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The increase in the number of services in the power distribution grid leads to a massive increase in task data. Power distribution
internet of things (PDIoT) is the specific application of internet of things (IoT) in the power distribution grid. By deploying a large
number of PDIoT devices, the voltage, active power, reactive power, and harmonic parameters are collected to support
distribution grid services such as fault identification and status detection. Therefore, PDIoT utilizes massive devices to collect
and offload tasks to the edge server through 5G network for real-time data processing. However, how to dynamically select
edge servers and channels to meet the energy-efficient and low-latency task offloading requirements of PDIoT devices still faces
several technical challenges such as task offloading decisions coupling among devices, unobtainable global state information, as
well as interrelation of various quality of service (QoS) metrics such as energy efficiency and delay. To this end, we firstly
construct a joint optimization problem to maximize the weighted difference between energy efficiency and delay of devices in
PDIoT. Then, the joint optimization problem is decomposed into a large-timescale server selection problem and a small-
timescale channel selection problem. Next, we propose an ML-based two-stage task offloading algorithm, where the large-
timescale problem is solved by two-side matching in the first stage, and the small-timescale problem is solved by adaptive ε
-greedy learning in the second stage. Finally, simulation results show that compared with the task offloading delay-first
matching algorithm and the matching theory-based task offloading strategy, the proposed algorithm performs superior in
terms of energy efficiency and delay.

1. Introduction

With the rapid development of new power systems, the num-
ber of services in the power distribution grid has gradually
increased, resulting in a massive increase in task data. Power
distribution internet of things (PDIoT) is the specific applica-
tion of internet of things (IoT) in the power distribution grid.
By deploying a large number of PDIoT devices, the voltage,
active power, reactive power, and harmonic parameters are
collected to support power distribution grid services such as
fault location and status detection [1]. For example, for the sta-
tus estimation service, task data such as real-time power and
voltage information are collected to supplement the load curve
data, load forecast data, and meter reading data. By offloading
the task data to the server for processing, the real-time load of
power distribution grid can be obtained. However, traditional
cloud computing with a long data transmission distance to the

cloud server results in high delay, large energy consumption,
and severe congestion [2, 3]. Edge computing integrated with
5G provides a new paradigm shift for real-time computing ser-
vices, where PDIoT devices offload data to nearby edge servers
to reduce delay and energy consumption [4–6].

Task offloading is a key enabler to realize efficient edge
computing for PDIoT. On the one hand, the devices need
to select the optimal one among the deployed edge servers.
On the other hand, due to the spectrum shortage, the devices
need to dynamically select channels according to available
spectrum resources. Meanwhile, PDIoT services have strict
requirements on energy efficiency and delay performances
[7]. For instance, the delay requirement of control services
is millisecond level, while the monitoring devices collect
and transmit massive data to improve energy efficiency
under limited battery capacity [8]. Therefore, how to achieve
energy-efficient and low-latency task offloading by jointly
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optimizing server and channel selection remains an open
issue. The joint optimization problem still faces the follow-
ing challenges.

First, the task offloading decisions among massive
devices are coupled with each other. Meanwhile, server
selection needs to be optimized according to the change of
server computing resources, and channel selection needs to
be optimized according to the change of channel state. Since
the change of server computing resources is not in the same
timescale as that of channel state, task offloading needs to be
optimized in different timescales. Particularly, the large-
timescale server selection is optimized in the first stage,
while the small-timescale channel selection is optimized in
the second stage. Therefore, two-stage task offloading prob-
lem is constructed. Second, the wireless channels are inter-
fered by electromagnetic interference in PDIoT, and face
channel fading caused by multipath transmission. It is not
feasible to obtain global state information (GSI) for task off-
loading. Finally, the optimization of energy efficiency, trans-
mission delay, and processing delay are coupled with each
other tightly, leading to a more complex optimization
problem.

