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1. Introduction
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Human pose estimation is aimed at locating the anatomical parts or keypoints of the human body and is regarded as a core
component in obtaining detailed human understanding in images or videos. However, the occlusion and overlap upon human
bodies and complex backgrounds often result in implausible pose predictions. To address the problem, we propose a structure-
aware adversarial framework, which combines cues of local joint interconnectivity and priors about the holistic structure of
human bodies, achieving high-quality results for multiperson human pose estimation. Effective learning of such cues and
priors is typically a challenge. The presented framework uses a nonparametric representation, which is referred to as the
Keypoint Biorientation Field (KBOF), to learn orientation cues of joint interinteractivity in the image, just as human vision can
explore geometric constraints of joint interconnectivity. Additionally, a module using multiscale feature representation with
inflated convolution for joint heatmap detection and Keypoint Biorientation Field detection is applied in our framework to
fully explore the local features of joint points and the bidirectional connectivity between them at the microscopic level. Finally,
we employ improving generative adversarial networks which use KBOF and multiscale feature extraction that implicitly
leverages the cues and priors about the structure of human bodies for global structural inference. The adversarial network
enables our framework to combine information about the connections between local body joints at the microscopic level and
the structural priors of the human body at the global level, thus enhancing the performance of our framework. The
effectiveness and robustness of the network are evaluated on the task of human pose prediction in two widely used benchmark
datasets, i.e, MPII and COCO datasets. Our approach outperforms the state-of-the-art methods, especially in the case of
complex scenes. Our method achieves an improvement of 2.6% and 1.7% compared to the latest method on the MPII test set
and COCO validation set, respectively.

and intentions based on the industrial Internet through
human body gesture recognition and prediction [1]. Home

Human body pose estimation is widely researched in the
field of computer vision, which involves the positioning
and pose configuration of human body parts and the multi-
media data captured by sensors, especially images and
videos. Human body geometry information and movement
information provided by human body pose estimation are
widely used in many fields, e.g., behavior recognition,
motion prediction, human-computer interaction, virtual
reality, and rehabilitation training. At the same time, there
are now some specific application scenarios. For example,
smart manufacturing factories can recognize human actions

care robots can detect accidents by detecting human body
posture [2].

In recent years, tremendous progress has been achieved
in this field due to the powerful feature extraction and rea-
soning capabilities of Deep Convolutional Neural Networks
(DCNNs) [3-5]. These methods mainly predict the heat-
maps of the joint points of the human body and show good
feature extraction and representation capabilities. However,
the main challenge of reasoning about the human pose,
especially in multiperson scenes, is the flexibility of the
human pose and physical occlusion caused by foreign
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objects and the weak robustness to partial joint recognition
caused by complex scenes. These models may generate
implausible heatmaps of predicted joints when faced with
the above challenging scenarios. In these scenarios, the net-
work may be forced to learn features similar to human
joints. These features may be in the background image or
belong to another person, as shown in Figure 1(a).

One of the direct and effective ways to address these
challenging scenarios is to incorporate the priors of human
structure into the training process of the network to make
the pose predictions more reasonable. Generative adversarial
networks (GANs) have been applied to network training to
allow the network to learn the structural constraints between
body parts [6, 7]. However, this has some shortcomings for
pose prediction models based only on traditional GANS,
because the combination of the priors of human structure
into the network is based on adequate joint detection and
connection relations between joints based on local features.
If joint detection and connectivity relationships between
joints at the microlevel are not taken into account, previous
GAN-based approaches [6, 7] still cannot adequately address
these challenging scenarios when more complex body part
occlusions and more intrusive backgrounds occur.

We can reasonably infer the position of the joint points
from human vision based on the observed connections
between the local joint points combined with the priors of
body structure. Even under severe occlusion and interfer-
ence, we can infer plausible poses. However, how to make
the network learn to reason is a challenge for the intercon-
nections between local articulations and oriented informa-
tion to help the network to infer from one articulation to
another. Inspired by [8, 9] and combined with human
vision’s reasoning process, we propose the Keypoint Biorien-
tation Field (KBOF), as shown in Figures 1(c) and 1(d). It
can help the network learn the bidirectional and location
information between the nodes based on the local features
of the pictures at the microlevel and guide the network to
generate a more accurate heatmap of the human nodes. In
addition, to fully detect the local features of the articulation
points and the bidirectional relationship between them at
the microlevel, we apply the multiscale feature representa-
tion widely used in semantic segmentation tasks [10, 11] to
the network. Combining the above two parts, a module
using multiscale feature representation for joint heatmap
and KBOF detection is applied to our framework. Finally,
to embed the priors of human structure into the network,
a discriminator is proposed to dominantly check whether
the human structure prior is plausible or not. This discrim-
inator follows the same network structure as the generator
[12]. The discriminator can distinguish plausible pose con-
figurations from implausible ones and thus guide the gener-
ation to iterate towards generating more accurate ones. After
training is completed, the discriminator is removed and the
generator is used as a pose predictor.

The three main contributions of this work are as follows.
First, we design an adversarial network for multiperson pose
recognition, which takes the human structural geometric
prior into account. By embedding the human structure prior
in the network, the predicted joint heatmap errors can be
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effectively reduced for occlusion and foreign object interfer-
ence in complex environments. Second, we present the Key-
point Biorientation Field (KBOF), which can encode
bidirectional and positional information between local artic-
ulation points to guide the network to generate more reliable
articulation heatmaps. Third, we present a multiscale dilated
convolution module to increase the field of view of the net-
work. The module can improve the performance of the net-
work by exploring multiscale local features at the microlevel
for the network.

2. Related Work

Our approach is closely related to work based on CNNs
using heatmaps for the human pose, multiscale feature rep-
resentation networks, and generative adversarial networks.

2.1. Human Pose Estimation. Traditional 2D HPE
approaches use probabilistic graphical models [13, 14] and
pictorial structural models with hand-drawn image features
[15, 16] to detect body parts. Although improvements can
be made by these clever model designs and algorithmic
implementations [17], the bottleneck seems to be the lack
of effective feature representations that can characterize
visual cues at different scales and vary according to different
character profiles and environments. The popularity of
DCNNSs has changed this situation in computer vision. Sig-
nificant improvements were realized in the field [3, 8,
18-20] in earlier research works.

The convolutional pose machine [19], one of the most
popular deep learning-based methods, presents a sequential
framework that increasingly refined keypoint heatmap esti-
mation through a series of stages throughout the network.
Built upon [19], Cao et al. combined the idea of sequential
refinement with the newly proposed Part Affinity Field
(PAF) result in the OpenPose method [8]. Further, based
on PAF, Cao et al. [7] proposed the composite field, which
consists of Part Intensity Field (PIF) and Part Association
Field (PAF) whose functions are to locate the nodes and
connect the localized nodes, respectively. Our multiscale fea-
ture extraction module draws on the ideas in [8, 9] and pro-
poses a bidirectional representation of the orientation and
location information between two keypoints to enhance
the reasoning.

Multiscale feature extraction has been widely applied in
DCNNE for pose recognition. Newell et al. proposed stacked
hourglass networks [21] pooling and upsampling in succes-
sive steps to capture the diverse space of associations
between body parts to generate the final prediction. Based
on the hourglass structure, Chu et al. embedded a multicon-
text approach with an attention mechanism into the hour-
glass backbone [22] for human pose recognition. The
hourglass residual units are superimposed on an origin net-
work incorporating the holistic attention model, which has
the advantage of a multiscale field of view. Conditional ran-
dom fields are used in the postprocessing stage to connect
the detected nodes. However, this method has the disadvan-
tage of increasing the computational cost and significantly
increasing the inference time.
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FIGure 1: (a) Incorrect postures may be generated by ordinary
adversarial networks without contact information between joint
points. (b) Combining the connection information between local
joints and the prior body structure results in more accurate
predictions. (c) Keypoint Biorientation Field (KBOF) corresponds
to the contact information between two joints. (d) A pair of
bidirectional vectors in each pixel of every KBOF encodes the
orientation and position information between two keypoints.

