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Urban Internet of Things (IoT) plays an extremely important role in our daily life by deploying smart cities and urban brains.
Orthogonal multiple access (OMA) technology has been a commonly used communication method in recent years, but
nonorthogonal multiple access (NOMA) attracts the attention of many researchers due to its superiority of successive
interference cancellation (SIC) technology. We consider adding the base station (BS) and unmanned aerial vehicle (UAV) to
perform collaborative data offloading services with urban IoT devices and introduce the NOMA technology to improve
offloading efficiency. In order to solve the data unloading problem in this model cost-effectively, we formulate the model as a
game model based on noncooperative competition and propose the iterative game-based data offloading algorithm (GDOA) to
obtain the Nash equilibrium (NE) solution. Finally, we use the simulation data to conduct parametric analysis experiments and
comparison experiments on GDOA to evaluate its real performance.

1. Introduction

With the advancement of mobile communication technol-
ogy, the urban IoT will play an increasingly important role
in our daily life [1]. Different from ordinary IoT, urban
IoT focuses on intelligent communication and smart city
[2–4]. At the same time, the massive data generated by var-
ious sensors in the urban IoT puts enormous pressure to the
IoT services, mainly including high communication delay,
nonnegligible energy consumption, and quality of experi-
ence for urban IoT devices [5, 6]. In order to improve the
quality of urban IoT communication services, it is essential
to establish a reasonable framework, such as an efficient data
offloading model [7–9]. Among them, the devices in the
urban IoT can request services with the neighboring BS
through wireless transmission, so as to determine the way
of data offloading, i.e., the devices upload its data to be cal-
culated in the server through the wireless link [10, 11]. How-
ever, since the data transmission in most urban IoT systems
adopts the OMA technology, each device will be subject to a
lot of intracell interference, which causes the delay and

energy consumption of the device to become extremely high
[12, 13]. In addition, the UAV is often used to assist the BS
to perform data offloading services with devices, which
reduces the computational pressure of the BS to a certain
extent [14].

Nevertheless, due to the increasing data transmission
and service requests in the urban IoT, the OMA technology
is gradually unable to meet the services with a very large
number of devices [15, 16]. Therefore, the NOMA technol-
ogy that effectively reduces the intracell interference in the
multirequest low-latency problem has been widely used
[17, 18]. The main idea of NOMA is to send the nonortho-
gonal data from the transmitter and eliminate the interfer-
ence at the receiver, and then, the realization of the whole
process depends on the SIC technology [19–21]. The process
of SIC can be expressed as follows: the receiving end judges
the signals of the device one by one according to the
descending order of channel gain, subtracts the signals of
other devices whose channel gain is higher than that of the
device from the interference, and finally loops the above
operation until the successive interference of all devices is
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eliminated [22–24]. Because most of the interference is elim-
inated, NOMA greatly improves the efficiency of data off-
loading from devices in the urban IoT system.

In this paper, the scenario we consider is an urban IoT
data offloading system that supports NOMA, the data off-
loading problem in this system is solved by the potential
game method in game theory [25], and we add UAVs to
assist the BS with the devices to communicate. Our optimi-
zation goal is to minimize the energy consumption cost of
all urban IoT devices. According to the limited resource
competition between devices, we formulate this model into
a noncooperative competitive game model and propose a
game-based data offloading algorithm (GDOA) based on
the iterative update process, which can obtain the device
strategy profile in NE state after a finite number of iterations
[26]. Finally, a series of simulation performance evaluations
are carried out for our proposed GDOA, including parame-
ter analysis experiments and comparison experiments. The
main contributions in our study include the following:

(i) We study a NOMA-enabled urban IoT data offload-
ing model, while incorporating server-loaded UAVs
to assist the BS in wireless communication with
devices. There are three ways to offload data from
devices: local computing, data offloading by the
BS, or data offloading by the UAVs. Our overall
optimization goal is to minimize the sum of the
energy consumption costs of all urban IoT devices

(ii) We formulate this urban IoT data offloading model
as a game model based on noncooperative competi-

tion between devices. The potential function in
game theory is proposed, and it is proved that our
game model is a generalized ordinal potential game.
And we propose a game-based iterative algorithm
GDOA, which can obtain the NE strategy profile
after a finite number of iterations

(iii) We evaluate the simulation performance of this
model, including many parameter analysis experi-
ments of GDOA and several comparison experi-
ments between GDOA and other excellent
algorithms

The rest of this paper is organized as follows. The system
model and problem formulation are introduced in Section 2.
We describe the game-based data offloading for urban IoT in
Section 3, including game-based offloading model and off-
loading algorithm design. And several parametric analysis
experiments and comparison experiments are conducted in
Section 4 to evaluate the performance of this model. Section
5 describes the related work. Finally, we summarize this
study in Section 6.

