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The technological advancement in sensor technology and pervasive computing has brought smart devices into our daily life. Due
to the continuous connectivity of the internet with our everyday devices, researchers can deploy IoT sensors to health care and
other applications, such as human activity recognition. Most of the state-of-the-art sensor-based human activity recognition
systems can detect basic activities (such as standing, sitting, and walking), but they cannot accurately distinguish similar
activities (ascending stairs or descending stairs). Such systems are not efficient for critical healthcare applications having
complex activity sets. This paper proposes two sensor fusion approaches, i.e., position-based early and late sensor fusion using
convolutional neural network (CNN) and convolutional long-short-term memory (CNN-LSTM). The performance of our
proposed models is evaluated on two publicly available datasets. We also evaluated the effect of different normalization
techniques on recognition accuracy. Our results show that the CNN-LSTM-based late sensor fusion model also improves the
recognition accuracy of similar activities.

1. Introduction

The technological changes in recent years have changed the
way we think and live. With these developments, smart
devices have become an essential part of our lives and have
made our living more intelligent and smarter. These smart
gadgets generate a massive volume of heterogeneous data,
known as big data [1, 2]. Recognizing human activities is a
complicated task in the era of connected sensors and ubiqui-
tous computing also named the Internet of Things (IoT),
where information is growing enormously. It is at the core
of assistive technology and should understand user activities
when trying to understand user behavior.

Human activity recognition (HAR) is a trending and
important research topic which is attracting researchers
from all around the world and provides valuable informa-
tion to several sectors such as health monitoring, assisted liv-
ing, sports and fitness, surveillance, and many more [3].
Video-based HAR is already successfully implemented in
many fields [4, 5]. With recent advances in sensor technol-

ogy, sensors have become essential for analyzing human
behavior in various areas such as health care, fitness track-
ing, behavior analysis, assisted living, and rehabilitation. In
the medical field, the use of sensor devices for HAR detec-
tion has helped to avoid the negative impacts associated with
an inactive lifestyle. For example, tracking how long a per-
son is sitting can be beneficial in the treatment of obesity,
diabetes, and cardiac disease [3, 6]. Sensor-based HAR is
also popular in the gaming industry; for example, Microsoft
Kinect uses HAR technology to enhance the gaming
experience.

Time series data inherit characteristics of local depen-
dency that help identify activities for a HAR system. Due
to the widespread availability of sensors in wearable devices,
HAR is becoming a challenging field. Generally, the sensor-
based activity recognition process consists of four stages:
data acquisition, segmentation, feature extraction, and clas-
sification [3, 4]. Although all these phases are significant,
feature extraction has crucial importance in HAR research.
In machine learning (ML), the purpose of feature extraction
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is to extract low-level data representations from sensor sig-
nals to create activity recognition models.

Recently, sensors such as accelerometers, gyroscopes,
and magnetometers are becoming very popular in HAR
research for their ease of use. These wearable sensors are
often used in the data acquisition phase as it provides infor-
mation about the angle, vibration, and rotation [3] at regular
time intervals, making it time series data [9]. This data can
be viewed as a representation of the user’s activities or the
physical environment in which the device is placed [10].
Data is continuously collected, and then, the segmentation
process divides it into small segments [11]. Segment size
affects the amount of data required for representing activi-
ties. Windowing methods are often used to divide data into
fix-sized segments with no overlap [12]. However, data
related to certain activities can be divided into multiple seg-
ments, which can lead to information loss. To avoid this
information loss, the sliding window method can be used
to introduce an overlap to the segmentation. The data seg-
ments must be transformed into a new representation by a
domain expert. Therefore, the segments are converted into
low-level representations of the incoming signals in the fea-
ture extraction phase. The classifier may not classify human
activities accurately without extracted features [13]. Thus, to
identify activities, the patterns are detected in sensor signals
and are correlated with each activity [3, 8].

There are two methods for feature extraction: manual/
hand-crafted and automatic. The first method needs hand-
crafted features, which are sometimes challenging as they
require domain expertise, and the second method uses deep
learning (DL) algorithms to automatically learn features.
Early research was based on traditional ML algorithms that
use manual processes to find important features from sensor
data. The downside of this hand-crafted feature extraction
method is the dependence on the experience of the expert,
leading to a long process [14]. Traditional ML algorithms
require time, frequency, or discrete features. The computa-
tional complexity of such features is low, but they are
time-consuming and require domain-specific expertise. In
contrast, DL algorithms, such as autoencoders and convolu-
tional neural network (CNN), automatically learn complex
features and are suitable for recognizing complex activities.
These DL techniques have now been applied to build robust
sensor-based HAR systems [15, 16]. Although CNN has
shown remarkable progress in the field of image processing,
speech recognition, and natural language processing, it also
performs well for time series classification, and this is due
to the local dependencies in the data [17, 18]. As the time
series data contain temporal dependencies, the long-short-
term memory (LSTM) models are successfully implemented
for sensor-based HAR. CNN extracts spatial features,
whereas LSTM finds temporal dependencies. The combina-
tion of these two DL algorithms is the new trending research
for HAR problems.

As activities of daily living are more complex and cannot
be identified with a single sensor, researchers started work-
ing with multiple sensors at different body positions [19].
According to [19], a sensor system with three sensors can
successfully improve recognition accuracy. There is plenty

of research done in this field, but still, there are many chal-
lenges that need to be addressed, such as (i) similarities in
signals of different activity classes like the activities ascend-
ing and descending stairs are quite similar and difficult to
distinguish [20]; (ii) every subject performs the same activity
differently, for example, an old man runs differently from a
young boy [21]; and (iii) the class imbalance problem is
another challenging issue, as the majority class influences
the training process [7]. Both the datasets used in this paper
have imbalanced class distribution; therefore, we need per-
formance evaluation metrics that are independent of class
distribution. We use a weighted f1-score for the evaluation
of the proposed models. This paper attempts to answer the
above-mentioned challenges and shows that sensors at dif-
ferent body positions contribute to the overall recognition
of activity. The main contributions of the paper include the
following:

(i) The effect of four normalization techniques on rec-
ognition accuracy has been evaluated on two
datasets

(ii) Two novel late data fusion models using CNN and
CNN-LSTM are proposed for recognizing human
activities. The effect of early and late sensor fusion
is also evaluated

(iii) The results of the proposed models are compared
with other research studies on the same datasets

The rest of the paper is organized as follows: Section 2
discusses the research work related to HAR using deep
learning, Section 3 presents the sensor-based HAR, and Sec-
tion 4 discusses the proposed data fusion approaches. Sec-
tion 5 discusses materials and methods, followed by results
in Section 6, and finally, Section 7 concludes the paper.