To address the detection of “hard” keypoints in challeng-
ing scenarios, Chen et al. proposed the Cascaded Pyramid
Network (CPN). CPN first uses GlobalNet to locate com-
mon “simple” keypoints followed by a RefineNet to explicitly
identify “hard” keypoints by integrating all levels of feature
representation and combining keypoint missing losses.
Enhanced CPN [23] was proposed with a shuffle unit to fuse
feature maps from the pyramid and an attention module to
extract more representative feature maps for pose tracking.

Unlike many approaches that recover the high-
resolution representation through a low-to-high decoding
network, the high-resolution network [20] maintains the
high-resolution feature representation across all network
phases. It starts with a high-resolution subnetwork in the
first stage. High-to-low resolution subnetworks are added
sequentially, and multiresolution subnetworks are connected
in a parallel manner. This approach of maintaining high res-
olution while increasing the resolution at different levels can
accept more semantic information leading to rich feature
representations. HigherHRNet [24] was proposed to address
the challenge of correctly identifying the size of small
humans in scale variation. Its combination of feature maps
output from HRNet and high-resolution representations
from upsampling by transposition convolution can address
the scale variation challenge. A similar approach to HRNet
was used in [25], which combines cross-stage feature aggre-
gation and progressively refined intermediate supervision to
achieve performance gains at a constant computational cost.
Our approach combines the enhanced HRNet of [20, 24]
with a dilated convolution in the backbone network with
multiple dilated rates to extract multiscale features for locat-
ing keypoints and exploring the bidirectional information
between them.

2.2. Multiscale Feature Extraction. The concept of multiscale
feature representation can be traced back to the theory of
scale space [26]. In recent years, multiscale feature extraction
based on CNNs has been widely used in several task areas in
computer vision. Most approaches usually use feature pyra-
mids to perform multiscale feature extraction for target
detection tasks. Feature pyramid networks are representative
works that construct feature pyramids by multiscale feature
aggregation. Kim et al. proposed parallel feature pyramid
networks (CPNs) [27], which can overcome the limitations
of the original multifeature extraction; i.e., the different
abstraction layers of feature layers of CNNs limit the detec-
tion performance. The method uses spatial pyramid pooling
and feature transformation to generate different-sized fea-
ture maps through widening the network. The feature maps
at each scale are subsequently rescaled to a uniform size and
combined with global information to generate the final fea-
ture pyramid.

The design flaws of CPN, which limit the full utilization
of multiscale features, were identified by Guo et al. who pro-
posed AugFPN [10] to address these problems. AugFPN has
three different modules: consistent supervision, residual fea-
ture enhancement, and ROI selection, corresponding to the
three flaws of FPN. The prominent advancement is consis-
tent supervision, which narrows the semantic divide between
features at different scales before aggregation. In Big-Little
Net [28], multiscale branching networks are used, which
have different computational efficiencies with different reso-
lutions in different branches. By fusing features from differ-
ent branches at different scales, the model can obtain
multiscale features with less inference time.

Another multiscale feature extraction method, which
refers to dilated convolution or atrous convolution, is funda-
mentally different from the above methods. Dilated convolu-
tion [29] can explicitly adjust the field of view of the
subnetwork module by controlling the resolution of the fea-
ture map with different dilated ratios to extract features from
different scales of field of view. It increases the resolution
without increasing the number of parameters and keeping
the computational efficiency constant. Dilated convolution
is used to capture multiscale contextual features with multi-
ple dilation rates arranged in cascade or parallel. In DeepLab
[30], dilated convolution is used for upsampling filters to
effectively expand the field of view of the filters while keep-
ing the network size constant and computational efficiency
unaffected. Dilated convolution is often used for feature
extraction at the microscopic level. In DetectoRS [11],
switchable dilation convolution is used to convolve different
features with different dilation ratios and use switch func-
tions to aggregate the results. This significantly improves
the performance of the method for target detection tasks.

Taking all these considerations into account, dilated
convolution is used in our framework since KBOF explores
the bidirectional detail information between keypoints,
which has high requirements for feature extraction at the
microlevel relative to the body structure. The multiscale fea-
ture representation is improved on keypoint heatmaps and
KBOF in [30], which combines a parallel architecture where
multiscale features are first processed through a filter and



branch out into multiple parallel streams with different
dilated convolution rates. It goes beyond the common cas-
cade approach by combining multiple parallel streams and
averaging the original input pooling to achieve detailed fea-
ture representation at the microscopic level.

2.3. Generative Adversarial Networks. Generative adversarial
networks (GANs) have been widely used in several scenar-
ios, such as generating sample images from i.i.d. data given
unknown distributions [31], visualization operations gener-
ated in natural manifold [32], generating images of people
from given pose [33], and data augmentation for human
pose recognition tasks [34]. Since the first GAN for learning
the possible distribution of training samples and generating
similar products [35] was proposed, research on GAN has
focused on three prospects: (1) generation of high-quality
images, (2) stable training, and (3) exploration of scenarios
for GAN use.

Deep Convolutional GAN [36] first applied the deconvo-
lution operation to generators. DCGAN has several key
modifications that are beneficial for high-resolution tasks
and more stable training compared to FCGAN. For example,
pooling operations are replaced with strided convolution
and fractional-strided convolution for the discriminator
and generator, respectively, batch normalization is used
throughout the framework to help locate origin-centered
false and generated samples, and ReLU activation with Tanh
is used in the generator and discriminator to prevent the
entire network from crashing. Arjovsky et al. proposed the
Wasserstein GAN [37], which uses the Earth mover (EM)
distance as an optimized loss metric instead of the original
loss function to improve the stability of training and prevent
model collapse. An important difference between the
WGAN and the original GAN is that the discriminator in
the WGAN is designed to fit the EM distance to help the
training converge in a regression manner. The disadvantage
of the WGAN is that that suffers from the K-Lipschitz limi-
tation due to weight clipping, and fine-tuning the clipping
parameters is difficult. An improved WGAN [38] was pro-
posed to address this drawback. The penalty gradient
parametrization is used to force the critic’s gradient penalty
parametrization around K relative to its output. The results
show significantly better performance than the original
WGAN and can be stably trained on different GAN
frameworks.

The boundary equilibrium GAN [39] combines an equi-
librium execution method and a loss derived from EM dis-
tance for a GAN with autoencoders to make G and D
reach equilibrium during network training. It also provides
an approximate convergence determination to decide
whether the model has reached its final state. Progressive
GAN [40] proposes the idea of progressively overlaying net-
work layers to refine the modeling details and apply them to
G and D. This approach is faster in terms of training speed
and more efficient in terms of the number of layers. This
approach accelerates the training speed while making it well
stable. The self-attention mechanism was applied to GAN,
resulting in self-attention GAN [41], which can build atten-
tion-driven, long-range dependency modeling. It can gener-
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ate detailed samples using all feature cues from multiple
levels. Since improper conditioning of G can lead to degra-
dation of GAN performance, spectral normalization was
applied to G to optimize the training process.

Since supervised learning is widely used in CNNg, it has
also drawn attention to the GAN framework. Conditional
GAN [42] was introduced to conditionally restrict for G
and D by inputting real-valued labels. CGAN is fed with
additionally labeled data y and is encoded normally before
being connected to encoded information z and x. Since
CGAN can generate descriptive samples that do not belong
to the training labels, several methods combine CGAN loss
and L1 or L2 distance between the predicted labels and the
ground truth labels. For example, Xu et al. [43] proposed a
deep learning method based on the CGAN paradigm to esti-
mate fetal pose from MR volumes. Ji et.al [44] performed
saliency detection by using CGAN, which converts saliency
map prediction to saliency image segmentation task by using
paired images to ground truth saliency maps. There are also
some methods using CGAN for semantic segmentation [45],
image inpainting [46], and image translation [47]. CGAN
shows good performance in these above methods, especially
for the task of generating heatmap labels stacked. Thus, we
tried to use CGAN in our adversarial framework to improve
its performance for the human pose recognition task.

3. Method

Our proposed adversarial framework model, which is eluci-
dated in Figure 2, consists of a pose generator and a pose dis-
criminator. The pose generator network is a convolutional
network with an encoding-decoding structure and a multi-
scale representation. The input to the generator network is
a 256 x 256-sized image with three channels and generates
a set of confidence heatmaps that represent the confidence
score for the position of each joint. The parameters of the
generator are updated by its own forward and backward
propagation and by the loss of the discriminator, which is
trained in an adversarial manner so that the prior informa-
tion of the human structure is implicitly utilized.