2. System Model and Problem Formulation

2.1. System Model for Urban Internet of Things. As shown in
Figure 1, we study a NOMA-based data offloading system
for urban IoT, which consists of a single base station (BS),
multiple UAVs, and multiple urban mobile devices. In this
system, we consider n densely distributed urban mobile
devices, and the set of all devices is U = fu1, u2,⋯, ung.

Urban IoT device

UAV loaded with server

Base station

Device cluster

NOMA-enabled Transmission

Figure 1: An example of NOMA-enabled data offloading scenario for urban IoT.
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There are x clusters covering y devices; the set of these clus-
ters is expressed as W = fw1,w2,⋯,wxg. And we represent
each cluster as wj = fu1, u2,⋯, uyg; thus, the set of all n
devices can also be denoted by U =w1 ∪w2 ⋯∪wx. There
is a single base station S in our system; the devices of any
cluster are within the coverage of this base station. The set
of all UAVs is denoted as V = fv1, v2,⋯, vxg, and one
UAV vj is arranged in each cluster wj. The main notations
and their definitions of this paper are given in Table 1.

The computing power of each device ui when computing
locally is f i, which is related to device ui’s chip architecture.
In addition, the transmit power of each device ui is pi, the
bandwidth of the BS’s channel and the UAV’s channel is B,
and the channel gain in data transmission for device ui is gi.
We assume that device ui will choose a data offloading

approach (local computing, BS or UAV) based on its own
resource requirements and possible cost.

To simplify the data transmission and computation of
the device, each device ui has a computation task Ki ≜ ðDi,
XiÞ, where Di represents the amount of intensive data when
transmitting the task and Xi represents the number of CPU
cycles required to compute the task [27].

Definition 1 (data offloading strategy). Each device ui in
this system needs to make a data offloading strategy
ai = f0, 1, 2g, ai = 0 means that ui chooses completing
its computation task locally, ai = 1 denotes that ui
chooses offloading the data of its computation task
by BS, and ai = 2 represents that ui chooses offloading
the data of its computation task by UAV.

Table 1: Key notations.

Notations Definitions

ui Any urban IoT device

U Set of all urban IoT devices

n The number of all urban IoT devices

W Set of all urban IoT clusters

x The number of urban IoT clusters

V Set of all UAVs

wj Set of all urban IoT devices in cluster j

y The number of urban IoT devices in each cluster

vj The UAV in cluster j

f i The computing power of urban IoT device ui
pi The transmit power of urban IoT device ui
gi The channel gain of urban IoT device ui for data transmission

B The bandwidth of the channel for data transmission

Ki The computation task of urban IoT device ui
Di The data size of computation task Ki

Xi The number of CPU cycles to complete computation task Ki

ai The data offloading strategy of urban IoT device ui
a The set of all devices’ data offloading strategies

a−i The set of all devices’ data offloading strategies except device ui
S j The set of urban IoT device ui’s neighbor base station

V j The set of all urban IoT devices allocated to channel ckj on edge server sj

T loc
i The delay of completing computation task Ki locally

Eloc
i The energy consumption of completing computation task Ki locally

Tbs
i The delay of completing computation task Ki by the BS

Ebs
i The energy consumption of completing computation task Ki by the BS

Tuav
i The delay of completing computation task Ki by UAV

Euav
i The energy consumption of completing computation task Ki by UAV

Ca−i
aið Þ The cost function of device ui’s strategy ai

a∗ The data offloading strategies of all devices at Nash equilibrium
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Each cluster wj shares one channel of the BS, and the set
of devices sharing the same channel of the BS is denoted by

S j = ui ∈wj ∣ ai = 1
È É

,∀wj ∈W : ð1Þ

And each cluster wj shares one channel of the UAV; the
set of devices sharing the same channel of the UAV is
expressed as

V j = ui ∈wj ∣ ai = 2
È É

,∀wj ∈W : ð2Þ

The strategy profile of all the devices is a = fa1, a2,⋯,
ang, and a−i = fa1,⋯, ai−1, ai+1,⋯, ang represents the strat-
egy profile of all devices except device ui.

2.2. NOMA-Enabled Transmission Model. In our system, the
geographic positions of devices, BS, and UAVs are represented
by three-dimensional coordinates, the position of device ui is
denoted by Li = ðxi, yi, 0Þ, the position of BS’s server is repre-
sented by Hm = ðxm, ym, zmÞ, and UAV vj server’s position is
expressed as Qj = ðxj, yj, zjÞ. The distance between the device
and the server can be calculated through their coordinates,
and we can get the channel gain when device ui chooses
UAV vj to offload its data, which is expressed as

gi,j = Li −Qj

 −2, ð3Þ

where kLi −Qjk =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi − xjÞ2 + ðyi − yjÞ2 + ðzi − zjÞ2

q
.