Task offloading has gained considerable attention from
both academia and industry. In [9], Mitsis et al. proposed
a data offloading framework for UAV-assisted multiaccess
edge computing systems based on resource pricing and user
risk perception. A usage-based pricing mechanism for users
was introduced to utilize the computing power of MEC
server. In [10], Chen et al. proposed an alternating minimi-
zation algorithm to achieve energy-optimal fog computing
offloading by jointly optimizing offloading ratio, transmis-
sion power, local CPU computation speed, and transmission
time. In [11], Maray et al. surveyed the latest research on
task offloading from the aspects of offloading mechanism,
offloading granularity, and offloading technology. Various
task offloading mechanisms and optimization methods in
different environments were discussed. In [12], Mustafa
et al. divided the computation offloading into four catego-
ries, i.e., static, dynamic, full, and partial offloading, and
compared the existing research from seven aspects, i.e., con-
tribution, computation offloading, energy/battery lifetime,
resource/task scheduling, cooperation, user fairness, and
transmission/computation latency. In [13], Wu et al. pro-
posed an energy-efficient dynamic task offloading (EEDTO)
algorithm to control the computation and communication
costs for different types of applications and dynamic changes
in the wireless environment. However, the above works
neglected the coupling of task offloading decisions among
massive devices and cannot solve access conflicts among
devices. Task offloading problem can be constructed as a
two-side matching problem to obtain stable task offloading
strategies and cope with the access conflicts among devices.

Matching theory provides an effective approach to solve
the two-side matching problem by defining the preferences
of matching subjects to address access conflicts among
devices, which has been widely used in solving task offload-
ing problems [14, 15]. In [16], Shi et al. proposed a two-side
matching-based server selection algorithm to maximize the
efficiency of device-to-device content sharing. In [17], Zhou

et al. proposed a task offloading algorithm based on vehicle-
device matching to maximize the utility function of the base
station (BS). In [18], Abedin et al. proposed a two-side
matching game to solve the problem of server selection, aim-
ing to maximize the efficiency of user resource allocation. In
[19], Wang et al. considered the impact of channel selection
on task offloading, and proposed a matching-based channel
selection algorithm to minimize the total energy consump-
tion. The above works used matching theory to solve task
offloading conflicts among devices, but they rely on the per-
fect GSI such as server states and channel states, which can-
not be applied to scenarios where the global information
changes rapidly and is unknown. Moreover, the above works
do not consider the multitimescale joint optimization of
server selection and channel selection, and the establishment
of the preference list is influenced by the optimization results
of other dimensions.

To solve the task offloading problem under incomplete
GSI, machine learning (ML) has been applied to intelligent
task offloading decision making. ML includes deep learning
(DL), reinforcement learning (RL), deep reinforcement
learning (DRL), and support vector machine (SVM). In
[20], Jehangiri et al. proposed a mobility prediction and off-
loading framework that offloads computationally intensive
tasks to predicted user locations using artificial neural net-
works. In [21], Zhou et al. proposed a task offloading strat-
egy based on SVM, which minimizes energy consumption
by optimizing clock frequency control, transmission power
allocation, as well as offloading and receive power allocation
strategies in edge computing scenarios. In [22], Wu et al.
proposed a distributed DL-driven task offloading (DDTO)
algorithm to jointly optimize the system utility and band-
width allocation. In [23], Qu et al. proposed a deep metar-
einforcement learning-based offloading (DMRO) algorithm
to solve the problem of limited computing resources of IoT
devices and improve task processing efficiency. In [24], Chen
et al. proposed a cloud-edge collaborative mobile computing
offloading (DRL-CCMCO) algorithm based on DRL to solve
the joint optimization problem of execution delay and
energy consumption. The above works adopted ML algo-
rithms to optimize task offloading decisions and further
improve task offloading performances. However, the above
algorithms have high computation complexity and high
requirements for CPU performance, while PDIoT devices
with limited CPU put forward lightweight requirements for
the algorithm. Therefore, the above algorithms are not suit-
able for the scenario mentioned in the article. RL, as an
important branch of ML, has low computation complexity,
which can meet the needs of lightweight task offloading
[25]. The task offloading problem can be regarded as a
multi-armed bandit (MAB) problem and solved by RL
[26]. ϵ-greedy learning algorithm is a low-complexity RL
algorithm that can balance the tradeoff between exploration
and exploitation through the adjustment of ϵ. In [27], Li
et al. proposed an interference-aware RL algorithm to solve
the joint problem of multichannel selection and data sched-
uling. In [28], Talekar and Terdal proposed a solution for
optimal channel selection and routing and applied RL to
select the best channel for routing. However, these works
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do not take into account the coupling between server selec-
tion and channel selection and cannot dynamically adjust
the learning parameters according to the dynamic and com-
plex communication environment to improve learning
performance.