The details of the individual network architecture are
presented in Figure 3. This network architecture combines
the improvement in multilevel feature representation [20]
and the coding-decoding structure, which combines a
stacked hourglass network [21] and a multiscale feature rep-
resentation with a dilated space pooling module [48]. The
multiscale feature representation increases the ability of the
network to capture contextual information and can provide
sufficient local features for the confidence heatmap of joints
and KBOF detection, which can effectively improve perfor-
mance. Its details are shown in Section 3.1.

3.1. Multiscale Feature Representation for Joint Heatmaps
and KBOF. The multiscale feature representation module is
shown in Figure 4 for the details of the network structure
and task pipeline. Based on the modified HRNet [20]
followed by two consecutive head networks, the front head
subnet predicts a set of confidence heatmaps K correspond-
ing to each joint point of the body part, and the back head
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FIGURE 2: The overall pipeline of our adversarial framework. We utilize a modified HRNet network with a core component, i.e., multiscale
feature representation for keypoint heatmap and KBOF detection, while a discriminator is used to identify the generated predicted heatmaps
from the ground truth heatmaps by reconstructing the corresponding heatmaps separately. The generators and discriminators have the same

network architecture.
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FIGURE 3: Presentation of the generator framework. We highlight the multiscale feature representation used for joint confidence heatmap
and KBOF detection in the purple square. The more specific details of this section are presented in Figure 4.

subnet predicts a set of 2D vector fields L of keypoint bidir-
ected fields (KBOF) which encode bidirectional position and
direction information between keypoints of the body. The
information between two keypoints is abstractly represented
as a strongly connected graph containing two points through
the keypoint bidirectional field. The set K ={K,K,, -,
K,,} contains M keypoint confidence heatmaps, H,,eR“*",
me{1,2, -, M}, and each body joint point corresponds to
a heatmap. The set L={L,,L,,---,L,} contains N vector
field pairs, where L, = {L,,,L,,}, L,eR**"2, ne{1,2,---,N
} corresponding to a pair of vector fields between each two
keypoints. L, and L,, denote the position and orientation
information between keypoints K; to K; {i,j}e{1,2,-- M
}. The M keypoint confidence heatmaps and the N pairs of
bidirectional fields together jointly generate the final pre-

dicted heatmaps. Among them, the N pairs of KBOF play
an important role in guiding the generation of the final pre-
dicted heatmap, which ultimately leads to the generation of
predicted keypoints close to the ground truth heatmap.

3.1.1. Network Architecture. The multiscale feature represen-
tation module we use, as shown in Figure 4, produces multi-
scale feature representations for KBOF detection, shown in
light orange, and confidence maps for joints, shown in blue.
Among them, the guide field is predicted in two consecutive
multiscale representation stages, with low-level feature
fusion. It increases the perceptual field of the network to
have consistent high-resolution processing of the feature
representation, which contributes to high regression rates.
The multiscale module is based on the dilated convolution
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FIGURE 4: Multiscale feature representation for KBOF and joint confidence map detection. The first set of consecutive stage prediction KBOF
sets L follows a series of stage prediction joint confidence map sets K. Each stage prediction and its corresponding original image features

consist of backbone and low level.

to maintain the multiscale perceptual field and performs a
series of parallel inflation convolutions with different infla-
tion rates to increase efficiency. In addition, each parallel
module has a parallel averaging pooling layer for the original
scale features to increase the overall feature representation.

The multiscale representation module is designed to
increase the representation of multiscale features and reduce
the number of parameters to solve the memory limitation
and overcome the drawbacks of inflationary convolution.
His four branches have different expansion rates with ratios
of 1, 6, 12, and 18, respectively. This module combines the
decoder in the integration unit and processes the four
branches and the low-level features at the same higher reso-
lution, leading to more accurate node prediction. The output

feature f .., for each head subnet is described as follows.

4
fbranch:Kl * ((Ka,- *fi—l) * Kl) +AP( ()) 4
=1

1

fsubnet=K1 * (Kl * (Kl >kflf+fbrar1ch>)’

(1)

where « represents the convolution, f;, represents the low-
level feature map, f, represents the input original feature

map, f, , represents the (i—1)st feature map from the
inflated convolution, K, represents the convolution with a
convolution kernel size of 1 x 1, and K, represents the con-

volution kernel with a 3 x3 dilated convolution whose
expansion rates are a; = {1, 6, 12, 18}, as shown in Figure 4.

The multiscale feature representation combines feature
representations from lower levels in a connected manner,
and the final two layers of 1 x 1 convolution recover the
number of feature maps to the number of joints correspond-
ing to the human pose estimation. Since the high resolution
is applied to the backbone of the modified HRNet-based net-
work, this module can directly output the confidence heat-
map used to connect the next layer without additional
decoding networks or linear interpolation networks to
recover its size.

3.1.2. Confidence Heatmap of Keypoint and KBOF Detection.
A series of feature maps, which are fed into the first subnet,
are generated through the HRNet network with enhance-
ments. A series of human keypoint bidirected fields are gen-
erated through this subnet. In the subsequent subnetworks,
the predicted feature maps from the previous subnetwork
and its combination of feature maps f;, from the low-level

network and the original image feature maps f are
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concatenated, and further refined predicted feature maps are
generated.

{Ll =) e=1 o

Li=¢'(Linf)2<t<Ty,

where @' refers to the KBOF subnet for inference at subnet t,
f is the original image feature map, L, is the series of gener-
ated KBOF through ¢', and T is the total number of sub-
nets of KBOF. After T, subnets, the confidence map of the
node locations is generated through the subsequent subnets
with the latest KBOF feature maps.

H =o' (f,Ly),t=Ty,
{ (f>Lr,) o)

H,=o'(f Ly, Hiy), Ty <t < Ty,

where w' refers to the subnet ¢ that generates the confidence
graph, Ly, is the latest KBOF generated through ', H, is the

confidence graph generated, and T is the total number of
subnets in this module including the subnets that generate
the KBOF.

We empirically traded off the number of subnets of
KBOF to improve the prediction results of the confidence
map, which has two detection subnets and one detection
subnet for the nodal heatmap because the multiscale feature
representation no longer requires more redundant subnets.
The multiscale feature representation can be processed in
parallel and extracted by multiscale inflation convolution.
Thus, the computational effort of each subnet and the
parameters of the overall network are reduced. To guide
the network to refine the prediction of correlation informa-
tion for KBOF in the first stage and confidence maps in
the second stage, we added a loss function at the end of each
stage. The probability of generating anomalous sample
points is relatively small because of the structural limitations
of the human body. So L, loss is used between the ground
truth and the predicted value. The loss function of the KBOF
branch in the subnet #; and the loss function of the Gaussian
graph branch in the subnet ¢; are as follows:

5(0)| (4)

1 N
=552 2
n=1 p

1
MP

gl_

Mz

HH (p) ~ Hr(p)

K (5)

m=1

where L} refers to the ground truth KBOF, Li{ is the pre-
dicted KBOF in the subnetwork ¢;, H}, is the ground truth

confidence map, Hy, is the predicted confidence map, M
refers to the total number of keypoints of the human joints,
and N refers to the total number of bidirectional oriented
field pairs. The gradient vanishing problem is solved by add-
ing intermediate supervision at the end of each subnet. The

overall loss in multiple subnets can be expressed as

T +Ty

&= Zyt+ Z LY. (6)

3.1.3. Confidence Maps for Keypoint Detection. Each confi-
dence map, referred to as a Gaussian heatmap, is a 2D rep-
resentation of the belief that a body part is designated at
any location in the picture. To evaluate the loss function
&y in equation (5), ground truth confidence maps H* are
generated from the 2D keypoints that are labeled. Confi-
dence map H}, , is generated for a single person k. Note that
i is the true position of body part m of individual k in the
plcture Then, for H ,, the value at p pixels is defined as

2
me,k_PH2>, (7)

m,k>

H;kn,k@) =eXp <_ 0_2
where o controls the expansion of the vertices. A value of o
of 3 was empirically obtained in this experiment, resulting in
well-defined Gaussian curves both for the ground truth heat-
map and for the predicted output heatmap.