We represent θ as the channel fading factor obeying the
Rayleigh distribution, similar to the channel gain gi,j; the
channel gain when device ui chooses BS S to offload its data
is denoted by

gi,m = Li −Hmk k−θ, ð4Þ

where kLi −Hmk =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi − xmÞ2 + ðyi − ymÞ2 + z2m

q
. There-

fore, we can get the channel gain of device ui in two cases,
which can be expressed as

gi =
gi,m, ai = 1,
gi,j, ai = 2:

(
ð5Þ

Taking the BS server as an example, on the basis of the
definition for NOMA at the transmitter, NOMA can broad-
cast the signal qi of each device ui ∈ S j on the same channel,
and the server of the BS receives a superposition-coded sig-
nal qbsj mixed with these signals, which can be expressed as

qbsj = 〠
ui∈S j

ffiffiffiffi
pi

p
qi: ð6Þ

Similarly, the superposition-coded signal quavj received
by the UAV server can be denoted by

quavj = 〠
ui∈V j

ffiffiffiffi
pi

p
qi: ð7Þ

Then, we will introduce successive interference cancella-
tion (SIC) technology in this NOMA-enabled data offload-
ing system. SIC is a signal decoding method; its basic
principle is to gradually subtract the interference of the
device who possesses the maximum signal power. During
this process, the SIC detector makes data judgments for mul-
tiple devices one by one in the received signal, and when a
device is judged, the multiple access interference caused by
the device’s signal is subtracted at the same time, and the
operation is performed in the order of signal power, and
the signal with higher power is operated first. The operation
is repeated until all the multiple access interference are elim-
inated [28]. In this order, any device ui can correctly decode
the superimposed signals of other devices whose channel
gain is greater than gi in the same channel, so as to eliminate
successive interference in ui’s received signal.

Given the BS selection set S j and UAV selection set V j,
all devices on the same channel are sorted based on their
channel gains, and the devices with higher channel gains
are ranked ahead of the devices with lower channel gains.
Thus, we can get the sorted sequence of all devices on the
same channel of BS S: u1, u2,⋯, ujS jj, where jS jj is the num-

ber of devices in S j, device u1 and, the channel gain g1 of
device u1 is the maximum value, the channel gain gjS jj of
device ujS jj is the minimum value. And we can also obtain

the sorted sequence of all devices on the same channel of
UAV vj: u1, u2,⋯, ujV jj, where jV jj is the number of devices

in V j, device u1 and, the channel gain g1 of device u1 is the
maximum value, the channel gain gjV jj of device ujV jj is the
minimum value [29, 30].

We next investigate the SIC process between the device
and the UAV server when the device selects the UAV to off-
load data. For two devices ui, ub ∈V j, suppose ub’s channel
condition is better than ui, i.e., gb < gi. In order to use SIC
reasonably, the data rate of device ub for decoding device
ui’s received signal cannot be lower than device ui’s data rate
for decoding device ui’s received signal, and ruavbji ≥ ruaviji . If the
above condition cannot be satisfied, device ui’s data rate will
reduce because its received inside interference is not elimi-
nated. On the contrary, device ui’s data rate can be denoted
by

ruavi =min ruavb ij ∣ gb < gi

n o
,∀ub ∈V j, ð8Þ

where ruavb∣i denotes device ub’s data rate for decoding device
ui’s signal, which can be expressed as

ruavb ij = Blog2 1 + pbgb

∑
V jj j
t=i+1ptgt + σ2

0
@

1
A: ð9Þ
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In other words, we can deduce that the data rate of
device ui is lower than the devices ranked after device ui.

Through the above description, the decoding order of
these devices derived from the channel gain is very important
and directly affects the data rate of each device [31]. Therefore,
how to get a reasonable order is essential when optimizing the
data rate of all devices in this model. According to (8) and (9),
we can obtain the available data rate ruavi of device ui:

ruavi = Blog2 1 + pb

∑
V jj j
t=i+1ptgt +Mi

0
@

1
A, ð10Þ

where Mi is denoted by

Mi =max σ2

gb
∣ gb < gi

� �
,∀ub ∈V j: ð11Þ

In order to ensure that all devices can accept the data rate
under the same transmit power, we should determine the
decoding order according to the channel gain and the received
intracell interference of the device which can be expressed as

M1 =
σ2

g1
≥M2 =

σ2

g2
≥⋯≥M V jj j =

σ2

g V jj j
: ð12Þ

If all devices assigned to the UAV server follow the order
in (12), the SIC process is successfully completed. When the
order of these devices follows this decoding order, the data rate
ruavi of device ui can be denoted by

ruavi = Blog2 1 + pigi

∑
V jj j
t=i+1ptgt + σ2

0
@

1
A: ð13Þ

In the same way, we represent rbsi as the data rate of device
ui when ui chooses to offload data by the BS, and rbsi is also
denoted by

rbsi = Blog2 1 + pigi

∑
S jj j
t=i+1ptgt + σ2

0
@

1
A: ð14Þ

Combining SIC technology and the data rate of device, the
upper bound Qi of intracell interference received by device ui
can be represented by

〠
z

t=i+1
ptgt ≤Qi, ð15Þ

where z represents the total number of devices on the channel
selected by device ui.