2. Related Work

Deep learning is being successfully deployed in many image
processing and artificial intelligence applications. In recent
decades, the use of DL in sensor-based human activity rec-
ognition is becoming popular. The widespread use of smart
devices with embedded sensors has compelled the develop-
ment of new techniques to address challenges in the identi-
fication of human activities and behavior. The techniques
used for sensor-based HAR are evolving from traditional
ML algorithms toward DL. All the solutions that involve
big data are using or transferring to using deep learning
[22]. Sensor-based HAR is considered a time series problem.
Many research studies use DL for feature extraction and
classification of activities, and those inferred activities are
even used in real-world applications.

Li et al. [23] proposed an SVM-based model for the rec-
ognition of gymnastic movements. Rustam [24] presented a
deep stacked multilayered perceptron model for HAR. They
used stacked MLP layers for the recognition process. The
study [25] used deep belief networks (DBN) for feature
extraction, but such deep networks do not take advantage
of local dependencies of time series data. Alsheikh et al.
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[26] presented a deep model based on restricted Boltzmann
machines (RBM) and DBN for activity recognition that uses
multiple network layers and hidden Markov model (HMM).
Chowdhary et al. [27] proposed a posterior-adapted decision
fusion method that uses support vector machines (SVM),
binary decision trees (BDT), and deep neural network
(DNN) for activity recognition, where the weights are
assigned to each class of activity on previous knowledge of
model predictions, and then, the weighted average is used
for the final prediction of the class. The convolutional layers
in CNN are used to obtain unique features from the sensor
data, which helps in the identification of different activities.
CNN is good at retrieving local dependencies in time series
data.

San et al. [28] presented a CNN-based method for HAR,
where feature extraction and classification are done through
convolutional layers and the results outperform the other
ML algorithms. LSTM performs well for detecting temporal
dependencies between time series data. The LSTM network,
unlike the CNN network, can find relationships in the tem-
poral knowledge dimension without mixing time steps [29].
Singh et al. [30] presented an LSTM-based approach for
HAR that outperforms probabilistic approaches. Ullah
et al. [31] proposed a stacked LSTM network for recognizing
six basic activities, and they found that by using a stacked
LSTM network, the temporal features are repeatedly learned,
and hence, the recognition accuracy can be improved.

Many of the latest research studies are using the combi-
nation of CNN and LSTM models. The research in [32]
added attention layers to the DeepConvLSTM model, and
these attention layers are used to discover the weights of
the sensor input. An LSTM-CNN-based HAR system is pro-
posed in [33], which claims improvement in recognition
accuracy. In [29], a deep residual bidirectional LSTM is pro-
posed in [29] where the bidirectional connection can com-
bine forward and backward states. When creating models
with a lot of depth and width, the inception modules prove
to be very helpful. Mutegeki et al. [22] proposed an iSPLIn-
ception model using the Inception-ResNet model for HAR.
They executed convolutions with varying kernel sizes in par-
allel within every inception module, and then, the result
from parallel convolutions was combined. Xinyu et al. [34]
proposed a CNN and LSTM-based structure for concurrent
activity recognition using multimodal sensors (wearable sen-
sors, RFID, and microphone data), while in our study, we
used only wearable sensor data and focused on identifying
similar activities. Sakorn et al. [35] presented 4-layer CNN-
LSTM model for smartphone-based HAR, and they com-
pared their model with three other variations of LSTM.

Most of the research focuses on basic activities, but the
real challenge is identifying similar activities accurately.
Munzer et al. [20] presented a CNN-based sensor fusion
approach. They fused each dimension (x, y, and z) of the
sensor to individual convolutional layers for feature extrac-
tion, which is computationally costly. Our work is notably
different from others’ work presented here, although shares
some similarities with [20]. It differs in a way that rather
than sending individual sensor channels to the first layer,
we considered sensors at each body position, and we used

a hybrid model, i.e., CNN-LSTM, while they used CNN.
Our study uses separate convolutional layers for the extrac-
tion of features for sensors at each body position (e.g., chest,
ankle, and wrist). The x, y, and z coordinates of each sensor
are fused to a separate convolutional layer for feature extrac-
tion, and then, all the extracted features are fused to the
same LSTM layer for finding temporal dependencies. This
helps in the extraction of distinct features and hence
improves the overall performance. We have used batch nor-
malization to speed up the convergence. Our results outper-
form the results presented in [20, 22]. The existing
techniques have shortcomings of their own, and they use a
variety of sample generation techniques and validation pro-
cesses, therefore cannot be compared.

3. Sensor-Based HAR

Sensor-based HAR is an emerging field nowadays. The pri-
mary goal of HAR algorithms is to detect human activities
using data collected by wearable and ambient sensors [17,
36]. As technology advances, there are many types of sensors
in the market that increases challenges for HAR researchers.
Multiple sensor sources used with data fusion techniques
offer many benefits, such as reducing noise and uncertainty
and integrating prior information from the signal [37]. This
paper proposes a data fusion approach, where distinct fea-
tures of each inertial measurement unit (IMU) are first
extracted, and then, they are fused to the classification layer
as shown in Figure 1. It uses separate convolutional layers
for the extraction of features from sensors at each body posi-
tion (e.g., chest, ankle, and wrist). This helps in finding dis-
tinct features and hence improves the overall performance.