Motivated by the aforementioned challenges, we firstly
construct a two-stage task offloading problem, including
the server selection in the first stage and the channel selec-
tion in the second stage, which have different timescales.
The objective is to maximize the weighted difference
between energy efficiency and delay through joint optimiza-
tion of server selection and channel selection, considering
the influence of electromagnetic interference and stringent
quality of service (QoS) constraint. Then, we propose an
ML-based two-stage task offloading algorithm. Specifically,
a two-side matching-based server selection algorithm is pro-
posed to obtain large-timescale device-edge stable matching.
For the channel selection in the second stage, we propose an
adaptive ε-greedy learning algorithm to dynamically learn
optimal channel selection strategies. The main contributions
of this paper are summarized as follows.

(i) Energy-Efficient and Low-Latency Task Offloading.
Since the optimization of energy efficiency and
delay are coupled, we construct the weighted differ-
ence between energy efficiency and delay to achieve
the joint optimization of different QoS metrics

(ii) Two-Stage Task Offloading. We propose a two-side
matching-based server selection algorithm and an
adaptive ε-greedy learning algorithm to optimize
large-timescale server selection in the first stage
and small-timescale channel selection in the second
stage under incomplete GSI

(iii) Extensive Performance Evaluation. Compared with
two advanced algorithms, simulation results dem-
onstrate that the proposed algorithm has superior
performance of energy efficiency, transmission
delay, and processing delay

The rest of the paper is organized as follows. Section 2
demonstrates the system model. Section 3 presents the
ML-based two-stage task offloading algorithm for PDIoT.
The simulation results are shown in Section 4 to verify the
effectiveness of the proposed algorithm. Section 5 concludes
the paper.

2. System Model

The considered task offloading scenario of PDIoT is shown
in Figure 1, which consists of multiple BSs and PDIoT
devices. Each BS is equipped with an edge server to provide
overlapping communication coverage and computing
resources for devices. Each device needs to offload its task
data to an edge server through a BS for processing, aiming
to reduce delay and improve energy efficiency. There are I
PDIoT devices, J edge servers, and N channels. The sets
are M = fm1,⋯,mi,⋯,mIg, S = fs1,⋯,sj,⋯,sJg, and C = fc1
,⋯,cn,⋯,cNg, respectively.

We adopt a two-timescale model with period and slot
[29]. The large timescale is period, and the small timescale
is slot. There are L equal periods, which are large timescales,
and the set is L = f1, 2,⋯,l,⋯,Lg. Each large timescale con-
tains T0 small timescales, i.e., slots, and the set of slots in the
l-th period is T l = fðl − 1ÞT0 + 1, ðl − 1ÞT0 + 2,⋯,lT0g. The
total number of slots is T , i.e., T = T0L, and the set is T =
f1, 2,⋯,t,⋯,Tg. Task offloading includes two stages, i.e.,
large-timescale server selection and small-timescale channel
selection. The server selection variable of the device mi
towards sj in the l-th period is defined as zi,jðlÞ = f0, 1g. zi,j
ðlÞ = 1 indicates mi select sj, and zi,jðlÞ = 0 otherwise. Define
the quota of sj as qj, which represents the maximum number
of devices that can be served by sj in each period. The chan-
nel selection variable is defined as xi,nðtÞ = f0, 1g. xi,nðtÞ = 1
indicates that mi selects cn for data transmission, and xi,n =
0 otherwise. An example of two-stage task offloading is
shown in Figure 1. m1 selects s2 to offload data in the first
stage, and selects c2 for data transmission in the second
stage. The main notation used in this paper is given in
Table 1.

2.1. Transmission Model. Based on orthogonal frequency
division multiplexing (OFDM), each device selects an
orthogonal channel to offload tasks in each slot. The data
transmission rate from mi to sj on cn in the t-th slot is given
by

Ri,j,n tð Þ = B log2 1 + SINRi,j,n tð ÞÂ Ã
, ð1Þ

where B is channel bandwidth. SINRi,j,n is the signal-to-
interference-plus-noise ratio (SINR), which is given by

SINRi,j,n tð Þ = PTXgi,j,n tð Þ
σ2 + ξi,j,n

, ð2Þ

where PTX and σ2 represent transmission power and noise
power. gi,j,nðtÞ is the channel gain between mi and sj on cn
in the t-th slot. ξi,j,n is the electromagnetic interference
power.