2.3. Data Offloading Model

2.3.1. Local Computing. For each device ui, if ui chooses local
computing to offload its data, the computing delay T loc

i gen-

erated by its computation task Ki is expressed as

T loc
i = Xi

f i
: ð16Þ

We denote ε as the energy consumption factor when
computing locally; the size of which is determined by the
device’s own chip architecture. The energy consumption
generated by the computing task Ki is expressed as

Eloc
i = ε f ið Þ2Xi: ð17Þ

2.3.2. Offloading Data by BS. When ui chooses offloading its
data by BS, the delay generated by the task transmission can
be expressed as

Tbs
i = Di

rbsi
, ð18Þ

and the energy consumption of the task transmission is
represented by

Ebs
i = piT

bs
i = pi

Di

rbsi
: ð19Þ

2.3.3. Offloading Data by UAV. When ui chooses offloading
its data by UAV, the delay generated by the task transmis-
sion can be expressed as

Tuav
i = Di

ruavi
, ð20Þ

and the energy consumption of the task transmission is
represented by

Euav
i = piT

uav
i = pi

Di

ruavi
: ð21Þ

2.4. Problem Formulation. Through the above description,
we take the energy consumption of the device as the main
influence part of its cost function. Assuming that the strate-
gies a−i of other devices remain unchanged, the cost gener-
ated by strategy ai of device ui can be expressed as

Ca−i
aið Þ =

λEloc
i , ai = 0,

λEbs
i , ai = 1,

λEuav
i , ai = 2,

8>><
>>:

ð22Þ

where λ is the varying parameter of device’s cost function.
When the intracell interference of device ui reaches the
upper bound Qi, the energy consumption of the device will
reach the maximum value Emax

i . Due to the instability and
weak computing power of the device, we believe that the
local computing energy consumption should meet

Eloc
i ≥ Emax

i = pi
Di

Blog2 1 + pigi/Qi + σ2ð Þð Þ : ð23Þ
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In this data offloading system for NOMA-enabled urban
IoT, in order to reduce costs and improve efficiency, we aim
to minimize the overall cost, namely,

min 〠
ui∈U

Ca−i
aið Þ

s:t: 8ð Þ, 15ð Þ, 23ð Þ
ð24Þ

where (8) is the NOMA-enabled data rate constraint of
device ui, (15) is ui’s received intracell interference con-
straint, and (23) denotes ui’s energy consumption
constraint.

3. Game-Based Data Offloading for Urban
Internet of Things

3.1. Game Model for Data Offloading. In our system, each
device wants tominimize its own cost, which is not only deter-
mined by the decisions it makes but also affected by the deci-
sions of other devices. Based on the competition (each device
is aimed at minimizing its own cost) among the devices in
our system and the resource constraints of the whole system,
this problem cannot be solved with the common methods in
reality [2, 32]. Potential game, a game-theoretical tool to solve
the competition between devices when there are multiple con-
straints, is suitable for solving competition problems and min-
imizing the overall cost for this system. We can formulate this
model as a gamemodel of noncooperative competition among
devices, defined as

G = n, aif gui∈U, Ca−i
aið ÞÈ É

ui∈U

n o
, ð25Þ

where n represents the number of all devices in this system, ai
is the data offloading strategy of device ui, andCa−i

ðaiÞ denotes
the cost resulted by strategy ai when other devices’ strategies
are given.

In model G , due to the principle of individual rationality
of devices, each device tends to reduce its own cost when the
system resources are limited, and our system will reach the
NE state after multiple iterations. In this state, any device
unilaterally changing its own strategy (the strategies of other
devices remain unchanged) will not reduce its own cost.

Definition 2 (Nash equilibrium). In this noncooperative
competition game model G , in case there is a strategy profile
a∗ = fa∗1 , a∗2 ,⋯, a∗ng for all devices, each device does not
want to change its strategy to reduce the cost; it can also
be expressed as

Ca∗−i
aið Þ ≤ Ca∗−i

a∗ið Þ,∀ui ∈U: ð26Þ

The Nash equilibrium (NE) solution is the combination
of all strategies, i.e., the stable strategies of all game players
(devices) [33]. At this point, any device will not reduce its
cost by changing strategy, but the existence of NE needs to
be proven. There must be the NE in potential game due to
potential game’s Finite Improvement Property (FIP), so we

need to prove that G is a potential game to ensure the exis-
tence of NE in our model.