Human activity recognition is considered here as a clas-
sification problem, where activities are represented through
classes. To understand the problem, consider a set of per-
formed activities as

A = a1, a2,⋯, amf g, ð1Þ

where m is the number of activities in a dataset. Consider a
sequence of sensor inputs as

x =
x11 ⋯ xt1

⋮ ⋯ ⋮

x1n ⋯ xtn

0BB@
1CCA = x1,⋯, xi,⋯, xt

� �
, ð2Þ

where xi = ð xi1,⋯, xinÞT is the sensor input at the time i for n
number of sensors with t number of samples. After segmen-
tation, a set of segments W is produced that corresponds to
activity A

W = w1,⋯,wmf g: ð3Þ

For each segment, wi = ðt1, t2Þ represents a portion of
samples from t1 to t2. For predicting the activities per-
formed, a model F needs to be built for extraction of the fea-
ture vector Xi for each segment wi, and the Xi can be
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determined by

Xi = F x,wið Þ: ð4Þ

The set of confidence scores P for each activity ai can be
computed using an inference method L, as expressed as

P ai Xi,j θð Þ = L Xi, θð Þ for ai ∈ A, ð5Þ

where θ is the trained parameter of model F. The maximum
score will then be used to calculate the predicted activity ai
for segment wi

a∗i = arg max P ai Xi,j θð Þ: ð6Þ

For a given set of activity predictions A∗ = fa∗1 ,⋯, a∗i ,
⋯, a∗kg and its corresponding actual activities set Â =
f bajgkj=1 ðâj ϵ AÞ, the purpose of this model F is to minimize

the difference between predicted and actual activity, which is
calculated through the loss function.

3.1. Spatial Feature Extraction. The ability of deep learning
models to learn complex features from raw data makes them
suitable to use for HAR. CNN is one of the main categories
of deep learning and can be used for feature extraction as
well as classification. CNN is successfully implemented in
image classification and speech recognition applications
[38–40]. Accordingly, other applications such as sensor-
based HAR have also utilized CNN for activity recognition.
Generally, HAR sensors generate one-dimensional signals,
and therefore, some input adaptation methods need to be
adapted to cater time series signals. For example, in time
series data, each dimension (x, y, and z) of a motion sensor
is treated as a separate channel just like RGB channels for
image pixels [19]. The convolutional operation can be con-
sidered as moving a 1D filter across a sensor signal [41].
Figure 2 shows 1D CNN architecture for time series data,
where the convolutional layer extracts distinct elements
from the sequence of data and shows unique properties.
One-dimensional CNNs are very efficient at extracting
objects from fixed-length segments of the complete dataset,
and it does not matter where the objects are in the segment

[42]. The one-dimensional CNN is suitable for time series
analysis of sensor data to analyze signal data over a time seg-
ment. In time series data, neighboring signals can be corre-
lated, and CNN can capture local dependencies in time
series data; therefore, it is used in this paper for the extrac-
tion of local features.

Consider a sequence of sensor inputs, the objective of a
convolutional layer is to extract distinct features, and it can
be defined as [21]

cl,it = σ bi + 〠
J

j=1
wi

jx
0,i
t+j−1

 !
, ð7Þ

where l denotes the layer index, σ is the nonlinear activation
function, bi denotes the bias term for ith feature map, J is the
number of convolutional filters, and wi

j is the weight for fea-
ture map i and filter index j. The nonlinear layer introduces
the nonlinearity to the network to detect each linear activa-
tion. The three popularly used activation functions are sig-
moidal, hyperbolic tangent, and rectifier linear unit (ReLU)
[16]. ReLU is used in this paper. The convolutional layer is
followed by the pooling layer to reduce the size of the repre-
sentation and hence reduce the computational parameters of
the network. It operates on individual feature maps.

f l,it =maxr∈R cl,it×T+r
� �

: ð8Þ

The two common pooling approaches are max pooling
and average pooling. We have tested both on our CNN net-
work and found max pooling with better results for this
experiment. Just like other neural networks, CNN also has
a multilayer architecture. The input passes through a set of
layers, including convolutional layers for feature extraction,
pooling layers, fully connected layers, and finally a softmax
layer for performing classification tasks [43]. In the training
phase, the hyperparameters are optimized to map the time
series input (e.g., accelerometer data) to the activity label.
More on CNN can be found in [43].

3.2. Temporal Feature Extraction. CNN has the major limi-
tation that it cannot learn by focusing on the seen values

IMU sensor at
body position 1

IMU sensor at
body position 2

IMU sensor at
body position n

Pre-processing

Pre-processing

Pre-processing

Feature extraction
using CNN

Feature extraction
using CNN

Feature extraction
using CNN

Classification model

Activities

Figure 1: The proposed late sensor fusion approach for HAR.
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and consider every input as if it had no connection with pre-
vious values, which is not always the case. This problem is
solved by using a recurrent neural network (RNN). The
loops in RNNs enable information to be retained. A loop
in RNN allows knowledge to flow from one network stage
to another, which is why RNNs are best at learning
sequences. Simple RNN, in contrast, has two major short-
comings: (i) vanishing gradient. As the gradient decreases,
the earlier steps change very little or not at all in backpropa-
gation. That is, if a later stage’s output is based on a very
early stage’s input, RNN might skip it. (ii) Exploding gradi-
ent: The gradient grows in size. As a result, if a later stage’s
output is dependent on a very early stage’s input, the gradi-
ent would be immense. For exploiting the long-term tempo-
ral dependencies of sensor data, we used a special recurrent
neural network (RNN) called LSTM network which was first
presented by [44]. LSTM overcomes the issues of vanishing
and exploding gradients by using a novel additive gradient
structure that directly accesses the activations of the forget
gate, and by frequently updating the gates at each time step
in the learning process, and hence, the network learns the
desired behavior. They do not have to exert much effort to
recall information for lengthy periods; it is almost second
nature to them. All RNNs are made up of a sequence of neu-
ral networks that repeat with a very basic structure, perhaps
with only one tanh layer that regulates the output of the net-
work between 0 and 1. LSTM also follows a chain-like struc-
ture with a repeating cell. More details of LSTM networks
can be found in [44, 45].