2.2. Delay Model. Denoting the total computing resources of
sj as ψjðtÞ, the computing resources allocated by sj to mi in
the t-th slot is given by

αj tð Þ =
ψj tð Þ
qj

: ð3Þ

Denote the size of offloaded data from mi in the t-th slot
is denoted as UiðtÞ. Then, the transmission delay of mi off-
loading data to sj on cn, and the processing delay required
by sj to process the offloaded data of mi in the t-th slot are
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given by

QTX
i,j,n tð Þ = Ui tð Þ

Ri,j,n tð Þ ,

QC
i,j tð Þ =

f jUi tð Þ
αj tð Þ

,
ð4Þ

where f j (cycle/bit) is the CPU cycles required by sj to pro-
cess one bit of data.

The result feedback delay is negligible compared with
transmission delay and processing delay [30]. Therefore,
the total delay is the sum of transmission delay and process-
ing delay, which is given by

Qi,j,n tð Þ =QTX
i,j,n tð Þ +QC

i,j tð Þ: ð5Þ

2.3. Energy Efficiency Model. The transmission energy con-
sumption of mi in the t-th slot is given by

ETX
i,j,n tð Þ = PTXQTX

i,j,n tð Þ: ð6Þ

The operation energy consumption of mi is given by

EO
i,j,n tð Þ = P0Q

TX
i,j,n tð Þ, ð7Þ

where P0 is the circuit power of device operation.
The total energy consumption is the sum of transmission

energy consumption and operation energy consumption,
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Figure 1: The task offloading scenario of PDIoT.

Table 1: Main notation table.

Notation Meaning

I The number of PDIoT devices

J The number of edge servers

N The number of channels

L The number of periods

T The number of slots

M The set of PDIoT devices

S The set of edge servers

C The set of channels

L The set of periods

T l The set of slots in the l-th period

T The set of slots

zi,j lð Þ The server selection variable

xi,n tð Þ The channel selection variable

B The channel bandwidth (MHz)

PTX The transmission power (W)

σ2 The noise power (dBm/Hz)

gi,j,n tð Þ The channel gain

ξi, j,n The electromagnetic interference power (dBm/Hz)

ψj tð Þ The total computing resources (GHz)

f j The CPU cycles (cycle/bit)

P0 The circuit power of device operation (W)
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which is given by

Ei,j,n tð Þ = PTX + P0
À Á

QTX
i,j,n tð Þ = PTX + P0

À Á Ui tð Þ
Ri,j,n tð Þ : ð8Þ

Based on [31], we define energy efficiency as the amount
of data transmitted per unit of energy and per unit of band-
width (bit/(J·Hz)). Therefore, the energy efficiency of mi off-
loading data to sj on cn in the t-th slot is given by

ηi,j,n tð Þ = Ui tð Þ
BEi,j,n tð Þ =

Ri,j,n tð Þ
B PTX + P0
À Á : ð9Þ

2.4. Problem Formulation. In this paper, we aim to address
the energy-efficient and low-latency task offloading problem

1: Input:M, S , C .
2: Output:fzi,jðlÞj∀mi ∈M,∀sj ∈ S ,∀l ∈Lg and

fxi,nðtÞj∀mi ∈M,∀cn ∈C ,∀t ∈T g
3: Phase 1. Initialization
4: Initialize ki,nð1Þ = 0, ∀mi ∈M, ∀cn ∈C .
5: Forl = 1 : Ldo
6: Phase 2. Large-Timescale First-Stage Server Selection
7: Step 1:
8: Initialize ϕ =∅, Θ =M, and Γ = S .
9: Step 2:
10: mi and sj calculate the preference values ~ηi,jðlÞ and

~Qi,jðlÞ based on (11) and (12) and establish the preference lists F i and F j.
11: Step 3:
12: While Ω ≠∅ and F i ≠∅do
13: mi proposes to its most preferred server based on F i.
14: Forsj ∈ Γdo
15: If the sum of temporary matches and new proposals for sj is less than quota qjthen
16: Temporarily match sj with the devices, update

zi,jðlÞ, and remove the matched devices from Θ.
17: else
18: Temporarily match sj with its most preferred

qj devices and update zi,jðlÞ. Remove matched devices
from Θ and add unmatched devices into Θ. Unmatched
devices remove sj from F i.