Definition 3 (potential game). ∀ai, ai′∈ a, given the other
devices’ strategies a−i except ui’s strategy ai, a game G is an
generalized ordinal potential game if there is a function
Φa−i

ðaiÞ satisfying

Ca−i
aið Þ > Ca−i

ai′
� �

⇒Φa−i
aið Þ >Φa−i

ai′
� �

: ð27Þ

Following the above, we need to testify that our game
model G is a potential game through the potential game the-
orem, i.e., satisfying Definition 2. Before introducing this
theorem, we need to define a conditional judgment variable
If⋯g = f0, 1g. Taking Ifat=aig as an example, Ifat=aig = 1 when
device ut ’s strategy at and device ui’s strategy ai are the
same, and Ifat=aig = 0 when at is different from ai [23].

Theorem 4. G is a generalized ordinal potential game; its
potential function Φa−i

ðaiÞ is expressed as

Φa−i
aið Þ = − 〠

ui∈U

pigi

∑
S jj j
t=i+1ptgtI at=aif g

I ai=1f g

− 〠
ui∈U

pigi

∑
V jj j
l=i+1plglI al=aif g

I ai=2f g − 〠
ui∈U

pigi
Qi

I ai=0f g:

ð28Þ

Proof. If we assume Ca−i
ðaiÞ > Ca−i

ðai′Þ, the possible strategies
of device ui are divided into four cases: Case 1: ai = 0, ai′= 1;
Case 2: ai = 0, ai′= 2; Case 3: ai = 1, ai′= 2; Case 4: ai = 2,
ai′= 1.

Case 1.

Ca−i
aið Þ > Ca−i

ai′
� �

⇒ Eloc
i > Ebs

i : ð29Þ

According to equation (23), we can get

Eloc
i ≥ Emax

i ≥ Ebs
i ⇒ pi

Di

Blog2 1 + pigi/Qi + σ2ð Þð Þ
> pi

Di

rbsi
⇒ log2 1 + pigi

Qi + σ2

� �

< log2 1 + pigi

∑
S jj j
t=i+1ptgtI at=aif g + σ2

0
@

1
A⇒ pigi

Qi + σ2

< pigi

∑
S jj j
t=i+1ptgtI at=aif g + σ2

⇒ pigi
Qi

< pigi

∑
S jj j
t=i+1ptgtI at=aif g

:

ð30Þ
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The potential function’s difference between ai and ai′ is

Φa−i
aið Þ −Φa−i

ai′
� �

= 〠
ui∈U

pigi

∑
S jj j
t=i+1ptgtI at=aif g

− 〠
ui∈U

pigi
Qi

= 〠
ui∈U

pigi

∑
S jj j
t=i+1ptgtI at=aif g

−
pigi

Qi

0
@

1
A > 0:

ð31Þ

Case 2.

Ca−i
aið Þ > Ca−i

ai′
� �

⇒ Eloc
i > Euav

i : ð32Þ

Similar to Case 1, it is easy to know

Eloc
i ≥ Emax

i ≥ Euav
i ⇒ pi

Di

Blog2 1 + pigi/Qi + σ2ð Þð Þ
> pi

Di

ruavi
⇒ log2 1 + pigi

Qi + σ2

� �

< log2 1 + pigi

∑
V jj j
l=i+1plglI al=aif g + σ2

0
@

1
A⇒ pigi

Qi

< pigi

∑
V jj j
l=i+1plglI al=aif g

:

ð33Þ

The potential function’s difference between ai and ai′ is

Φa−i
aið Þ −Φa−i

ai′
� �

= 〠
ui∈U

pigi

∑
V jj j
l=i+1plglI al=aif g

− 〠
ui∈U

pigi
Qi

= 〠
ui∈U

pigi

∑
S jj j
l=i+1plglI al=aif g

−
pigi
Qi

0
@

1
A > 0:

ð34Þ

Case 3.

Ca−i
aið Þ > Ca−i

ai′
� �

⇒ Ebs
i > Euav

i ⇒ pi
Di

rbsi

> pi
Di

ruavi
⇒ pigi

∑
S jj j
t=i+1ptgtI at=aif g

< pigi

∑
V jj j
l=i+1plglI al=aif g

:

ð35Þ

The potential function’s difference between ai and ai′ is

Φa−i
aið Þ −Φa−i

ai′
� �

= 〠
ui∈U

pigi

∑
S jj j
t=i+1ptgtI at=aif g

− 〠
ui∈U

pigi

∑
V jj j
l=i+1plglI al=aif g

= 〠
ui∈U

pigi

∑
S jj j
t=i+1ptgtI at=aif g

−
pigi

∑
V jj j
l=i+1plglI al=aif g

0
@

1
A > 0:

ð36Þ

Case 4.