4. The Proposed Data Fusion Approaches

Data fusion is a technique to combine data from multiple
sources [46]. Most of the time, a single sensor is not suffi-
cient to recognize complex activities, so we need to use sen-

sors at multiple body positions. This paper proposes two
sensor fusion approaches based on sensor placement at mul-
tiple body positions. Each motion sensor provides tri-
directional measurements (x, y, and z). These sensor mea-
surements are fused at different layers of the deep learning
model. In the early fusion (EF) approach, the x, y, and z
dimensions of all the sensors are fused to the same convolu-
tional layer and then followed by other convolutional and
LSTM layers of the network. This approach is based on
data-level sensor fusion. As the input from all sensors is
fused to the same convolutional layer, there will be a fewer
number of the training parameters.

The second approach is late fusion (LF), which is a
feature-level data fusion approach. In the late fusion
approach, the x, y, and z coordinates of each sensor are fused
to a separate convolutional layer for feature extraction, and
then, all the extracted features are fused to the same LSTM
layer for finding temporal dependencies. The number of
training parameters is higher than that of the EF approach
as the distinct features for each sensor are extracted sepa-
rately. It can be noticed from the results (discussed in Sec-
tion 6) that there is an increase in the recognition accuracy
of similar activities (such as ascending and descending stairs,
walking, and Nordic walking).

In this paper, we have used three deep learning architec-
tures, CNN, LSTM, and CNN-LSTM with EF and LF
approaches for the recognition of human activities. These
models are suffixed with the letters EF and LF for represent-
ing early and late fusion, respectively.

4.1. The CNN-EF and CNN-LF Models. The CNN-EF model
is used as a baseline for comparison of the results. We
experimented with different number of convolutional layers
to find their effect on recognition accuracy. We initially
found that increasing convolutional layers increase the

Convolutional
layer

Input
layer

Pooling layer Flatten
layer

Fully
connected

layer

Output
layer

Feature
maps

Figure 2: 1D CNN architecture for time series data.
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recognition performance, but the performance drops after
three convolutional layers. This is because after adding more
layers, the model began to memorize data that is overfitting;
such models work well for training data, but they perform
worse for test data. Overfitting can be avoided by using the
dropout technique, and it ignores randomly chosen neurons
in the training phase. On the forward pass, the dropout tech-
nique temporally disconnects the ignored neurons, prevent-
ing their weights from being changed in the backward pass
[47]. To avoid overfitting, a 20% dropout rate is used in this
experiment. Our CNN-EF model consists of three convolu-
tional layers with kernel size 3 and the number of filters as
128, 64, and 64, respectively. The activation function used
is ReLU. Using the shorthand notation presented in [48],
the network can be expressed as Cð128Þ – Cð64Þ – Cð64Þ –
Dð256Þ – Sm, where CðF lÞ denotes the number of feature
maps in the convolutional layer l, DðnlÞ denotes the number
of units in the dense layer l, and finally Sm is the softmax
layer.

The model architecture for CNN-LF is like the model
mentioned above with the only difference that each sensor
input is fed to individual convolutional layers in parallel
and then concatenated at a later stage before the third con-
volutional layer as shown in Figure 3. The kernel size, num-
ber of filters, and other parameters are set the same to
compare the results.

4.2. The LSTM-EF Model. The LSTM-EF model used in this
paper consists of two LSTM layers with 256 and 512 neurons
in each, followed by a dense layer as shown in Figure 4.
Using the shorthand notation presented in [48], the network
can be expressed as Rð256Þ – Rð512Þ –Dð256Þ – Sm, where
RðnlÞ represents the number of units in the LSTM layer l,
DðnlÞ denotes the number of units in the dense layer l, and
finally Sm is the softmax layer. The number of trainable
parameters for the LSTM-LF model exceeds 132,089,340.
Due to the high number of training parameters, the LSTM-
LF approach is not used in this paper.
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4.3. The CNN-LSTM-EF AND CNN-LSTM-LF Models. Two
CNN-LSTM-based architectures have been proposed in this
paper, namely, CNN-LSTM-EF and CNN-LSTM-LF. It is
the combination of CNN and LSTM models. The CNN-
LSTM_EF model consists of three convolutional layers, sub-
sequent pooling, and dropout layers, followed by two LSTM
layers and a dense layer. The CNN-LSTM-LF model consists
of parallel convolutional layers, subsequent pooling and
dropout layers, concatenated to two LSTM layers and a fully
connected dense layer, as shown in Figure 5. The parallel
input branches in the LF approach process the input
sequences of each IMU separately and produce an interme-
diate representation for each IMU. Using the shorthand
notation [48], the network can be expressed as Cð128Þ – Cð
64Þ – Cð64Þ – Rð256Þ – Rð512Þ –Dð256Þ – Sm, where CðFlÞ
represents the number of feature maps in convolutional
layer l, RðnlÞ represents the number of units in LSTM layer
l, DðnlÞ denotes the number of units in dense layer l, and
finally, Sm is the softmax layer.

In the CNN-LSTM-LF, each IMU sensor at a different
body position is processed separately. The convolutional
layer is used to find spatial features from sensor data, while
an LSTM layer finds temporal dependencies, and a fully con-
nected layer is used to concatenate all these local features to
create a comprehensive data representation. However, this
architecture involves multiple branches of parallelism and
pursues a broader concept rather than a deeper network.
Since each parallel branch represents data from the individ-
ual IMU, it has a logical representation. Theoretically, this
abstraction should also provide greater robustness to IMUs
that are slightly asynchronous or have different properties
[49]. Since these IMUs are placed at different body parts,
the branches only process signals from individual parts, thus
improving the recognition ability [50]. The number of train-
able parameters for all the models is given in Table 1.