19: End if
20: If the sum of matches for sj is equal to qjthen
21: Remove sj from Γ.
22: End if
23: End for
24: End while
25: Fort = ðl − 1ÞT0 + 1 : lT0do
26: Phase 3. Small-Timescale Second-Stage Channel

Selection
27: mi makes the action decision aiðtÞ based on (18).
28: mi calculates ri,nðtÞ and �ri,nðtÞ based on (14) and

(15)
29: Update �rKðt + 1Þ and εt+1 based on (16) and (17).
30: End for
31: End for

Algorithm 1: ML-based two-stage task offloading optimization algorithm.

Table 2: Simulation parameters.

Parameter Value Parameter Value

I 120 J 3
N 50 τ 0:5
B 5 MHz σ2 −170 dBm/Hz

PTX 0:4 W P0 0:1 W

ψj 60 − 180 GHz Ui 0:8 − 1:2 Mbits

f j 800 cycle/bit V 0:5 − 3
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in PDIoT. The objective is to maximize the weighted differ-
ence between energy efficiency and delay through joint opti-
mization of large-timescale server selection in the first stage
and small-timescale channel selection in the second stage.
The two-stage task offloading problem is formulated as

P1 : max
zi, j lð Þ,xi,n tð Þf g

〠
I

i=1
〠
J

j=1
〠
N

n=1
zi,j lð Þxi,n tð Þ Vηi,j,n tð Þ −Qi,j,n tð Þ

h i
,

s:t:C1 : 〠
I

i=1
zi,j lð Þ ≤ qj, 〠

J

j=1
zi,j lð Þ = 1, sj ∈ S ,mi ∈M, l ∈L ,

C2 : 〠
N

n=1
xi,n tð Þ = 1,mi ∈M, t ∈T ,

C3 : SINRi,j,n tð Þ ≥ SINRmin, sj ∈ S ,mi ∈M, cn ∈C , t ∈T ,
ð10Þ

where V is used to achieve the tradeoff between energy effi-
ciency and delay. Specifically, when V is large, the influence
of energy efficiency is dominant in the optimization objec-
tive, and the proposed algorithm tends to maximize energy
efficiency. When V is small, the influence of delay is domi-
nant in the optimization objective, the proposed algorithm
tends to minimize delay. C1 represents the server selection
constraints. C2 represents the channel selection constraints.
C3 denotes the task offloading reliability constraints in terms
of SINR, where SINRmin is the threshold.

3. ML-Based Two-Stage Task Offloading
Optimization for PDIoT

In this section, we introduce the problem transformation
and the proposed ML-based two-stage task offloading opti-
mization algorithm for PDIoT.

3.1. Problem Transformation. We transform the first-stage
large-timescale server selection problem of P1 into a many-
to-one matching problem between devices and servers.
Then, we propose a stable server selection algorithm based
on two-side matching with quota to solve it. Next, the
second-stage small-timescale channel selection problem of
P1 is solved by the proposed adaptive ε-greedy learning
algorithm.

3.2. First-Stage Server Selection Based on Two-Side Matching
with Quota. Based on the many-to-one two-side matching
with quota [32–34], each device and server need to obtain
the preference values towards each other. Then, based on
the obtained two-side preference values, the first-stage server
selection problem is solved according to the many-to-one
two-side matching with quota to maximize the weighted dif-
ference between energy efficiency and delay.