3.1.4. Keypoint Biorientation Field for Keypoint Association.
The human keypoint bidirectional oriented field contains
both position- and orientation-oriented information in the
limb support region. Inspired by [8], we propose that each
KBOF contains a pair of 2D vector fields for each limb, as
shown in Figure 1(c). For each pixel in the region belonging
to a particular limb, a pair of 2D vector fields encodes the
orientation, i.e., fr5om one joint point of the limb to another
joint point. Each type of limb has a corresponding pair of
KBOFs connecting its associated body keypoints.

Consider that each limb part comes from the human
body (see Supplementary Materials (available here)). Denote
X,y and y, . as the ground truth values of the two keypoints
of the body part from limb » for person k in the picture,
respectively. If two outside a point p lies within the limb,
Ly, (p) is a pair of unit vectors at pixel point p, Ly, (p)
and L7, ,(p), respectively. The value of L, | (p) is a unit vec-
tor from point x to y, and the value of L; ,(p) is an inverse
unit vector. The value of points located outside the limb is 0.

To evaluate the loss function &, in equation (5), the
ground truth value L* of KBOF is generated at point p in
the image. The value of L;, ; | at pixel p for a limb # of person
k is defined as

) M, if ponlimb #, k, from x to y,
L @)= %=
0, otherwise,
) M , if ponlimbn, k, from y to x,
L) =3 i
0, otherwise.

(8)



The set of points on a limb is defined as a point within a
distance threshold based on a line segment as follows:
For L; . (p), the range of p is such that

0< u.(p - xn,k) = ln,k’

‘V' (p—xn)k)’ Sbl

For L; . ,(p), the range of p is such that

0<ue (P _yn,k) < ln,k’

(10)
v (P=yui) [ <o

where b; refers to the distance of the limb width in pixel
points, the limb length is I, = [|x, = y,ll,» # is the unit
vector parallel to the limb direction, and v is the unit vector
perpendicular to u.

We measure the degree of association between the pre-
dicted heatmaps by computing line integrals over the corre-
sponding KBOF along the line segments connecting the
keypoints. In particular, for predicted nodes k; and k,, por-
tions of the predicted KBOF are sampled and L, along the
sampled line segments is employed to measure the confi-
dence level of the association between them.

=l ky—k
S=| L (w(c))e—2—1 dc 11
Lo“(”wrhm ()

where w(c) is a single linear interpolation of the two pre-
dicted nodes k; and k,, which is referred to as

w(c) = (1-c)k, +ck,. (12)

3.2. Generator. We used a deep CNN architecture based on a
modified HRNet as the backbone network of the generator.
The processing pipeline of this architecture is shown in
Figure 3. Inspired by [20], the idea of HRNet is applied to
the deconvolution operation of the backbone network. In
addition, we improved the results of the backbone network
by using Gaussian modulated deconvolution instead of the
upsampling operation. The improved HRNet feature subnet-
work is followed by the multitask prediction module we used
for the Gaussian heatmap and KBOF. Details of the multi-
task prediction module have been shown in Section 3.1.
The task of the generator is to learn a mapping that
attempts to project a color picture x onto its corresponding
final predicted heatmap y. The predicted heatmap y is gener-
ated by the joint guidance of the native predicted heatmap
and KBOF as described in Section 3.1. The generator gener-
ates M final key heatmaps y (16 and 17 in the datasets MPII
and COCO, respectively), each of which is a 64 x 64 map-
ping having a Gaussian heatmap at each joint location.
Combined with the detailed network LOSS described in Sec-
tion 3.1.2, the average mean square error LOSS function of
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our proposed generator network can be described as

M
Lre= D Vi = Vull> (13)
m=1

where y7 is the ground truth heatmap, y,, is the final
predicted heatmap of the generator, and M is the total num-
ber of human joints. By backpropagating the & (0) gradi-
ent, the generator is forced to learn the image features
based on the keypoint heatmap and KBOF to further
improve the accuracy.

In addition, we add the adversarial loss, which can help
the generator to generate reasonable poses. The adversarial
loss function can be expressed as

M
"?Adv = Z ”ym _D(ym’x)”;’ (14)
m=1

where D is the discriminator and x is the original input
image. £, 4, measures the error between the predicted heat-
map of the generator and the reconstructed heatmap of the
discriminator.

In summary, the joint loss function of the generator can
be expressed as

L6=Lvise ¥ 0L pay> (15)

where «; is the hyperparameter that controls the weight
of the &, and &y

3.3. Discriminator. The generator network learns the associ-
ation between local keypoints starting from the connection
between local features. These benefits from KBOF are guid-
ing the intermediate prediction heatmaps to generate more
accurate final keypoint heatmaps on local features. But this
is not enough, and discriminators are introduced to help
the generator optimize the detection node confidence map
from the body joint configuration from the local perspective,
i.e., embedding the body joint configuration a priori into the
network architecture. The discriminator is used to distin-
guish reasonable pose predictions from implausible pose
estimates, which helps the generator further improve the
accuracy of the predictions. The processing pipeline of dis-
criminator is shown in Figure 5.

The final heatmap generated by the generator is fed to
the discriminator along with the ground truth heatmap.
For each pair of input images, the discriminator should go
through and distinguish whether this final heatmap is rea-
sonable or not. Both are reconstructed at the same time to
generate the reconstructed final heatmap and the recon-
structed ground truth heatmap, similar to the code-and-
decode operation. The quality of the reconstructed heatmap
depends on how similar it is to the final input heatmap. The
error between these two pairs of heatmaps is measured by
two loss functions &, and Zy,,;, respectively.

For the input ground truth heatmap, the discriminator is
trained to extract its features and reconstruct a similar
ground truth heatmap. For the final input heatmap, the
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Predicted
heatmaps

Reconstructed
heatmaps (from PH)

3

Ground-truth
heatmaps

[ Decode with HR structure
1 ResNet bottleneck
1 Multi-scale feature representation

(64 x 64 x 48)

Reconstructed
heatmaps (from GT)

FIGURE 5: Presentation of our discriminator framework. The discriminator is used to distinguish the predicted heatmaps from the ground

truth heatmaps by reconstructing both corresponding input heatmaps.

discriminator is trained to generate a completely different
heatmap. That is, the error between the input ground truth
heatmap and the reconstructed one is minimized, and the
error between the input final predicted heatmap and the
reconstructed one is maximized. The loss functions Zp,.
and Zp, are described as follows.

M
gFa.ke: z ”ym_D(ym’x)H%’ (16)
m=1
< 2
greal: Z ||J’:1‘D()’:n’x)||2’ (17)
m=1
gD = greal _ktgFake’ (18)

where f3 is a super control variable introduced, which
helps the GAN to converge during training, as detailed
below. Since the loss function is computed over each pixel
point, as described in Section 3.1.2, this makes the discrimi-
nator act like a harsh critic, giving a detailed evaluation of
the final heatmap of the input and rejecting unreasonable
joint heatmaps. This is where it differs from traditional
GAN.

As mentioned in many papers [35, 49, 50], GANs are
unstable and difficult to train as the discriminator simply
give a 0 or 1 evaluation, making the network difficult to con-
verge. Inspired by [39], we used a variable k, to control the
LOSS from the generator and controller, which is updated
at each iteration t. The adaptation k, is described as follows.

kt+1 = kt + ﬁ(ngeal - gFake)’ (19)

where k, has a value between 0 and 1 and f and y are
two hyperparameters. When the performance of the genera-
tor is due to the discriminator, i.e., the heatmap generated by
the generator can deceive the discriminator, &g is smaller
than y&p..- k, becomes larger, making the weight of &
increase, so the discriminator will be trained to recognize the
true pose heatmap from the fake one. yZp..; — Lrare deter-
mines the magnitude of the value addition of k,; i.e., the dis-
criminator’s performance lags behind the generator’s
magnitude, with a larger magnitude adding more value and
a smaller magnitude adding less value. Conversely, k,
decreases when the discriminator outperforms the genera-
tor, allowing the generator’s performance to catch up with
the discriminator.

