross-) browser fingerprinting
via os and hardware level features,” in 24th Annual Network
and Distributed System Security Symposium, Scottsdale, Ari-
zona, USA, 2017.

[19] M. Schwarz, F. Lackner, and D. Gruss, “JavaScript template
attacks: automatically inferring host information for targeted
exploits,” 2019, https://www.ndss-symposium.org/ndss-
paper/javascript-template-attacks-automatically-inferring-
host-information-for-targeted-exploits/.

[20] S. Englehardt and A. Narayanan, “Online tracking: a 1-
million-site measurement and analysis,” in Proceedings of the
2016 ACM SIGSAC Conference on Computer and Communica-
tions Security, Vienna, Austria, 2016.

[21] J. S. Queiroz, E. L. Feitosa, and C. Mitchell, “A web browser
fingerprinting method based on the web audio API,” The Com-
puter Journal, vol. 62, no. 8, pp. 1106–1120, 2019.

[22] A. Sjösten, S. V. Acker, and A. Sabelfeld, “Discovering browser
extensions via web accessible resources,” in Proceedings of the
Seventh ACM on Conference on Data and Application Security
and Privacy, Scottsdale, Arizona, USA, 2017.

[23] O. Starov and N. Nikiforakis, “XHOUND: quantifying the fin-
gerprintability of browser extensions,” in 2017 IEEE Sympo-
sium on Security and Privacy (SP), pp. 941–956, San Jose,
CA, USA, May 2017.

[24] I. Sánchez-Rola, I. Santos, and D. Balzarotti, “Extension break-
down: security analysis of browsers extension resources con-
trol policies,” 2017, https://www.usenix.org/conference/
usenixsecurity17/technical-sessions/presentation/sanchez-
rola.

[25] O. Starov, P. Laperdrix, A. Kapravelos, and N. Nikiforakis,
“Unnecessarily identifiable: quantifying the fingerprintability
of browser extensions due to bloat,” in Presented at the the
World Wide Web Conference, San Francisco, CA, USA, 2019.

[26] W. Fuhl, N. Sanamrad, and E. Kasneci, “The gaze and mouse
signal as additional source for user fingerprints in browser
applications,” 2021, https://arxiv.org/abs/2101.03793.

[27] E. Abgrall, Y. L. Traon, M. Monperrus, S. Gombault,
M. Heiderich, and A. Ribault, “XSS-FP: browser fingerprint-
ing using HTML parser quirks,” 2012, https://arxiv.org/abs/
1211.4812.

[28] D. Fifield and S. Egelman, “Fingerprinting Web Users
Through Font Metrics,” in Financial Cryptography and Data
Security, pp. 107–124, Berlin, Heidelberg, 2015.

[29] Ł. Olejnik, G. Acar, C. Castelluccia, and C. Diaz, “The leaking
battery - a privacy analysis of the HTML5 Battery Status
API,” in Data Privacy Management, and Security Assurance,
pp. 254–263, Springer International Publishing, Cham,
2016.

[30] I. Sanchez-Rola, I. Santos, and D. Balzarotti, “Clock around the
clock: time-based device fingerprinting,” in Proceedings of the
2018 ACM SIGSAC Conference on Computer and Communica-
tions Security, Toronto, Canada, 2018.

[31] T. Wu, Y. Song, F. Zhang, S. Gao, and B. Chen, “My site knows
where you are: a novel browser fingerprint to track user posi-
tion,” in ICC 2021- IEEE International Conference on Commu-
nications, Montreal, QC, Canada, June 2021.

[32] K. Boda, “Firegloves,” https://fingerprint.pet-portal.eu/
?menu=6.

[33] C. F. Torres, H. Jonker, and S. Mauw, “FP-Block: usable web
privacy by controlling browser fingerprinting,” in Computer
Security-ESORICS 2015-20th European Symposium on
Research in Computer Security, Lecture Notes in Computer
Science, Springer International Publishing, Cham, 2015.

[34] F. Besson, N. Bielova, and T. Jensen, “Browser randomisation
against fingerprinting: a quantitative information flow
approach,” in Secure IT Systems -19th Nordic Conference,
NordSec 2014, pp. 181–196, Springer International Publishing,
Cham, 2014.