Theorem 1. A matching ϕ with quota qj is defined as ϕ: M
∪ S ⟶ S ∪M. When ϕðmiÞ = sj and mi ∈ ϕðsjÞ in the l-th
period, mi and sj establish a matching relationship, i.e., zi,jðl
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Þ = 1. Particularly, jϕðsjÞj ≤ qj, where jϕðsjÞj is the size of ϕð
sjÞ.
3.2.1. Preference List Construction. Based on P1, both devices
and servers establish their matching preference lists. The
preference value ωi,jðlÞ of mi for server sj is defined as the
weighted energy efficiency, and the preference value γj,iðlÞ
of sj for mi is defined as the negative of total delay, which
are given by

ωi,j lð Þ = V~ηi,j lð Þ, ð11Þ

γj,i lð Þ = −~Qi,j lð Þ, ð12Þ

where ~ηi,jðlÞ and ~Qi,jðlÞ are the empirical statistical estimates
of energy efficiency and total delay in the l-th period, i.e.,

~ηi,j lð Þ =
∑l−1

p=1∑
pT0
t= p−1ð ÞT0+1∑

N
n=1zi,j pð Þxi,n tð Þηi,j,n tð Þ

∑l−1
k=1zi,j pð Þ

,

~Qi,j lð Þ =
∑l−1

p=1∑
pT0
t= p−1ð ÞT0+1∑

N
n=1zi,j pð Þxi,n tð ÞQi,j,n tð Þ

∑l−1
k=1zi,j pð Þ

:

ð13Þ

Based on (11) and (12), mi and sj calculate ωi,jðlÞ and
γj,iðlÞ and establish their preference lists F i and F j by sort-
ing preference values in descending order.

3.2.2. Implementation of Two-Side Matching with Quota.
The implementation of two-side matching with quota con-
sists of three steps, which are introduced as follows.

Step 1. Initialize the sets of server selection strategy,
unmatched devices, and unmatched servers as ϕ =∅, Θ =
M, and Γ = S .

Step 2. mi, ∀mi ∈Θ and sj, ∀sj ∈ Γ, calculate the prefer-
ence values according to (11) and (12) to obtain the prefer-
ence lists F i and F j.

Step 3. First, mi proposes to its most preferred server
based on F i. Afterward, sj calculates the sum of temporary
matches and new proposals. If the sum of temporary
matches and new proposals is less than qj, sj establishes tem-
porary matches with the devices which have proposed to it.
The matched devices are temporarily removed from Θ. Oth-
erwise, based on F j, sj establishes temporary matches with
only the top qj devices which have proposed to it. Next,
the unmatched devices are added into Θ, and sj is removed
from their preference lists. The matched devices are
removed from Θ. If the sum of matches for sj is equal to qj
, remove sj from Γ. Finally, return to Step 2, and the
unmatched devices make new proposals based on the
updated preference lists.

Matching iteration ends until mi, ∀mi ∈M establishes a
match with a server or its preference list F i =∅.

3.3. Second-Stage Channel Selection Based on Adaptive ε-
Greedy Learning. The second-stage channel selection opti-
mization problem is transformed into an MAB problem,
which is addressed by the proposed adaptive ε-greedy learn-
ing algorithm. The MAB problem is mainly composed of
decision maker, arm, and reward, which are introduced as
follows:

(i) Decision Maker. The decision maker generates
selection decisions and constantly updates the deci-
sion by learning the reward from historical feed-
backs. We define PDIoT devices as decision makers.

(ii) Arm. Based on server selection, the device needs to
select a channel for data transmission. Denote the
set of arms as C = fc1,⋯, cn,⋯, cNg.

(iii) Reward. Define ri,nðtÞ as the reward of mi selecting
cn in the t-th slot, which is given by

ri,n tð Þ = 〠
J

j=1
zi,j lð Þ Vηi,j,n tð Þ −Qi,j,n tð Þ

� �
ð14Þ

.
The traditional ε-greedy algorithm uses a linear method

to adjust the exploration factor ε, which has a certain degree
of blindness [35, 36]. In order to improve the exploration
efficiency, we propose an adaptive ε-greedy learning algo-
rithm, which uses the average cumulative reward to dynam-
ically adjust the adaptive factor εt to balance exploration and
exploitation.