5. Materials and Methods

5.1. Datasets. Two publicly available datasets, i.e., PAMAP2
[51] and RealDisp [52], are used in this paper. These datasets
cover two applications of HAR, i.e., daily activities and fit-
ness and sports. The PAMAP2 dataset is collected at a sam-
pling frequency of 100Hz by 9 subjects using 3 IMU and a
heart rate sensor. We have not used the heart rate sensor
in this paper. The sensors are placed on the wrist, ankle,
and chest. The dataset contains 12 different activities. In
the RealDisp dataset, 9 IMU, fixed at 9 different body posi-
tions, are used for 17 subjects at a sampling frequency of
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Figure 5: The architecture of the CNN-LSTM-EF and CNN-LSTM-LF models.

Table 1: The number of trainable parameters for each proposed
deep model.

Deep model Number of trainable parameters

CNN-EF 456,212

CNN-LF 915,340

LSTM_EF 2,836,492

CNN-LSTM-EF 366,674

CNN-LSTM-LF 2,725,012
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50Hz. The dataset presents 33 activities related to physical
fitness exercises.

Both the datasets used in this paper have an imbalanced
class distribution. For the PAMAP2 dataset, activities 10
(ironing) and 3 (walking) have the highest number of
instances, whereas activity 11 (rope jumping) has a very less
number of samples. Hence, the PAMAP2 dataset is highly
biased to activities 10 and 3. Similarly, for the RealDisp data-
set, activity 0 (walking) has the highest number of instances,
whereas activity 25 (Knees alternating to the breast) has a
very less number of samples. Therefore, there is a need for
performance evaluation metrics that are independent of
class distribution. We use a weighted f1-score for the evalu-
ation of the proposed models.

6. Preprocessing

6.1. Data Normalization. In this paper, we used the Z-nor-
malization and batch normalization techniques. The Z-nor-
malization technique updates the feature vector with zero-
mean and variance of 1 using

xi′=
xi − μi
σi

, ð9Þ

where μ is the mean and σ is the standard deviation of the
channel (column) i. In batch normalization technique, the
normalization layer performs Z-normalization on the previ-
ous layer’s output and is defined as follows

x̂i =
xi − μB
σB

,

yi = γx̂i + β,
ð10Þ

where μB is the mean and σB is the standard deviation of the
current mini-batch. Then the resultant values are scaled by γ
and shifted by β. The γ and β parameters are learned during
the training process along with other parameters of the
model.

6.2. Splitting Dataset. Many factors affect how different sub-
jects perform the same activities differently such as age and
health of the subject. To make our model effective and
robust for every subject and to retain variation in datasets,
we have divided the two datasets based on subjects rather
than the conventional 80%-20% split. For the PAMAP2
dataset, we have selected subject 5 for testing, subject 6 for
validation, and the rest of the subjects for training purposes.
In the RealDisp dataset, out of 17 subjects, two are selected
for testing, i.e., subjects 8 and 9 (here two subjects are chosen
to balance the percentage split of training and testing
instances), subject 10 for validation, and the rest of the 14
subjects for training purposes.

6.3. Performance Evaluation. There are various metrics to
measure the performance of any ML model; almost all of
them depend on the confusion matrix, which involves the
overall representation of the predictions and actual data.
The weighted f1-score (Equation (11)) is used for perfor-
mance evaluation as it is independent of class distribution.

Fw = 2〠
c

Nc

N total

Precisionc × Recallc
Precisionc + Recallc

, ð11Þ

where Nc represents data samples in class c and N total is the
total number of samples.

6.4. Baseline. To evaluate our experiment, we used CNN-EF
as our baseline for both datasets. For the CNN model, the
time series input (accelerometer and gyroscope data) is
passed to the first convolutional layer with 128 convolu-
tional filters of size 3 with convolution stride 1. The ReLU
activation function is used in the convolutional layer, and
then, the output is sent to two consecutive convolutional
layers with 64 filters of size 3 and the activation function
ReLU. Then, the max pooling layer of size 2 is used. After
that, the output is flattened and fed to a fully connected layer
with 256 neurons. Here, a dropout rate of 0.2 is used to avoid
overfitting. In the end, the output is passed to the softmax
layer for computing the probability distribution of each class
label (12 activities in the case of PAMAP2 and 33 for the
RealDisp dataset).

Table 2: Hyperparameter settings for the models.

Hyperparameter Experimented values Selected value

CNN layers 1-6 3

Kernel size 3,5,7 3

Feature maps 256, 128, 64, 32 128, 64, 64

Pooling size 2,3,4 2

Dropout 0.2, 0.3, 0.4, 0.5 0.2

Optimizer RMSProp, Adam Adam

Learning rate 0.0001 to 0.01 0.001

Batch size 32, 64, 128, 256 64
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Figure 6: The effect of learning rate on recognition accuracy.
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6.5. Experimental Setup. The models are implemented in
Keras using the TensorFlow backend, an Intel Core i7
(2.2GHz) with an NVIDIA GTX1050, and 16GB RAM
was used for training and testing. In this experiment, we
have used two datasets, PAMAP2 and REALDISP. The
PAMAP2 dataset contains data from 3 IMU sensors on the
wrist, chest, and ankle of each subject, whereas the REAL-
DISP dataset contains data from 9 IMU sensors, two at each
leg and arm, and one on the back of each subject. In a pre-
study, different CNN network architectures have been inves-
tigated along with hyperparameter settings, such as the
number of layers, learning rate, number of filters, kernel size,
dropout layer, stride, and optimizer. This research study pre-
sents the results of the CNN-EF, CNN-LF, LSTM-EF, CNN-
LSTM-EF, and CNN-LSTM-LF models. For hyperparameter
settings, hit and trial method is used, where a different range
of values for each parameter is used to find the best results.

The range of values for each parameter and the final hyper-
parameter settings is given in Table 2.