[35] N. Nikiforakis, W. Joosen, and B. Livshits, “PriVaricator:
deceiving fingerprinters with little white lies,” in Proceedings
of the 24th International Conference on World Wide Web,
Florence, Italy, 2015.

[36] P. Laperdrix, W. Rudametkin, and B. Baudry, “Mitigating
browser fingerprint tracking: multi-level reconfiguration and
diversification,” in 2015 IEEE/ACM 10th International Sympo-
sium on Software Engineering for Adaptive and Self-Managing
Systems, pp. 98–108, Florence, Italy, May 2015.

12 Wireless Communications and Mobile Computing

https://www.usenix.org/conference/usenixsecurity21/presentation/laperdrix
https://www.usenix.org/conference/usenixsecurity21/presentation/laperdrix
http://arxiv.org/abs/1503.01408
http://arxiv.org/abs/1503.01408
https://www.ndss-symposium.org/ndss-paper/javascript-template-attacks-automatically-inferring-host-information-for-targeted-exploits/
https://www.ndss-symposium.org/ndss-paper/javascript-template-attacks-automatically-inferring-host-information-for-targeted-exploits/
https://www.ndss-symposium.org/ndss-paper/javascript-template-attacks-automatically-inferring-host-information-for-targeted-exploits/
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/sanchez-rola
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/sanchez-rola
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/sanchez-rola
https://arxiv.org/abs/2101.03793
https://arxiv.org/abs/1211.4812
https://arxiv.org/abs/1211.4812
https://fingerprint.pet-portal.eu/?menu=6
https://fingerprint.pet-portal.eu/?menu=6


[37] E. Trickel, O. Starov, A. Kapravelos, N. Nikiforakis, and
A. Doupé, “Everyone is Different: Client-side Diversification
for Defending Against Extension Fingerprinting,” 2019,
https://www.usenix.org/conference/usenixsecurity19/
presentation/trickel.

[38] S. Wu, S. Li, Y. Cao, and N. Wang, “Rendered private: making
GLSL execution uniform to prevent WebGL-based Browser
fingerprinting,” 28th USENIX Security Symposium 2019,
2019, https://www.usenix.org/conference/usenixsecurity19/
presentation/wu.

[39] U. Fiore, A. Castiglione, A. D. Santis, and F. Palmieri, “Coun-
tering browser fingerprinting techniques: constructing a fake
profile with Google Chrome,” in 2014 17th International Con-
ference on Network-Based Information Systems, pp. 355–360,
Salerno, Italy, September 2014.

[40] S. Yokoyama and R. Uda, “A proposal of preventive measure
of pursuit using a browser fingerprint,” in Proceedings of the
9th International Conference on Ubiquitous Information Man-
agement and Communication, Bali, Indonesia, 2015.

[41] P. Baumann, S. Katzenbeisser, M. Stopczynski, and E. Tews,
“Disguised Chromium browser: Robust browser, Flash and
Canvas fingerprinting protection,” in Proceedings of the 2016
ACM on Workshop on Privacy in the Electronic Society, Sofia,
Bulgaria, 2016.

[42] P. Laperdrix, B. Baudry, and V. Mishra, “FPRandom: random-
izing core browser objects to break advanced device finger-
printing techniques,” in Engineering Secure Software and
Systems -9th International Symposium, ESSoS 2017, pp. 97–
114, Springer International Publishing, Cham, 2017.

[43] D. Mitropoulos, K. Stroggylos, D. Spinellis, and A. D. Keromy-
tis, “How to train your browser: preventing XSS attacks using
contextual script fingerprints,” ACM Transactions on Privacy
and Security, vol. 19, no. 1, pp. 1–31, 2016.

[44] A. ElBanna and N. Abdelbaki, “NONYM!ZER: mitigation
framework for browser fingerprinting,” in 2019 IEEE 19th
International Conference on Software Quality, Reliability and
Security Companion (QRS-C), pp. 158–163, Sofia, Bulgaria,
July 2019.