3.4. Adversarial Training. We guide the network to generate
more accurate keypoints through the implementation of
KBOF based on local features. Also, we applied the idea of
the BEGAN [34] network to help the generator further
improve the accuracy of the human keypoint task by embed-
ding the human structure a priori into the network.

Z \qy 10 equation (14) and £, in equation (16) have
the same value, but the multiplied weights and directions
are different. The generator minimizes &£, and &£,
and the discriminator maximizes Zp,. and minimizes
Z1ea- This is the adversarial process that constitutes the
architecture of this network. This causes the generator to
evolve towards generating high confidence, while the dis-
criminator strives to find features that help generate the cor-
rect joint heatmap to distinguish the high confidence
heatmap from the low confidence heatmap. Algorithm 1
shows the adversarial training process for this network
architecture.



10

Wireless Communications and Mobile Computing

Require: The unlabeled color image x and the corresponding ground truth heatmap y =
1 Forward Discriminator by {y,,,;} = 2(x, y*)

3 Forward Generator by {y} = G(x)

6 Cumulative gradient Vf, for Eq. (16)
7 Update Discriminator with Vf
8 Cumulative gradient Vf, for Eq. (14)
9 Update Discriminator with Vf

2 Compute the gradient Vf, according to Eq. (17)

4 Compute the gradient Vf according to Eq. (13)
5 Foreword Discriminator by {y/,} = 2(x, )

10 Return to step 1 until the accuracy rate no longer increases

ArgoriTHM 1: The adversarial training process of our framework.

4. Experiments

We conducted experiments on two widely used benchmark
datasets, i.e., MPII and COCO datasets, and analyzed the
experimental results in detail and comprehensively. In par-
ticular, we conducted analytical experiments on the MPII
dataset in a masking context. We have performed a quanti-
tative analysis of the experimental results using a generic
evaluation while showing the results of the qualitative anal-
ysis. The relevant details of the experimental part are also
described in this section.

4.1. Datasets. The MPII Human Pose dataset [51] refers to
the Max Planck Institute for Informatics Dataset. MPII is
the most widely used benchmark for the evaluation of
human posture estimation of joints. This dataset contains
approximately 25K photographs of over 40K people with
labeled body joints. These images were systematically col-
lected using an established classification system for daily
human activity. This dataset has over 410 human activities,
and each image is provided with an activity label. In addi-
tion, the test set is richly annotated with body part occlusion
and 3D torso and head orientation. The target annotation
contains 16 keypoints.

The COCO dataset [52] refers to the Microsoft Common
Objects in Context Dataset. This dataset contains about
200K photos and 250K human instances with keypoint
labels, which are divided into a training set, validation set,
and test set. In the human label annotations, medium- and
large-scale human instances account for most of the
instances. This dataset simultaneously predicts the human
body and locates 17 keypoints, including 12 human key-
points and 5 facial keypoints for each person.

4.2. Evaluation Metrics. Percentage of Correct Keypoints
(PCK) [51] calculates the percentage of the normalized dis-
tance between the detected keypoints and their correspond-
ing ground truth heatmaps that are less than a set threshold.
Half of the head length is used as the normalization refer-
ence in MPII, which refers to PCKh@0.5. It indicates the
percentage of the correct proportion of predicted critical

points. The equation can be expressed as follows.

2,0 (dyldy* < Ty.)
- 5 ,

PCK¥ (20)

where i denotes the i-th keypoint, p denotes the p-th per-
son, k denotes the k-th threshold T, d,; denotes the Euclid-
ean distance between the predicted value of the i-th keypoint
of the p-th person and the ground truth, and dgef denotes the
scale threshold of the p-th person, which in MPII is the head
length as the normalized reference.

Object Keypoint Similarity (OKS) [52], in the human
keypoint evaluation task, for the goodness of the keypoints
obtained by the network, is not computed just by a simple
Euclidean distance, but a certain scale is added to compute
the similarity between two points. This metric is mainly used
in the multiperson pose estimation task. Its equation is as
follows:

Yexp(-d22820% )8 (v, >0
oxs . TP (412530)3(vy > 0)

»= 56w, > 0) @

where p' denotes the keypoint i of the pth person, dy
denotes the Euclidean distance between the predicted value
of the current key and ground truth, v, =1 means that the
visibility of this keypoint is 1, v, =2 means that this key-
point is occluded but labeled, S, denotes the scale factor of
the pth person of ground truth, and o; denotes the keypoint
normalization factor. §(*) indicates that §(x) = 1 if the con-
dition * holds; otherwise, §() = 0.

Average Precision (AP) and Average Recall (AR): AP
measures the ratio of the predicted keypoint accuracy, ie.,
the ratio of true positive samples to the total positive sam-
ples. AR measures the ratio of the predicted keypoint regres-
sion rate; i.e., the ratio of predicted positive samples AP and
AR has many variants to further measure the accuracy of the
prediction results, and their detailed description can be
found in the literature [52]. AP and AR are often combined
with OKS to evaluate the experimental results.
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FiGUure 6: The qualitative results of some sample pictures in the MPII (top) and COCO (bottom) datasets. These scenes include self-

occlusion, other people occlusion, and object interference.

TaBLE 1: Results of our framework and comparison with SOTA methods on the MPII test set (PCKh@0.5).

Method Head Shoulder Elbow Wrist Hip Knee Ankle Total
Carreira et al. [58] 95.7 91.7 81.7 72.4 82.8 73.2 66.4 81.3
Hu & Ramanan. [59] 95.0 91.6 83.0 76.6 81.9 74.5 69.5 824
Newell et al. [21] 98.2 96.3 91.2 87.1 90.1 87.4 83.6 90.9
Yang et al. [60] 98.5 96.7 92.5 88.7 91.1 88.6 86.0 92.0
Ke et al. [61] 98.5 96.8 92.7 88.4 90.6 89.4 86.3 92.1
Tang et al. [62] 98.4 96.9 92.6 88.7 91.8 89.4 86.2 92.3
Sekii [63] 97.9 95.3 89.1 83.5 87.9 82.7 76.2 88.1
Sun et al. [20] 97.1 95.9 90.3 86.5 89.1 87.1 83.3 90.3
Baseline [57] 98.5 96.6 91.9 87.6 91.1 88.1 84.1 91.5
Zhang et al. [54] 97.2 95.9 91.2 86.7 89.7 86.7 84.0 90.6
Zhang et al. [64] 98.3 96.4 91.5 87.4 90.9 87.1 83.7 91.1
Artacho et al. [3] — — — — — — — 92.7
Tang et al. [51] 98.7 97.1 93.1 89.4 91.9 90.1 86.7 92.7
Ours(—)l 97.9 95.9 91.3 88.3 91.2 89.7 86.1 91.5
Ours (KBOF+GAN) 98.7 97.3 94.2 91.1 93.0 92.7 88.7 93.9
TABLE 2: Results of our framework and comparison with SOTA methods on the MPII full test set (mAP@0.5).
Method Head Shoulder Elbow Wrist Hip Knee Ankle mAP
Igbal & Gall [66] 58.4 53.9 44.5 35.0 42.2 36.7 31.1 43.1
Levinkov et al. [67] 89.8 85.2 71.8 59.6 71.1 63.0 53.5 70.6
Insafutdinov et al. [68] 88.8 87.0 75.9 64.9 74.2 68.8 60.5 74.3
Cao et al. 8] 91.2 87.6 77.7 66.8 75.4 68.9 61.7 75.6
Newell et al. [21] 92.1 89.3 78.9 69.8 76.2 71.6 64.7 77.5
Fieraru et al. [65] 91.8 89.5 80.4 69.6 77.3 71.7 65.5 78.0
Our 91.6 87.9 81.6 72.5 77.5 73.8 67.4 78.9

4.3. Experimental Settings. The batch size depends on the
size of the input dataset images. Multiscale feature represen-
tation module using dilated convolution has different expan-
sion rates which are available. We found in our experiments
that a too large expansion rate leads to a decrease in accu-
racy performance. This is because a too large expansion rate

causes the network to not fully capture the correlation infor-
mation between detailed local keypoints in the image. There-
fore, a range of expansion rates r = {1, 6, 12, 18} was chosen
for the dilated convolution module.