On the basis of the hit and trial method, the values that
are most appropriate for models to converge have been cho-
sen for all the models of the experiment. The kernel size and
number of filters are also determined by the hit and trial
method. As indicated in the literature [53, 54], the most
commonly used kernel sizes are 3, 5, and 7. Therefore, we
experimented with three kernel sizes, i.e., 3, 5, and 7, where
size 3 performed well and was selected for the final experi-
ment. The number of training epochs is chosen as 50, by
using an early stopping method where the training termi-
nates when the validation loss begins to increase. The learn-
ing rate determines how the weights of a network are
adjusted with the gradient loss. It is crucial to pick the learn-
ing rate carefully; with a too-small value, gradient descent
will be slower. Gradient descent can exceed the minimum
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Figure 7: The effect of normalization techniques on recognition accuracy.

Table 3: The weighted f1-score for the PAMAP2 dataset using all five models.

Activity label Activities CNN-EF CNN-LF LSTM-EF CNN-LSTM-EF CNN-LSTM-LF

0 Lying 70.22 84.97 88.66 98.63 98.25

1 Sitting 75.88 76.04 81.62 97.81 97.32

2 Standing 85.15 93.70 96.86 95.63 93.12

3 Walking 91.83 95.25 85.77 75.12 94.35

4 Running 92.58 94.83 92.85 95.89 97.40

5 Cycling 92.62 95.36 88.11 94.23 96.83

6 Nordic walking 84.49 86.75 85.15 72.32 94.63

7 Ascending stairs 68.05 56.55 78.58 82.58 85.36

8 Descending stairs 77.66 80.70 78.91 83.76 84.81

9 Vacuum cleaning 86.52 90.65 85.60 88.86 86.14

10 Ironing 88.95 89.92 94.37 94.78 91.47

11 Rope jumping 93.80 97.44 99.23 91.95 89.38
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and fail to converge or even diverge if it is too high [55]. For
the experiment, learning rates between the range 0.0001 and
0.01 have been tried while keeping all other hyperparameters

the same. The results are shown in Figure 6. Larger batch
size will speed up the training process but will need more
memory. Smaller batch sizes, on the other hand, need low
memory space and result in marginally slower training, but
they do allow the model to converge rapidly [56]. To avoid
overfitting, a 20% dropout rate is used in this experiment.
The dropout technique ignores randomly chosen neurons
in the training phase. On the forward pass, the dropout tech-
nique temporally disconnects the ignored neurons, prevent-
ing their weights from being changed in the backward pass
[47]. As it is a multiclass classification problem, we used cat-
egorical cross-entropy as our objective function. The soft-
max unit output dimensions are the number of classes in a
dataset. In our case, the output dimensions for PAMAP2
dataset are 12, and for RealDisp dataset, it is 33.

Table 4: The weighted f1-score for RealDisp dataset using all five models.

Activity label Activities CNN-EF CNN-LF LSTM-EF CNN-LSTM-EF CNN-LSTM-LF

0 Walking 0.98 0.95 0.96 0.95 0.98

1 Jogging 0.82 0.84 0.79 0.79 0.87

2 Running 0.86 0.86 0.84 0.81 0.89

3 Jump up 0.72 0.75 0.74 0.73 0.76

4 Jump front and back 0.7 0.66 0.65 0.68 0.71

5 Jump sideways 0.8 0.78 0.76 0.82 0.86

6 Jump leg/arms open/closed 0.88 0.88 0.87 0.87 0.92

7 Jump rope 0.84 0.81 0.77 0.85 0.86

8 Trunk twist (arms outstretched) 0.96 1 0.99 0.98 1

9 Trunk twist (elbows bent) 0.97 0.99 0.99 0.96 1

10 Waist bends forward 0.85 0.85 0.88 0.86 0.87

11 Waist rotation 0.97 0.99 0.94 0.99 0.99

12 Waist bends (reach foot with opposite hand) 0.99 1 0.99 1 0.99

13 Reach heels backward 0.95 0.91 0.9 0.9 0.9

14 Lateral bend 0.99 1 0.97 1 0.99

15 Lateral band with arm up 0.98 1 0.97 0.99 1

16 Repetitive forward stretching 0.82 0.8 0.84 0.81 0.85

17 Upper trunk and lower body opposite twist 0.74 0.9 0.78 0.9 0.92

18 Lateral elevation of arms 0.96 0.95 0.96 0.97 0.97

19 Frontal elevation of arms 0.97 0.94 0.9 0.93 0.96

20 Frontal handclaps 0.98 0.98 0.86 0.98 0.99

21 Frontal crossing of arms 0.95 0.98 0.96 0.98 0.98

22 Shoulders high-amplitude rotation 0.96 0.96 0.85 0.97 0.97

23 Shoulders low-amplitude rotation 0.91 0.88 0.84 0.88 0.95

24 Arms inner rotation 0.97 0.98 0.96 0.98 0.98

25 Knees (alternating) to the breast 0.88 0.83 0.84 0.88 0.83

26 Heels (alternating) to the backside 0.87 0.87 0.85 0.85 0.82

27 Knees bending (crouching) 0.9 0.89 0.88 0.89 0.87

28 Knees (alternating) bending forward 0.73 0.73 0.65 0.85 0.79

29 Rotation on the knees 0.99 1 0.98 0.99 1

30 Rowing 1 1 1 1 1

31 Elliptical bike 0.91 0.98 0.94 0.99 0.98

32 Cycling 0.87 0.93 0.88 1 1

Table 5: The overall performance of all models for PAMAP2 and
RealDisp datasets.