[45] Ó. Muñoz-García, J. Monterrubio-Martín, and D. García-
Aubert, “Detecting browser fingerprint evolution for identify-
ing unique users,” International Journal of Electronic Business,
vol. 10, no. 2, pp. 120–141, 2012.

[46] T. Yamada, T. Saito, K. Takasu, and N. Takei, “Robust identi-
fication of browser fingerprint comparison using edit dis-
tance,” in 2015 10th International Conference on Broadband
and Wireless Computing, Communication and Applications
(BWCCA), pp. 107–113, Krakow, Poland, November 2015.

[47] X. Li, X. Cui, L. Shi, C. Liu, and X. Wang, “Constructing
browser fingerprint tracking chain based on LSTM model,”
in 2018 IEEE Third International Conference on Data Science
in Cyberspace (DSC), pp. 213–218, Guangzhou, China, June
2018.

[48] S. Bird, V. Mishra, S. Englehardt et al., “Actions speak louder
than words: semi-supervised learning for browser fingerprint-
ing detection,” 2020, https://arxiv.org/abs/2003.04463.

[49] L. Qixu, L. Xinyu, L. Cheng, W. Junnan, C. Langping, and
L. Jiaxi, “An android browser fingerprint recognition method
based on bidirectional recurrent neural network,” Computer
Research and Development, vol. 57, no. 11, pp. 2294–2311,
2020, (In Chinese).

[50] S. Li and Y. Cao, “Who Touched My Browser Fingerprint? A
Large-scale Measurement Study and Classification of Finger-

print Dynamics,” in Proceedings of the ACM Internet Measure-
ment Conference, Alsace, Colmar, France, 2020.

[51] G. Pugliese, C. Riess, F. Gassmann, and Z. Benenson, “Long-
term observation on browser fingerprinting: users’ Trackabil-
ity and perspective,” Proceedings on Privacy Enhancing Tech-
nologies, vol. 2020, no. 2, pp. 558–577, 2020.

[52] A. ElBanna and N. Abdelbaki, “Browsers fingerprinting
motives, methods, and countermeasures,” in 2018 Interna-
tional Conference on Computer, Information and Telecommu-
nication Systems (CITS), Alsace, Colmar, France, July 2018.

[53] N. Nikiforakis, A. Kapravelos, W. Joosen, C. Kruegel,
F. Piessens, and G. Vigna, “Cookieless Monster: exploring
the ecosystem of web-based device fingerprinting,” in 2013
IEEE Symposium on Security and Privacy, pp. 541–555, Berke-
ley, CA, USA, May 2013.

[54] D. Preuveneers and W. Joosen, “SmartAuth: dynamic context
fingerprinting for continuous user authentication,” in Proceed-
ings of the 30th Annual ACM Symposium on Applied Comput-
ing, Salamanca, Spain, 2015.

[55] F. Rochet, K. Efthymiadis, F. O. Koeune, and O. Pereira,
“SWAT: seamless web authentication technology,” in Pre-
sented at the the World Wide Web Conference, San Francisco,
CA, USA, 2019.

[56] P. Laperdrix, G. Avoine, B. Baudry, and N. Nikiforakis, “Mor-
ellian analysis for browsers: making web authentication stron-
ger with Canvas fingerprinting,” in Detection of Intrusions and
Malware, and Vulnerability Assessment -16th International
Conference, DIMVA 2019, pp. 43–66, Springer International
Publishing, Cham, 2019.

[57] N. Andriamilanto, T. Allard, G. L. Guelvouit, and A. Garel, “A
large-scale empirical analysis of browser fingerprints proper-
ties for web authentication,” ACM Transactions on the Web,
vol. 16, no. 1, p. 4, 2021.

[58] X. Liu, Q. Liu, X. Wang, and Z. Jia, “Fingerprinting web
browser for tracing anonymous web attackers,” in 2016 IEEE
First International Conference on Data Science in Cyberspace
(DSC), pp. 222–229, Changsha, China, June 2016.