Define �ri,nðtÞ as the historical average reward of mi
selecting cn, which is given by

�ri,n tð Þ = �ri,n t − 1ð Þki,n t − 1ð Þ + xi,n tð Þri,n tð Þ
ki,n t − 1ð Þ + xi,n tð Þ , ð15Þ
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Figure 5: The impact of the quota qj on transmission delay,
processing delay, and total delay.
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where ki,nðtÞ represents the total times thatmi selects cn until
the t-th slot. The average cumulative reward under the pre-
vious K , ðKtÞ, task offloading strategies is calculated as

�rK tð Þ = 1
K

〠
t−1

k=t−K
〠
I

i=1
〠
N

n=1
xi,n kð Þ�ri,n kð Þ: ð16Þ

Then, the adaptive exploration factor εt is updated as

εt =
1

1 + logv 1 +�rK tð Þð Þ , ð17Þ

where v represents the base of the logarithmic function, and
v > 1.

The action decision aiðtÞ of the adaptive ε-greedy learn-
ing algorithm is given by

ai tð Þ =
arg max

cn∈C
�ri,n t − 1ð Þ, μ > εt ,

random selection, μ ≤ εt ,

8<
: ð18Þ

where μ ∈ ð0, 1Þ is a random number. When μ > εt , the
device selects the channel with the largest historical average
reward. When μ ≤ εt , the device randomly selects a channel.
Specifically, aiðtÞ = cn is equivalent to xi,nðtÞ = 1.

3.4. Implementation of Two-Stage Task Offloading. The pro-
posed ML-based two-stage task offloading optimization
algorithm consists of three phases, which are summarized
in Algorithm 3.3.

Phase 1. Initialization. Initialize ki,nð1Þ = 0, ∀mi ∈M,∀
cn ∈C .

Phase 2. Large-Timescale First-Stage Server Selection. At
the beginning of each period, each device and server con-
struct their preference lists F i and F j, respectively. Then,

perform the two-side matching process with quota based
on Section 3.2 and obtain zi,jðlÞ.

Phase 3. Small-Timescale Second-Stage Channel Selec-
tion: In each slot, mi, ∀mi ∈Θ makes action decision based
on (18) and selects the corresponding channel. Then, mi cal-
culates the ri,nðtÞ and �ri,nðtÞ based on (14) and (15). Finally,
update �rKðt + 1Þ and εt+1 based on (16) and (17).

The algorithm ends until t > T .

3.5. Computation Complexity. For the first-stage server selec-
tion, the computation complexity is OðI + 2J + log ðI JÞÞ,
while the computation complexity of the exhaustive-based
server selection algorithm is OðI!× J!Þ. When I and J are
large enough, the computation complexity of the proposed
algorithm is much lower than that of the exhaustive-based
server selection algorithm. For the second-stage channel
selection, the computation complexity is OðN log ðNÞ +N
+ 2Þ. In some ML-based channel selection algorithms such
as DRL-based channel selection algorithm and DL-based
channel selection algorithm, the computation complexity
of the training of deep neural networks is OðE + jDj/K + JÞ
. Here, E is the number of training epochs, jDj and K are,
respectively, the dataset size and batch size, and J is the com-
putation complexity of each training epoch. OðJÞ is related
to many free variables such as the computation complexity
of each layer, the size of convolution kernel, the number of
input and output channels, and spatial dimensions of input
and output feature maps. Therefore, the computation com-
plexity of these DRL and DL-based channel selection algo-
rithms are much higher than the proposed algorithm.

4. Simulation Results

We consider a 800m × 20m transmission line monitoring
scenario in PDIoT, which includes 120 devices and 3 edge
servers colocated with BSs. The number of channels is 50.
The devices are randomly distributed along the transmission

0.5 1.51 2.52 3

V

656

658

660

662

664

666

668

670

672

To
ta

l d
el

ay
 (m

s)

7.14

7.15

7.16

En
er

gy
 ef

fic
ie

nc
y 

(b
it/

(J
.H

z)
)

Total delay
Energy efficiency

Figure 6: The impact of the weight V on total delay and energy efficiency.
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line. Simulation parameters are summarized in Table 2
[37–39]. Two algorithms are utilized for comparison. The
first one is the matching based on Kuhn-Munkras (MKM)
[40] which aims to minimize task offloading delay. The sec-
ond one is the matching-based task offloading strategy
(MBTO) [41] which aims to maximize energy efficiency
through server selection optimization in each period. Both
MKM and MBTO cannot achieve small-timescale channel
selection optimization.