Ca−i
aið Þ > Ca−i

ai′
� �

⇒ Euav
i > Ebs

i ⇒ pi
Di

ruavi

> pi
Di

rbsi
⇒ pigi

∑
V jj j
l=i+1plglI al=aif g

< pigi

∑
S jj j
t=i+1ptgtI at=aif g

:

ð37Þ

The potential function’s difference between ai and ai′ is

Φa−i
aið Þ −Φa−i

ai′
� �

= 〠
ui∈U

pigi

∑
V jj j
l=i+1plglI al=aif g

−
pigi

∑
S jj j
t=i+1ptgtI at=aif g

0
@

1
A > 0:

ð38Þ

According to the above description, Theorem 4 is
proved.

3.2. Game-Based Offloading Algorithm Design. To solve the
problem of device data offloading (which offloading method
to choose), we propose a game-based data offloading algo-
rithm (GDOA) to minimize the total cost of this system
[34, 35]. In our algorithm, the necessary experimental
parameters are first given, and all devices undergo a limited
number of iterations, in which each device updates its strat-
egy based on its own minimum cost, until no device is will-
ing to update its own strategy to change the cost, i.e., the NE
state is reached [36]. Our proposed algorithm is shown in
Algorithm 1, and the main steps are as follows:

(1) Environment initialization: given the required exper-
imental parameters, we initialize the strategy ai of
each device ui to ai = −1

(2) Iterative process: as shown on lines 3-14, in each
iteration, we first need to calculate the cost of the
system in the current state and then formulate the
strategy for each device ui ∈U. Given three data off-
loading approaches: local computing, base station
data offloading, and UAV data offloading, before
updating each device’s strategy, we need to calculate
the total system cost caused by these possible cases
(assuming this device’s strategy is one of them) and
find the lowest total cost for device ui. Then, we find
the lowest cost device among all devices and update
the corresponding strategy for that device

(3) End of iteration: no device is willing to update its
own strategy and finally returns the strategy profile
of all devices

4. Performance Evaluation

4.1. Experimental Settings. In order to correctly evaluate the
simulation performance of the model, we need to give the
important parameters involved in the experiment, as shown
in Table 2. Besides, the coordinates of all devices need to be
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given, and the channel gain between the device and the BS or
UAV can be calculated [37].

4.2. Parameter Analysis. In this section, we will carry out a
series of parameter analysis experiments to evaluate the per-
formance of our model, i.e., setting different parameters to
obtain the experimental results.

As shown in Figure 2, it describes the effect of different
values of channel fading factor on the system cost, and the
independent variable is the number of devices in each clus-
ter. It is obvious that the system cost (cost of all devices)
increases as the number of devices in each cluster increases,
regardless of the channel fading factor. The increase of
devices in each cluster will lead to greater interference
among all devices, and the sum of the costs of all devices will
definitely increase when the system resources remain
unchanged. When the number of devices in each cluster is
determined, the channel fading factor increases from 3 to

5, and the average data rate decreases with it. In other words,
as the channel fading factor becomes larger, the interference
received by the device during the data transmission process
is reduced, and the total system cost is reduced.

Figure 3 shows the effect of different channel fading
factors on the average data rate of all devices, where the
independent variable of the experiment is the number of
devices in each cluster. Regardless of the value of the
channel fading factor, as the number of devices in each
cluster increases, the average data rate of all devices
decreases. The increase in the number of devices in each
cluster will lead to increased interference, and by Shan-
non’s theorem, the average data rate of all devices will
decrease. When the number of devices in each cluster is
determined, the channel fading factor increases from 3 to
5, and the average data rate decreases due to the smaller
signal-to-noise ratio.

Figure 4 denotes the effect of different values of the chan-
nel fading factor on the system cost, and the independent
variable is the height of the UAV in each cluster. Regardless
of the channel fading factor, the system cost increases as the
height of the UAV in each cluster increases. The increase in
the height of the drone will result in increased interference
between all devices and an overall increase in cost. When
the UAV height of each cluster is determined, the channel
fading factor is increased from 3 to 5, and the system cost
is reduced due to the smaller signal-to-noise ratio.

Figure 5 represents the relationship between different
channel fading factors and the average data rate of all
devices, with the independent variable being the height of
the UAV in each cluster. Obviously, the average data rate
decreases as the UAV’s altitude increases, because the
increased altitude causes greater interference between all
devices, which also affects the average data rate. And when
the UAV’s height of each cluster is determined, if the chan-
nel fading factor increases from 3 to 5, the average data rate
decreases due to the increase of the overall interference.

The influence of different values of the channel fading fac-
tor on the data offloading ratio of the device can be obtained
intuitively from Figure 6.With the increase of the channel fad-
ing factor, the proportion of the number of devices offloading
locally to the total number of devices gradually decreases to
zero, the number of devices offloading by the BS to the total
number of devices gradually increases, and the proportion of
the number of devices offloading by the UAV to the total
number of devices remains unchanged. The reason is that after
the channel fading factor is increased to 4, the channel gain of
UAV offloading has nothing to do with the channel fading fac-
tor, and the cost of selecting BS offloading for any device is sig-
nificantly lower than selecting local computing.