[59] Z. Jia, X. Cui, Q. Liu, X. Wang, and C. Liu, “Micro-honeypot:
using browser fingerprinting to track attackers,” in 2018 IEEE
Third International Conference on Data Science in Cyberspace
(DSC), pp. 197–204, Guangzhou, China, June 2018.

[60] ThreatMetrix, ThreatMetrix Announces Cookieless Device
Identification to Prevent Online Fraud While Protecting Cus-
tomer Privacyhttps://www.threatmetrix.com/press-releases/
threatmetrix-announces-cookieless-device-identification-to-
prevent-online-fraud-while-protecting-customer-privacy/.

[61] D. Networks, The Evolution of Hi-Def Fingerprinting in Bot
Mitigationhttps://resources.distilnetworks.com/all-blog-
posts/device-fingerprinting-solution-bot-mitigation.

[62] MaxMind, Device Tracking Add-on for Minfraud Servi-
ceshttps://dev.maxmind.com/minfraud/device/.

[63] Y. Quanzhu, J. Pengfei, Y. Lijing, and Z. Hongfang, “An anti-
scalper registration system based on browser fingerprinting
technology,” Computer Applications, vol. 36, no. S2, p. 276,
2016, (In Chinese).

[64] X. Qingxuan, “Fake order recognition system based on
browser fingerprint,” Electronic Production, vol. 2, p. 3, 2019,
(In Chinese).

[65] CVE, Common Vulnerabilities and Exposures-The Standard
for Information Security Vulnerability Nameshttps://cve
.mitre.org/.

13Wireless Communications and Mobile Computing

https://www.usenix.org/conference/usenixsecurity19/presentation/trickel
https://www.usenix.org/conference/usenixsecurity19/presentation/trickel
https://www.usenix.org/conference/usenixsecurity19/presentation/wu
https://www.usenix.org/conference/usenixsecurity19/presentation/wu
https://arxiv.org/abs/2003.04463
https://www.threatmetrix.com/press-releases/threatmetrix-announces-cookieless-device-identification-to-prevent-online-fraud-while-protecting-customer-privacy/
https://www.threatmetrix.com/press-releases/threatmetrix-announces-cookieless-device-identification-to-prevent-online-fraud-while-protecting-customer-privacy/
https://www.threatmetrix.com/press-releases/threatmetrix-announces-cookieless-device-identification-to-prevent-online-fraud-while-protecting-customer-privacy/
https://resources.distilnetworks.com/all-blog-posts/device-fingerprinting-solution-bot-mitigation
https://resources.distilnetworks.com/all-blog-posts/device-fingerprinting-solution-bot-mitigation
https://dev.maxmind.com/minfraud/device/
https://cve.mitre.org/
https://cve.mitre.org/


[66] Malwarebytes, Operation Fingerprint-A Look into Several
Angler Exploit Kit Malvert i s ing Campaignshttps : / /
malwarebytes.app.box.com/v/operation-fingerprint.

[67] T. Saito, K. Yasuda, T. Ishikawa et al., “Estimating CPU fea-
tures by browser fingerprinting,” in 2016 10th International
Conference on Innovative Mobile and Internet Services in Ubiq-
uitous Computing (IMIS), pp. 587–592, Fukuoka, Japan, July
2016.

[68] T. Saito, K. Yasuda, K. Tanabe, and K. Takahashi, “Web
Browser Tampering: Inspecting CPU Features from Side-
Channel Information,” in Advances on Broad-Band Wireless
Computing, Communication and Applications, pp. 392–403,
Springer International Publishing, Cham, 2018.

[69] S. Karami, P. Ilia, K. Solomos, and J. Polakis, “Carnus: explor-
ing the privacy threats of browser extension fingerprinting,”
2020, https://www.ndss-symposium.org/ndss-paper/carnus-
exploring-the-privacy-threats-of-browser-extension-
fingerprinting/.

[70] S. Sivakorn, I. Polakis, and A. D. Keromytis, “The Cracked
Cookie Jar: HTTP cookie hijacking and the exposure of private
information,” in 2016 IEEE Symposium on Security and Pri-
vacy (SP), pp. 724–742, San Jose, CA, USA, May 2016.