PAMAP2 RealDisp
Model Fm Fw Acc Fm Fw Acc

CNN-EF 83.98 84.48 84.78 89.78 89.87 90.61

CNN-LF 86.85 88.38 88.76 91.21 91.84 91.80

LSTM 87.98 88.29 88.20 88.25 88.89 88.93

CNN-LSTM-EF 88.56 88.95 89.23 91.24 91.95 92.21

CNN-LSTM-LF 92.32 92.15 92.49 92.43 93.78 93.85
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7. Results

7.1. Normalization Techniques. The effect of data normaliza-
tion techniques on recognition performance is presented in
Figure 7. Four normalization techniques have been investi-
gated in this paper, batch normalization, min-max scaling,
ZNorm (standard scalar), and robust standardization tech-
niques. The results show that batch normalization achieved
higher performance for both datasets, so we have used the
combination of ZNorm (standard scalar) and batch normal-
ization techniques throughout our experiment. Other data
normalization techniques are not helpful in this case since
it distorts the shape of the time series data. It may be useful
when the hand-crafted features are also added that preserve
the lost information [16].

7.2. Efficiency. To evaluate the performance of the proposed
models, different hyperparameter settings have been ana-
lyzed for the classification results. It was observed that an
increase in the number of convolutional layers does not
always improve the performance but increases the complex-
ity of the derived features. This is because after adding more
layers, the model began to memorize data that is overfitting,
such models work well for training data, but they perform
worse for test data. The dropout layer is a noise layer that
uses a probability to set certain activations to zero at ran-
dom. We used a dropout value of 0.2 to avoid overfitting.
Recurrent dropout affects the states that are transferred
among the same layers. Using recurrent dropout in the
LSTM layers improves the recognition results in the test
set by 2.4%. Table 2 shows the weighted f1-scores for various
activities of the PAMAP2 dataset using CNN-EF, CNN-LF,
LSTM-EF, CNN-LSTM-EF, and CNN-LSTM-LF. The bold
letters in the table indicate the best result. For activities 4-
8, the CNN-LSTM-LF model performs best compared to
other models. It can be seen from the results shown in

Table 3 that the CNN-LSTM-LF model outperforms for
similar activities such as ascending and descending stairs
and Nordic walking. Table 4 shows the f1-score results of
the RealDisp dataset. It can be seen from the results that
CNN-LSTM-LF outperforms the other models in most of
the activities. Consider activity labels 3-7, which are different
ways to jump, i.e., jump up, front and back, sideways, leg or
arm closed/open, and jump rope, such similar kinds of activ-
ities are often misclassified. For such cases, the combination
of spatial and temporal feature extraction helps and
improves the results, as shown in Table 4.

The overall performance of each model on both datasets
is shown in Table 5. It can be noticed that the LF models
outperform the EF models; this is because whenever a per-
son performs different activities, his body parts move differ-
ently producing different sensor measurements. In the LF
models, there is a separate convolutional layer for each sen-
sor input which extracts distinct features that are specific to
that input sensor only. These extracted distinct features are
then combined at other convolutional or LSTM layers in
CNN-LF and CNN-LSTM-LF models, respectively, for addi-
tional extraction of features. In contrast, the EF models com-
bine all sensor inputs at the first layer, which hinders the
model from learning long-ranged connections. In the accu-
racy PAMAP2 dataset, the achieved for CNN-LSTM-EF is
89.23%, which is increased by 3.26% for CNN-LSTM-LF.
The CNN-EF model performed the worst for the PAMAP2
dataset with an accuracy of 84.78%. On the RealDisp dataset,
the CNN-LSTM-LF model performed best with a weighted
f1-score of 93.78, and the LSTM model performed worst
with an 88.89% weighted f1-score. Although the CNN-
LSTM-EF model also performs well and gives higher accu-
racy than the CNN-LSTM-LF model for some basic activi-
ties; however, the overall results show that the CNN-
LSTM-LF model gives outstanding performance for both
datasets. The results of the study show improvement in

Table 6: Confusion matrix for the PAMAP2 Dataset using CNN-LSTM-LF.

Lying Sitting Standing Walking Running Cycling
Nordic
walking

Ascending
stairs

Descending
stairs

Vacuum
cleaning

Ironing
Rope

jumping

Lying 97.6 0.37 0.67 0.05 0.04 0.02 0.03 0.27 0.15 0.52 0.29 0.01

Sitting 0.36 95.1 1.47 0.01 0 0.15 0.15 0.23 0.16 0.88 1.38 0.07

Standing 0.17 0.25 95.9 0.15 0.03 0.02 0.26 0.25 0.36 0.64 1.94 0.02

Walking 0.05 0.06 0.73 94.3 0.02 0.04 2.01 1.04 1.02 0.34 0.34 0.06

Running 0.11 0.06 1.03 0.6 95.4 0.05 0.39 0.51 0.45 0.36 0.49 0.57

Cycling 0.02 0.09 0.06 0.11 0 95.5 0.25 0.24 0.45 1.58 1.64 0.04

Nordic
walking

0.02 0.04 0.10 2.81 0.04 0.06 94.6 0.60 0.36 0.42 0.8 0.08

Ascending
stairs

0.77 0.33 2.24 4.13 0.17 0.48 2.07 81.2 4.68 2.4 1.15 0.38

Descending
stairs

0.36 0.29 2.00 4.18 0.19 0.74 1.20 3.33 82.6 2.31 2.01 0.81

Vacuum
cleaning

0.22 0.27 0.88 0.34 0.02 2.05 0.64 1.17 0.95 84.7 8.69 0.06

Ironing 0.10 0.29 2.05 0.06 0.03 0.32 0.18 0.13 0.26 2.47 94.1 0.06

Rope
jumping

0.22 0.39 0.82 0.82 0.48 0.45 1.51 0.84 2.94 2.76 3.38 85.4

11Wireless Communications and Mobile Computing
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recognizing similar activities, and this is because of spatial
and temporal feature extraction of CNN and LSTM models.
Therefore, the late sensor fusion model may be applied to
other types of sensors such as cameras and GPS to identify
more complex activities.