Figure 2 shows the weighted difference between energy
efficiency and delay versus time slots. Compared with
MKM and MBTO, the proposed algorithm improves the
weighted difference by 39:74% and 9:96%, respectively.
The reason is that the proposed algorithm can learn the opti-
mal channel and server selection strategy to minimize the
weighted difference based on dynamic network states.

Figures 3 and 4 show the total delay and energy effi-
ciency versus time slots, respectively. Compared with
MKM, the proposed algorithm improves energy efficiency
by 18:99% but increases delay by 7:45%. Compared with
MBTO, the proposed algorithm reduces delay by 9:71%
but decreases energy efficiency by 2:38%. The reason is that
MKM and MBTO only optimize one aspect of delay or
energy efficiency. The proposed algorithm can make a
well-balanced tradeoff between energy and delay by dynam-
ically adjusting server and channel selection strategies.

Figure 5 shows the impact of the quota qj on transmis-
sion delay, processing delay, and total delay. The transmis-
sion delay decreases with qj while the processing delay
increases with qj. When qj increases from 30 to 50, the trans-
mission delay decreases from 242:6389ms to 141:6561ms
while the processing delay increases by 278:2709ms. The
reason is that as qj increases, more devices can access to
nearby BSs with better transmission performance, thus
reducing transmission delay. However, the server allocates
less computing resources to each device, thus increasing

the processing delay. The total delay increases with qj since
the processing delay has a greater impact on the total delay.

Figure 6 shows the impact of the weight V on total delay
and energy efficiency. With the increase of V , the energy effi-
ciency increases obviously and finally reaches 7:1542 bits/(J·
Hz). Meanwhile, the total delay decreases first and then
increases gradually, finally reaching 661:91ms. The reason
is that as V increases, the proposed algorithm puts more
emphasis on energy efficiency improvement. Devices are
inclined to select the channel which can achieve a higher
transmission rate, thereby reducing the transmission delay
and total delay at first. However, the increasing V enforces
devices to select the nearby edge servers with less computing
resources to improve energy efficiency, which then increases
the processing delay and total delay. Therefore, the proposed
algorithm can balance the tradeoff between energy efficiency
and delay by adjusting the weight V .

Figure 7 compares the performance of the proposed
algorithm and the nonadaptive ε-greedy algorithm. The pro-
posed algorithm outperforms the nonadaptive ε-greedy
algorithm by 7:45%. The reason is that the proposed algo-
rithm can adjust εt based on the average cumulative reward
�rKðtÞ to balance the tradeoff between exploration and exploi-
tation. On the contrary, the nonadaptive ε-greedy algorithm
with fixed ε cannot adaptively trade off exploration and
exploitation based on current reward, thereby resulting in
poor learning performance and lower weighted difference.

Table 3 shows the computation complexity of different
algorithms. Due to the consideration of channel selection
optimization, the computation complexity of the proposed
algorithm is higher than MKM and MBTO, but the pro-
posed algorithm, respectively, improves the weighted differ-
ence between energy efficiency and delay by 39.74% and
9.96% compared with MKM and MBTO. Due to the limited
computing resources of PDIoT devices, the computation
complexities of DRL-based task offloading algorithm
(DRLTO), federated learning-based task offloading algo-
rithm (FLTO), and meta learning-based task offloading algo-
rithm (MLTO) are much higher than that of the proposed
algorithm.

5. Conclusion

In this paper, the energy-efficient and low-latency task off-
loading in PDIoT was investigated. An ML-based two-
stage task offloading optimization algorithm was proposed
to maximize the weighted difference between energy effi-
ciency and delay through joint optimization of large-

Table 3: Comparison of the computation complexity.

Algorithm Computation complexity

Proposed 1.541348 s

MKM 0.404835 s

MBTO 0.317423 s

DRLTO 1840.079283 s

FLTO 2057.109636 s

MLTO 1642.427586 s
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Figure 7: The comparison between the proposed algorithm and the
nonadaptive ε-greedy algorithm.
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timescale server selection and small-timescale channel selec-
tion. Simulation results show that the proposed algorithm
can improve the weighted difference by 39:74% and 9:96%
compared with MKM and MBTO. In the future, the joint
optimization of power control and computing resource allo-
cation for multi-QoS guaranteed task offloading in PDIoT
will be studied.
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