4.3. Comparison Experiments. In order to demonstrate the
superiority of Algorithm 1 in both simulated data and the
real world, our algorithm are supposed to be compared with
a benchmark algorithm and several advanced algorithms.
These algorithms are as follows:

(i) Random: in this algorithm, each device randomly
selects an offloading way (local computing, by the

Table 2: Experiment settings.

Parameters Value

The number of clusters 5

The number of urban IoT devices in each cluster 10

The bandwidth of the channel 20MHz

The transmit power of each urban IoT device 1W

The data size of each computation task 3000KB

The background noise -100 dBm

Input: U,W ,V ,wj and other parameters
Output: offloading strategy profile a = fa1, a2,⋯, ang
1 Initialization: each device ui’s strategy is ai = −1
2 End Initialization
3 repeat
4 calculate the current total cost ∑ui∈UCa−i

ðaiÞ
5 for each cluster Wj ∈U do
6 for each device ui ∈W j do

7 calculate the total cost ∑ui∈UCa−i
ða1i Þ

when assuming a1i = 0;
8 calculate the total cost ∑ui∈UCa−i

ða2i Þ
when assuming a2i = 0;

9 calculate the total cost ∑ui∈UCa−i
ða3i Þ

when assuming a3i = 0;
10 find the minimum cost ∑ui∈UCa−i

ðai′Þ
from the three costs;

11 if ∑ui∈UCa−i
ðai′Þ <∑ui∈UCa−i

ðaiÞ
then

12 compete for the opportunity to update
strategy;

13 if device ui wins the competition then
14 update its strategy from ai to ai′;
15 until there is no device willing to update its strategy;
16 Return a

Algorithm 1: Game-based data offloading algorithm (GDOA).

8 Wireless Communications and Mobile Computing



20

40

60

80

100

Th
e s

ys
te

m
 co

st

3 4 9 105 6 7 8

The number of devices in each cluster

𝜃 = 3
𝜃 = 4
𝜃 = 5

Figure 2: Effect of channel fading factor on system cost.

1.0

1.5

2.0

2.5

3.0

3.5

Th
e a

ve
ra

ge
 d

at
a r

at
e f

or
 al

l d
ev

ic
es

 (b
it/

s)

1e8

3 4 9 105 6 7 8

The number of devices in each cluster

𝜃 = 3
𝜃 = 4
𝜃 = 5

Figure 3: Effect of channel fading factor on average data rate.

9Wireless Communications and Mobile Computing



30 40 90 10050 60 70 80

The height of UAV in each cluster (m)

54

56

58

60

62

64

66

Th
e s

ys
te

m
 co

st

𝜃 = 3
𝜃 = 4
𝜃 = 5

Figure 4: Effect of channel fading factor on system cost.

1.15

1.20

1.25

1.30

1.35

1.40

1.45

Th
e a

ve
ra

ge
 d

at
a r

at
e f

or
 al

l d
ev

ic
es

 (b
it/

s)

1e8

30 40 90 10050 60 70 80

The height of UAV in each cluster (m)

𝜃 = 3
𝜃 = 4
𝜃 = 5

Figure 5: Effect of channel fading factor on average data rate.

10 Wireless Communications and Mobile Computing



BS or by the UAV) as its strategy and then calcu-
lates the total cost of all devices. After repeating
the above process hundreds of times, the average
state is the final state

(ii) OMA-DOA: a data offloading algorithm based on
OMA, i.e., the calculation of intracell interference
is different from NOMA. Similar to Algorithm 1,
the idea of OMA-DOA is also an iterative process
for each device to select the strategy that leads to
the lowest system cost

(iii) ICSOC19 [38]: regardless of the minimization of
system cost, each device chooses the current off-
loading strategy that can bring the lowest cost in
each iteration

As shown in Figure 7, what can be known is the effect of
the number of devices in each cluster on the system cost in
different algorithms. As the number of devices increases,
the system cost in all four algorithms increases. When the
number of devices in each cluster increases from 3 to 5,
the system cost of Random algorithm is the highest, the sys-
tem cost of OMA-DOA algorithm is much higher than that
of ICSOC19 algorithm, and the system cost of GDOA is the
lowest. The reason is that the number of devices is not
enough, and the interference in the OMA-DOA algorithm
is not large enough, so the unstable Random algorithm has
the highest system cost, and the GDOA is better than the
local optimum of ICSOC19 algorithm due to its iterative
update (reaching the global optimum). When the number

of devices in each cluster increases from 6 to 8, the system
cost of the OMA-DOA algorithm is the highest, the system
cost of Random algorithm is much higher than that of
ICSOC19 algorithm, and the system cost of the GDOA is
the lowest. Similar to when the number of devices increases
from 6 to 8, the gradient remains the same, when the num-
ber of devices per cluster increases from 8 to 10, but the cost
gap between the algorithms becomes larger. The cause is that
the increase in the number of devices leads to more and
more interference in OMA-DOA algorithm, and the system
cost caused by GDOA that is aimed at the overall optimal is
the smallest.