7.3. Confusion Matrices. The confusion matrix for the
PAMAP2 dataset using the CNN-LSTM-LF model is shown
in Table 6. The diagonal represents the true positive rate,
which shows how many activities are correctly classified.
As discussed earlier, the CNN-LSTM-LF model improves
the recognition performance by correctly identifying similar
activities such as ascending stairs and descending stairs.
Although the true positive rate for these two activities is
improved, still there are misclassifications for these activities,
and this is because of the smaller number of training samples
for these activities. Table 7 shows the confusion matrix for
the RealDisp dataset using the CNN-LSTM-LF model. The
CNN-LSTM-LF model performed well in identifying differ-
ent jump activities (activities 4-7) and hence improving the
overall performance. Again, there are misclassifications for
some classes. This can also be improved by increasing the
number of training samples.

7.4. Robustness. Every person performs the same activities
differently, so the datasets are split based on the subjects,
to make the recognition process robust and useful for differ-
ent types of users. In the PAMAP2 dataset, subject 5 is
reserved for testing and subject 6 for validation purposes,
and the rest is used for the training process. In the RealDisp
dataset, subjects 8 and 9 are reserved for testing and subject
10 for validation purposes, and the rest is used for the train-
ing process. The results indicate that the model can perform
well for new users.

7.5. Comparison with State-of-the-Art. This paper presents
five deep learning models, i.e., CNN-EF, CNN-LF, LSTM,
CNN-LSTM-EF, and CNN-LSTM-LF. Table 8 indicates that
our proposed CNN-LSTM-LF model outperforms others. In
[28], CNN is used to extract features and classification of

activities for the RealDisp dataset. They used a smoothing
technique to improve the results and achieved a 92.8%
weighted f1-score, whereas our model achieves a 93.78%
weighted f1-score on the same dataset. Mubarak et al. pro-
posed a novel approach to feature extraction for sensor-
generated activity recognition data using wavelet transforms
and an adaptive pooling operator [57]. They achieved an f
-measure of 81.7% on the RealDisp dataset. The authors of
[58] presented a unified semi-supervised framework,
SMART (denSity-based eMerging Activity Recognition with
limiTed data) for recognizing highly similar emerging activ-
ities without sacrificing the performance of recognizing
existing activities. They achieved an 80% f1-score on the
RealDisp dataset. Sepahvand et al. presented a flexible
ensemble tree based on genetic programming (ETGP)
approach for HAR [59]. To reduce the general complexity
in the process of designing the proposed classifier, an initial
population of binary trees (genes) is first created and then
enhanced through genetic programming to select the best
classifier. It obtained a 91% f -measure for the RealDisp
dataset and a 91% f -measure for the PAMAP2 dataset.

On the PAMAP2 dataset, the authors of [32] used atten-
tion models and achieved 87.5% f1-score. Huang et al. pro-
posed a CNN-based cross-channel communication (C3)
model, which encourages all channels at the same layer to
have a comprehensive interaction to capture more discrimi-
native feature representation for raw sensor input [60]. They
obtained an accuracy of 91.93% on the PAMAP2 dataset.
Ronald et al. presented an iSPLInception model using
Inception-ResNet architecture for the PAMAP2 dataset
and achieved an 89% f1-score [22]. Munzner et al. used
CNN-based two- and 3-layer sensor fusion approaches and
achieved 86% and 85% accuracy, respectively [20]. They sent
each channel to individual convolutional layers for feature
extraction, whereas we sent IMU sensors at each body posi-
tion to separate convolutional layers, and then, they are
fused. When comparing the experimental results of the pro-
posed CNN-LSTM-LF model with the available research
work, it can be noticed that the proposed LF approach gives
comparable results.

Table 8: Performance comparison of classification models applied to PAMAP2 and RealDisp Datasets.

Dataset Study Year f w (%)

RealDisp

CNN
CNN with block-wise smoothing [28]

2017
90.1
92.8

Wavelet transform and pooling operator [57] 2019 81.7

SMART [58] 2020 80

ETGP [59] 2021 91

CNN-LSTM-LF (proposed) 92.15

PAMAP2

2L-CNN
3L-CNN [20]

2017
86
85

Attention model [32] 2018 87.5

ETGP [59] 2021 91

3-layer CNN + C3 [60] 2021 91.93

iSPLInception [22] 2021 89

CNN-LSTM-LF (proposed) 93.78
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8. Conclusion

This paper aims to propose a deep learning-based data
fusion approach to improve the recognition performance
of similar activities in sensor-based HAR. CNN can capture
spatial information effectively, while LSTM can handle long-
term dependencies in time series data, allowing the model to
handle diverse data. Three deep learning models (CNN,
LSTM, and CNN-LSTM) are used for data fusion. A sensor
position-based late fusion scheme is proposed that applies a
separate convolutional layer to IMU sensors at each body
position to extract features, and then, all extracted features
are fused to another convolutional or LSTM layer. Different
preprocessing techniques have been discussed, and it shows
that a combination of batch normalization and standardiza-
tion techniques obtains the best results for our model. As the
datasets used in this paper are highly biased, therefore we
used mean f1-score and weighted f1-score as performance
evaluation metrics that are independent of class distribution.
The results show that the late fusion approach improves the
recognition performance and is compared with the existing
approaches on the same datasets. The proposed position-
based late fusion approach is capable of recognizing a broad
variety of activities with a weighted f1-score of 93.78% for
the RealDisp dataset and 92.15% for the PAMAP2 dataset.
It can distinguish similar activities that were difficult in the
previous work, and this is due to the feature extraction prop-
erty of CNN networks. Although the CNN-LSTM-LF
improves the recognition accuracy of similar activities, i.e.,
ascending stairs by 2.78% and descending stairs by 1.05%,
they are struggling to identify these two classes and misclas-
sified with each other. Therefore, in the future, the model’s
performance may be improved by applying other sensor
fusion techniques.

The limitation of this study is that it only considers
wearable sensor data; however, for more complex activities,
other data sources such as cameras and GPS sensors can
be used. It will be considered in future work. The data fusion
approach presented in this paper can be used for context-
aware applications, where complex activities can be
identified.
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