[71] F. Chen, H. Duan, X. Zheng, J. Jiang, and J. Chen, “Path leaks
of HTTPS Side-Channel by cookie injection,” in International
Workshop on Constructive Side-Channel Analysis and Secure
Design, pp. 189–203, Springer, 2018.

[72] Google, “Charting a course towards a more privacy-first web,”
https://blog.google/products/ads-commerce/a-more-privacy-
first-web/.

[73] Z. Liangfeng, W. Yi, W. Yuanyi, and K. Rui, “Statistics-based
browser fingerprinting technology,” Information Network
Security, vol. 11, pp. 49–55, 2019, (In Chinese).

[74] Microsoft, Adobe Flash end of support on December 31,
2020ht tp s : / /doc s .mic ro so f t . com/en-us / l i f e cyc l e /
announcements/adobe-flash-end-of-support.

[75] Google, Saying goodbye to Flash in Chromehttps://www.blog
.google/products/chrome/saying-goodbye-flash-chrome/.

[76] Adobe, “Adobe Flash Player EOL General Information Page,”
https://www.adobe.com/products/flashplayer/end-of-life
.html.

[77] P. Laperdrix, N. Bielova, B. Baudry, and G. Avoine, “Browser
fingerprinting: a survey,” ACM Transactions on the Web,
vol. 14, no. 2, pp. 8: 1–8: 33, 2020.

14 Wireless Communications and Mobile Computing

https://malwarebytes.app.box.com/v/operation-fingerprint
https://malwarebytes.app.box.com/v/operation-fingerprint
https://www.ndss-symposium.org/ndss-paper/carnus-exploring-the-privacy-threats-of-browser-extension-fingerprinting/
https://www.ndss-symposium.org/ndss-paper/carnus-exploring-the-privacy-threats-of-browser-extension-fingerprinting/
https://www.ndss-symposium.org/ndss-paper/carnus-exploring-the-privacy-threats-of-browser-extension-fingerprinting/
https://blog.google/products/ads-commerce/a-more-privacy-first-web/
https://blog.google/products/ads-commerce/a-more-privacy-first-web/
https://docs.microsoft.com/en-us/lifecycle/announcements/adobe-flash-end-of-support
https://docs.microsoft.com/en-us/lifecycle/announcements/adobe-flash-end-of-support
https://www.blog.google/products/chrome/saying-goodbye-flash-chrome/
https://www.blog.google/products/chrome/saying-goodbye-flash-chrome/
https://www.adobe.com/products/flashplayer/end-of-life.html
https://www.adobe.com/products/flashplayer/end-of-life.html

	A Survey of Browser Fingerprint Research and Application
	1. Introduction
	1.1. Definitions
	1.2. Organization

	2. Related Research
	2.1. Origin
	2.2. Feature Acquisition Research
	2.2.1. JavaScript-Based Fingerprints
	2.2.2. CSS-Based Fingerprints
	2.2.3. Canvas-Based Fingerprint
	2.2.4. Hardware and Software-Based Fingerprints
	2.2.5. Fingerprint Based on Audio API
	2.2.6. Plugin-Based Fingerprint
	2.2.7. Other Browser Fingerprint Acquisition Technologies

	2.3. Fingerprint Defense Research
	2.3.1. Browser Protection Plugin
	2.3.2. Randomization Method
	2.3.3. Uniform Methods
	2.3.4. Other Protective Way

	2.4. Fingerprint Evolution Research

	3. Browser Fingerprint Application
	3.1. Commercial Advertisement Recommendation
	3.2. Strengthen Safety Certification
	3.3. Protection Service Provider
	3.4. Browser Fingerprints Prevent Robot Accounts
	3.5. Reverse User Software and Hardware

	4. Evaluation and Processing Methods of Browser Fingerprints
	4.1. Browser Fingerprinting Feature Evaluation Tool
	4.2. Browser Fingerprint Evolution Evaluation Tool
	4.3. Matching Performance Evaluation Tool

	5. Discussion
	6. Summary
	Data Availability
	Conflicts of Interest
	Acknowledgments