What can be known in Figure 8 is the influence of
the channel fading factor on the system cost in different
algorithms. As the channel fading factor increases, the
system cost in all four algorithms decreases. Among
them, the decreasing trend of system cost of OMA-
DOA algorithm is not obvious, and the decreasing trend
of system cost of GDOA is the fastest. When the value
of the channel fading factor is determined, the system
cost of OMA-DOA algorithm is the highest, the system
cost of Random algorithm is higher than that of
ICSOC19 algorithm, and the system cost of GDOA is
the lowest. The reason is that the larger channel fading
factor will basically not affect the interference received
by the equipment in OMA-DOA algorithm, which is of
great help to GDOA and ICSOC19 algorithms based on
SIC technology. And the iterative update property of
GDOA (reaching the global optimum) is better than the
local optimum of ICSOC19 algorithm.
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5. Related Work

There is an increasing amount of work on data offloading in
Internet of Things systems. The authors of [39] studied the
problem of computation offloading based on age of informa-

tion, while considering the energy control of its system. But
this paper did not consider the complex data access of mul-
tiple BSs. In [40], the authors proposed an intelligent video
application based on interference-aware data offloading,
which can be combined with real-time traffic monitoring
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to improve urban IoT. The authors in [41] considered the
energy-saving task offloading problem based on stochastic
optimization in MEC, which minimizes the energy con-
sumption of task offloading while ensuring the average
queue length. Reference [42] proposed an edge computing
solution that can achieve mutual cooperation between differ-
ent edge servers in the case of limited resources, thereby
effectively reducing the delay of data delivery. However, data
offloading or edge computing in these papers does not con-
sider using UAVs to assist BSs for data services.

In order to solve the problem of intermittent network
connection of mobile devices, many work has introduced
UAV-assisted BS to provide devices with seamless coverage
of urban IoT services for the increasingly complex require-
ments. In [14], the authors aimed to jointly optimize the
coverage radius of UAV servers and the number of UAV
servers to maximize the minimum throughput of ground
users at the cell edge through nonorthogonal spectrum
reuse. And [43] studied the need for IoT devices to offload
some tasks to the edge server of the base station and the
drone server with controllable maneuverability and flexibil-
ity under the premise of harsh environment. Nevertheless,
data offloading or edge computing in these papers does not
consider nonorthogonal multiple access during data
transmission.

In recent years, NOMA technology in 5G IoT has been
plenty of studied to improve the offloading performance
and reduce the system cost. Reference [44] proposed a novel
framework named Edge Game, which effectively improves
the user’s data rate and service experience by using NOMA
to remove the successive interference generated when off-
loading computationally intensive tasks. In [45], the authors
studied the NOMA-supported energy-saving task offloading
and resource allocation problems in the intelligent IoT,
solved the limitation of computing and storage resources
through NOMA technology, and used advanced stochastic
optimization technology to minimize energy consumption
while satisfying delay constraints. However, considering
the limited computing resources of the system and the inev-
itability of intracell interference, it is obviously unrealistic to
ignore the influence of device transmit power on the SIC
process.

In this paper, we study the decision problem of offload-
ing approach combining data offloading and device alloca-
tion. We minimize the total energy consumption of urban
IoT devices through stochastic optimization, transform it
into a potential game model by applying potential game the-
ory, and propose GDOA to verify the excellent performance
of this model. In addition, we also introduce NOMA tech-
nology to cancel the successive intracell interference.

6. Conclusion

This paper studies the NOMA-based device data offloading
in an urban IoT system, and the BS and UAVs in the urban
IoT system provide data offloading services to the devices.
We adopt SIC technology to effectively eliminate the inter-
ference between devices when offloading data so that each
device can obtain a reasonable data rate while satisfying

the SIC ordering. Our optimization goal is to minimize the
energy cost of all equipment. Since this offloading problem
is difficult to solve in the real world, we define a potential
game model of noncooperative competition among devices.
And we propose an iterative update-based GDOA for this
game model, which can reach the Nash equilibrium state
with the minimum system cost at the end of the iteration.
Then, we use the simulation data to conduct parameter anal-
ysis experiments and comparison experiments to verify the
superiority of our proposed GDOA in real-world applica-
tions. In future work, we will consider cooperative data off-
loading between dynamic UAVs and base stations, which
may involve graph optimization and dynamic game theory.
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