We followed the data augmentation in [53]. We ran-
domly flip and input data and randomly scale with
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TaBLE 3: Results of our framework and comparison with SOTA methods on the COCO set for validation.
Method Input size PARAMSs GFLOPs AP AP AP7 APM APt AR
CPN [69] 384 x 288 — — 72.2 89.2 78.6 68.1 79.3 —
Baseline [57] 384 x 288 68.6 35.6 74.3 89.6 81.1 70.5 81.6 79.7
EvoPose2D [51] 384 x 288 7.3 5.6 75.1 90.2 81.9 71.5 81.7 81.0
HRNet [69] 384 x 288 63.6 329 76.3 90.8 82.9 72.3 83.4 81.2
DarkPose [54] 384 %288 63.8 345 76.8 90.6 83.2 72.8 84.0 81.7
Our 384 x 288 74.8 31.2 78.1 92.3 85.9 75.6 83.9 82.0
TABLE 4: Results of our framework and comparison with SOTA methods on the COCO set for test-dev.
Method Input size PARAMs GFLOPs AP AP AP7 APM APt AR
G-RMI [70] 353 x 257 — 57.0 64.9 85.5 71.3 62.3 70.0 69.7
CPN [69] 384 x 288 — — 72.1 91.4 80.0 68.7 77.2 78.5
Cai et al. [58] 256 x 192 8.7 6.4 72.5 93.0 81.3 69.9 76.5 78.8
Baseline [57] 384 x 288 68.6 35.6 73.7 91.9 80.0 68.7 77.2 78.5
HRNet [20] 384 x 288 63.6 32.9 75.5 92.5 83.3 71.9 81.5 80.5
MSPN [25] 384 x 288 120 19.9 76.1 93.4 83.8 72.3 81.5 81.6
DarkPose [54] 384 x 288 63.6 32.9 76.2 92.5 83.6 72.5 82.4 81.1
Our 384 x 288 69.7 31.2 76.5 92.7 83.5 72.6 82.8 81.4

TaBLE 5: Comparison experiments of the number of subnets for
KBOF and confidence maps on the COCO validation. CM refers
to the confidence maps for joint, and the number indicates the
estimated number of subnets for KBOF and CM. Subnets refer to
the total number of KBOF and CM subnets. The smaller the total
number of subnets, the more it can increase the runtime
performance and, at the same time, affect the index performance.
There is a trade-off between running time and index performance.

Method AP AP® AP”® APM AP AR Subnets
3KBOF&1CM 782 923 860 758 839 819 4

2KBOF&2CM 780 923 859 756 83.8 818
1 KBOF &3CM 77.6 918 854 751 833 816
2CM &2 KBOF 753 91.0 824 730 80.7 7938
1 KBOF&2CM 775 916 853 750 832 81.6
2KBOF&1CM 781 923 859 756 839 820

W W R R

coefficients in [0.65, 1.35] by arbitrarily rotating its data at
the angle of [-45, 45]. The above approach makes this net-
work more robust for images with different orientations
and scales. We used the RMSprop algorithm to train the net-
work and calculated the learning rate of the network based
on a stepwise approach where the learning rate was initial-
ized to 2.0 x 107%. The model was trained for 250 epochs
on the two datasets mentioned in this paper. The learning
rate was reduced by order of magnitude at three steps at
170 epochs, 200 epochs, and 220 epochs, respectively, fol-
lowing the procedure set to pass [54]. The experiment was
conducted on an NVIDIA Tesla V100 GPU.

5. Result and Discussion

Our framework is tested on two large and widely used data-
sets, and the latest methods are compared. And ablation
experiments are conducted to detect the contribution of
our proposed multitasking module with KBOF guidance,
the use of multiscale null convolution, and the conditional
generation adversarial framework to improve the accuracy.

5.1. Results on the MPII Dataset. We conducted experiments
on the MPII dataset with PCKh@0.5 as the standard mea-
sure. Our methods were trained on the COCO training set
and fine-tuned on the MPII training set, and data augmenta-
tion was performed, which was routinely operated to follow
[8, 55, 56]. The results of this framework are presented in
Figure 6 and Table 1.

As shown in Table 1, our experimental results achieve a
performance of 93.9% and exceed 1.3% relative to the SOTA
method. The improvement of 2.6% compared to baseline
[57] presents a meaningful improvement relative to the pre-
vious SOTA. Our experimental results have a meaningful
improvement relative to the previous SOTA. The results of
our experiment have a wide range of improvements over
each node, especially for the more connected but difficult
to accurately detect parts of the body, such as the wrist
and ankle. This shows the robustness of our method for dif-
ferent detection sites, especially for the more connected parts
of the body. Qualitative results are shown in Figure 6 with
successful detection. These examples illustrate that our
method can effectively cope with the occlusion problem.

Table 2 shows the comparison between the results of our
experiment and the SOTA method with mAP@0.5 as the
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F1GURE 7: Qualitative result analysis and joint heatmaps and KBOF visualization of our method. (a) The prediction heatmaps generated by
the native HRNet [20] are easily disturbed. (b) Our method further refines the heatmaps and produces the most accurate prediction. (c) The
initial prediction heatmaps in our network without KBOF. (d) The visualization of KBOF contains the orientation and position information
between the two joints to guide the network to further refine the prediction of the joint point heatmaps. (e) The final generated prediction

heatmaps are guided by KBOF on the original prediction heatmaps.

measurement scale. As presented in Table 1, the experimen-
tal results of this framework have a comprehensive improve-
ment at the joints with strong correlations. Our results are
improved by 1.2% relative to the method presented in Fier-
aru et al. [65].

5.2. Results on the COCO Dataset. We conducted training
and testing on the MPII dataset and analyzed PARAM and
GFLOPs. Tables 3 and 4 show the training results of our
framework on the MPII validation set and the development
test set, respectively. This modified version of HRNet, com-
bined with KBOF and the adversarial framework, results in
prediction accuracy of 78.1%. This shows that our frame-
work has a significant improvement in the average accuracy.
This result is a 2.4% improvement over the original HRNet
and a 3.8% improvement over baseline. There is also a
1.7% improvement in prediction accuracy compared to the
previous SOTA approach.

Our results present an improvement in prediction accu-
racy on multiple measures. More significantly, the detection
of AP for medium objects in very difficult ones obtained by
our method presents an improvement of 3.9% relative to the

SOTA method. This demonstrates the improved capability
of our framework for predicting difficult poses using a rela-
tively small number of pixel points. This is due to our use of
multiscale null convolution combined with KBOF to explore
multiple-scale features on the picture and generate plausible
human poses by adversarial means.

Qualitative results are presented in Figure 6 for the
COCO dataset. From these examples, we can see that our
method is robust and has high accuracy for complex scenes.
Challenging scenarios include the detection of nodes where
limbs are obscured or not sufficiently separated or inter-
twined, but our method maintains high performance. The
experimental results of our method are also presented in
the COCO dataset for test-dev. As shown in Table 4, the
results also show the high performance of our framework
compared to the SOTA method.

5.3. Comparison Analysis of the Number of Subnets. In
Table 5, we analyze the impact of KBOF refinement on the
final confidence map predictions generated. We fixed the
total number of subnets as 3 and 4 subnets, respectively, in
which KBOF and confidence map have different numbers
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FIGURE 8: Several different versions of our framework for ablation experiments. KBOF represents the use of Keypoint Biorientation Fields,
MSDC denotes the use of multiscale dilated convolution module for KBOF and part heatmap detection, and the discriminator denotes the

use of the adversarial framework in this network.

of subnets. We can get three conclusions from this experi-
ment. First, because the multiscale feature extraction struc-
ture is applied to the network, the total number of three
subnets reaches almost the same performance index as the
number of four subnets. This is because the features have
been fully extracted in our network. To make a trade-off
between running time and performance index, we finally
fixed the total number of subnets to 4. Second, KBOF
requires more subnets to refine compared to confidence
maps. Third, the accuracy of the final confidence map will
be dramatically increased when using KBOF as the forerun-
ner, but vice versa will result in a 2.7% reduction for absolute
accuracy. Even if the model has a total number of subnets of
4 (2 CM and 2 KBOF), the model with less accuracy than the
total number of 3 subnets with higher computational cost
predicts KBOF (2 KBOF and 1 CM) first.

Meanwhile, qualitative results with joint heatmaps and
KBOF visualization of our method are presented in

Figure 7, which are compared with the inference results of
HRNet. It can be seen that after KBOF’s guidance, the accu-
racy of the joint heatmap has been improved.

5.4. Ablation Experiment. Ablation experiments were per-
formed on the MPII dataset to explore the effectiveness of
several different aspects of our approach. A modified
HRNet-based native network was used as the baseline, as
shown in “Ours(-)"" in Table 1. Several key results of the
experiments are presented in Figure 8. We conducted ana-
lytical experiments for three parts used in our framework:
KBOF, the wuse of multiscale convolution, and
discriminators.

As shown in the total section in Figure 8, we first
removed the discriminator and performed an exploratory
study on the use of KBOF and null convolution. The accu-
racy of the prediction results is improved by about 0.8% by
the use of KBOF. This shows that KBOF can guide the
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network to generate predictive joint heatmaps with higher
accuracy. And the multiscale cavity convolution results in a
contribution of about 0.6 relative to “Ours(-)".” This also
indicates that the multiscale cavity convolution further
improves the network’s ability to extract valid features.
Finally, on top of the first two, the discriminator is intro-
duced, resulting in a boost of about 0.7. The discriminator
can exclude the seemingly unreasonable poses generated by
the generator, thus allowing the generator to generate seem-
ingly reasonable predictions of human poses. The generator
was used to generate the final heatmap by removing the dis-
criminator, which resulted in an accuracy improvement.
Overall, the addition of isolated individual components
was all able to increase the accuracy of the predicted heat-
map. But using these components separately resulted in
boosts of about 0.8, 0.6, and 0.7, respectively, and the joint
use of these components produced a 2.4% boost. This is
probably because the null convolution extracts valid fea-
tures, and KBOF further makes a boost on top of these valid
features. The discriminator can help the generator to fully
recognize the heatmap features and guide it to generate
seemingly reasonable predictions of the human pose by
exploiting the valid results from the previous step.

6. Conclusion

We propose a novel adversarial framework with the Key-
point Biorientation Field (KBOF) for multiperson pose esti-
mation. The present nonparametric representation can
effectively encode the orientation and location information
between the nodes, forming a strong connectivity graph sim-
ilar to the one containing two nodes (two nodes can reason
about each other’s information), which can guide the net-
work to generate a more accurate heatmap of the nodes. In
addition, multiscale null convolution is used to extract effec-
tive local features in the image for KBOF. Finally, a discrim-
inator with the same network structure as the generator is
introduced to embed the human joint prior into the network
to further improve the accuracy of the predicted joint point
heatmap. The discriminator is removed after the framework
is trained, and we only need to use the generator for testing.
There is no additional computational overhead, so it does
not affect the inference time of the actual network. The bidi-
rectional nonparametric representation presented in this
method can be further developed and evolved for applica-
tion to tasks with structural information, such as 3D human
pose detection, face landmark detection, and finger move-
ment detection.

Data Availability

The code and data used to support the research are available
from the corresponding author upon request.

Conflicts of Interest

The authors declare that there is no conflict of interest
regarding the publication of this article.

15

Acknowledgments

This work is supported by the National Natural Science
Foundation of China (62702416) and the National Key
Research and Development Program of China (No.
2019YFC1521102).

Supplementary Materials

Figure S1: a pair of unit vectors has opposite directions
between the joint points. (Supplementary Materials)

References

[1] Y. Yu, H. Li, J. Cao, and X. Luo, “Three-dimensional working
pose estimation in industrial scenarios with monocular cam-
era,” IEEE Internet of Things Journal, vol. 8, no. 3, pp. 1740-
1748, 2020.

[2] X.Liand D. Li, “GPFS: a graph-based human pose forecasting
system for smart home with online learning,” ACM Transac-
tions on Sensor Networks (TOSN), vol. 17, no. 3, pp. 1-19,
2021.

[3] B. Artacho and A. Savakis, “Unipose: unified human pose esti-
mation in single images and videos,” in 2020 IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition (CVPR),
Seattle, WA, USA, June 2020.

[4] W. Tang and Y. Wu, “Does learning specific features for
related parts help human pose estimation?,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, Long Beach, CA, USA, 2019.

[5] Y.Cai, Y. Cai, Z. Wang et al., “Learning delicate local represen-
tations for multi-person pose estimation,” in European Confer-
ence on Computer Vision, Springer, 2020.

[6] Y. Chen, Y. Chen, C. Shen, X.-S. Wei, L. Liu, and J. Yang,
“Adversarial posenet: a structure-aware convolutional net-
work for human pose estimation,” in Proceedings of the IEEE
International Conference on Computer Vision, Venice, Italy,
2017.

[7] Z. Cao, Z. Cao, R. Wang, X. Wang, Z. Liu, and X. Zhu,
“Improving human pose estimation with self-attention gener-
ative adversarial networks,” in 2019 IEEE International Con-
ference on Multimedia & Expo Workshops (ICMEW),
Shanghai, China, 2019.

[8] Z.Cao, G. Hidalgo, T. Simon, S. E. Wei, and Y. Sheikh, “Open-
Pose: realtime multi-person 2D pose estimation using part
affinity fields,” IEEE Transactions on Pattern Analysis &
Machine Intelligence, vol. 43, no. 1, pp. 172-186, 2021.

[9] S.Kreiss, L. Bertoni, and A. Alahi, “Pifpaf: composite fields for
human pose estimation,” in Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, Long
Beach, CA, USA, 2019.

[10] C. Guo, C. Guo, B. Fan, Q. Zhang, S. Xiang, and C. Pan,
“Augfpn: improving multi-scale feature learning for object
detection,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, Seattle, WA, USA,
2020.

[11] S. Qiao, L.-C. Chen, and A. Yuille, “DetectoRS: detecting
objects with recursive feature pyramid and switchable atrous
convolution,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, Nashville, TN,
USA, 2021.


https://downloads.hindawi.com/journals/wcmc/2022/3447827.f1.docx

16

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

(20]

[21]

(22]

(23]

(24]

(26]

(27]

C.-J. Chou, J.-T. Chien, and H.-T. Chen, “Self adversarial
training for human pose estimation,” in 2018 Asia-Pacific
Signal and Information Processing Association Annual Sum-
mit and Conference (APSIPA ASC), Honolulu, HI, USA,
2018.

M. Andriluka, S. Roth, and B. Schiele, “Pictorial structures
revisited: people detection and articulated pose estimation,”
in 2009 IEEE conference on computer vision and pattern recog-
nition, Miami, FL, USA, 2009.

S. Johnson and M. Everingham, “Learning effective human
pose estimation from inaccurate annotation,” in CVPR 2011,
Colorado Springs, CO, USA, 2011.

Y. Yang and D. Ramanan, “Articulated pose estimation with
flexible mixtures-of-parts,” in CVPR 2011, Colorado Springs,
CO, USA, 2011.

L. Pishchulin, L. Pishchulin, M. Andriluka, P. Gehler, and
B. Schiele, “Poselet conditioned pictorial structures,” in Pro-
ceedings of the IEEE conference on computer vision and pattern
recognition, Portland, OR, USA, 2013.

B. Sapp and B. Taskar, “Modec: multimodal decomposable
models for human pose estimation,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Port-
land, OR, USA, 2013.

A. Toshev and C. Szegedy, “Deeppose: human pose estimation
via deep neural networks,” in Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, Columbus,
OH, USA, 2014.

S.-E. Wei, S.-E. Wei, V. Ramakrishna, T. Kanade, and
Y. Sheikh, “Convolutional pose machines,” in Proceedings of
the IEEE conference on Computer Vision and Pattern Recogni-
tion, Las Vegas, NV, USA, 2016.

K. Sun, K. Sun, B. Xiao, D. Liu, and J. Wang, “Deep
high-resolution representation learning for human pose
estimation,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, Long Beach,
CA, USA, 2019.

A. Newell, K. Yang, and J. Deng, “Stacked hourglass networks
for human pose estimation,” in European Conference on Com-
puter Vision, Springer, 2016.

X. Chu, W. Yang, W. Ouyang, C. Ma, A. L. Yuille, and
X. Wang, “Multi-context attention for human pose estima-
tion,” in 2017 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), Honolulu, HI, USA, July 2017.

D. Yu, K. Su, J. Sun, and C. Wang, “Multi-person pose estima-
tion for pose tracking with enhanced cascaded pyramid net-
work,” Proceedings of the European Conference on Computer
Vision (ECCV) Workshops, 2018Springer, 2018.

B. Cheng, B. Xiao, J. Wang, H. Shi, T. S. Huang, and L. Zhang,
“Higherhrnet: scale-aware representation learning for bottom-
up human pose estimation,” in 2020 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), Seattle,
WA, USA, June 2020.

7. Wang, B. Yin, Q. Peng et al., “Rethinking on multi-stage
networks for human pose estimation,” 2019, https://arxiv
.org/abs/1901.00148.

B. M. H. Romeny, Geometry-Driven Diffusion in Computer
Vision, vol. 1, Springer Science & Business Media, 2013.
S.-W. Kim, S.-W. Kim, H.-K. Kook, J.-Y. Sun, M.-C. Kang, and
S.-J. Ko, “Parallel feature pyramid network for object detec-
tion,” in Proceedings of the European Conference on Computer
Vision (ECCV), Munich, Germany, 2018.

(28]

Wireless Communications and Mobile Computing

C.-F. Chen, Q. Fan, N. Mallinar, T. Sercu, and R. Feris, “Big-lit-
tle net: an efficient multi-scale feature representation for visual
and speech recognition,” 2018, https://arxiv.org/1807.03848.

[29] L.-C. Chen, G. Papandreou, F. Schroff, and H. Adam,

(30]

(31]

(32]

(35]

(36]

(37]

(38]

[41]

(42]

[43]

[44]

(45]

“Rethinking atrous convolution for semantic image segmen-
tation,” 2017, https://arxiv.org/abs/1706.05587.

L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L.
Yuille, “DeepLab: semantic image segmentation with deep
convolutional nets, atrous convolution, and fully connected
CRFs,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 40, no. 4, pp. 834-848, 2017.

G. K. Dziugaite, D. M. Roy, and Z. Ghahramani, “Training
generative neural networks via maximum mean discrepancy
optimization,” 2015, https://arxiv.org/abs/1505.03906.

J.-Y. Zhu, P. Krihenbiihl, E. Shechtman, and A. A. Efros,
“Generative visual manipulation on the natural image mani-
fold,”  European  Conference on  Computer  Vision,
2016Springer, 2016.

L. Ma, X. Jia, Q. Sun, B. Schiele, T. Tuytelaars, and L. Van
Gool, “Pose guided person image generation,” 2017, https://
arxiv.org/abs/1705.09368.

X. Peng, Z. Tang, F. Yang, R. S. Feris, and D. Metaxas, “Jointly
optimize data augmentation and network training: adversarial
data augmentation in human pose estimation,” in 2018 IEEE/
CVF Conference on Computer Vision and Pattern Recognition,
Salt Lake City, UT, USA, June 2018.

I. Goodfellow, I. Goodfellow, J. Pouget-Abadie et al., “Genera-
tive adversarial nets,” Advances in Neural Information Process-
ing Systems, vol. 27, 2014.

A. Radford, L. Metz, and S. Chintala, “Unsupervised represen-
tation learning with deep convolutional generative adversarial
networks,” 2015, https://arxiv.org/abs/1511.06434.

M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein genera-
tive adversarial networks,” International conference on
machine learning, 2017PMLR, 2017.

I. Gulrajani, I Gulrajani, F. Ahmed, M. Arjovsky,
V. Dumoulin, and A. C. Courville, “Improved training of Was-
serstein GANs,” NIPS, 2017.

D. Berthelot, T. Schumm, and L. Metz, “BEGAN: boundary
equilibrium generative adversarial networks,” 2017, https://
arxiv.org/abs/1703.10717.

T. Karras, T. Aila, S. Laine, and J. Lehtinen, “Progressive grow-
ing of gans for improved quality, stability, and variation,”
2017, https://arxiv.org/abs/1710.10196.

H. Zhang, H. Zhang, I. Goodfellow, D. Metaxas, and A. Odena,
“Self-attention generative adversarial networks,” International
conference on machine learning, 2019PMLR, 2019.

M. Mirza and S. Osindero, “Conditional generative adversarial
nets,” 2014, https://arxiv.org/abs/1411.1784.

J. Xu, M. Zhang, E. A. Turk, P. E. Grant, P. Golland, and
E. Adalsteinsson, “3D fetal pose estimation with adaptive var-
iance and conditional generative adversarial network,” in Med-
ical Ultrasound, and Preterm, Perinatal and Paediatric Image
Analysis, pp. 201-210, Springer, 2020.

Y. Ji, H. Zhang, and Q. M. Jonathan Wu, “Saliency detection
via conditional adversarial image-to-image network,” Neuro-
computing, vol. 316, pp. 357-368, 2018.

M. Rezaei, H. Yang, K. Harmuth, and C. Meinel, “Conditional
generative adversarial refinement networks for unbalanced
medical image semantic segmentation,” in 2019 IEEE Winter


https://arxiv.org/abs/1901.00148
https://arxiv.org/abs/1901.00148
https://arxiv.org/1807.03848
https://arxiv.org/abs/1706.05587
https://arxiv.org/abs/1505.03906
https://arxiv.org/abs/1705.09368
https://arxiv.org/abs/1705.09368
https://arxiv.org/abs/1511.06434
https://arxiv.org/abs/1703.10717
https://arxiv.org/abs/1703.10717
https://arxiv.org/abs/1710.10196
https://arxiv.org/abs/1411.1784

Wireless Communications and Mobile Computing

[46]

(47]

(48]

(49]

(51]

(52]

(53]

(54]

(55]

(56]

(57]

(58]

(59]

[60]

[61]

Conference on Applications of Computer Vision (WACV), Wai-
koloa, HI, USA, January 2019.

Z. Yuan, H. Li, J. Liu, and J. Luo, “Multiview scene image
inpainting based on conditional generative adversarial net-
works,” IEEE Transactions on Intelligent Vehicles, vol. 5,
no. 2, pp. 314-323, 2019.

P. Mishra and I. Herrmann, “GAN meets chemometrics: seg-
menting spectral images with pixel2pixel image translation
with conditional generative adversarial networks,” Chemo-
metrics and Intelligent Laboratory Systems, vol. 215, article
104362, 2021.

F. Yu, V. Koltun, and T. Funkhouser, “Dilated residual net-
works,” in 2017 IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), Honolulu, HI, USA, July 2017.

X. Mao, Q. Li, H. Xie, R. Y. K. Lau, Z. Wang, and S. P. Smolley,
“Least squares generative adversarial networks,” in 2017 IEEE
International Conference on Computer Vision (ICCV), Venice,
Italy, October 2017.

I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and
A. Courville, “Improved training of Wasserstein GANs,”
2017, https://arxiv.org/abs/1704.00028.

M. Andriluka, L. Pishchulin, P. Gehler, and B. Schiele, “2D
human pose estimation: new benchmark and state of the art
analysis,” in 2014 IEEE Conference on Computer Vision and
Pattern Recognition, Columbus, OH, USA, June 2014.

T.-Y. Lin, M. Maire, S. Belongie et al., “Microsoft COCO: com-
mon objects in context,” European Conference on Computer
Vision, 2014Springer, 2014.

Z. Chen, X. Qin, C. Yang, and L. Zhang, “Composite localiza-
tion for human pose estimation,” 2021, https://arxiv.org/abs/
2105.07245.

F. Zhang, X. Zhu, H. Dai, M. Ye, and C. Zhu, “Distribution-
aware coordinate representation for human pose estimation,”
in 2020 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), Seattle, WA, USA, June 2020.

A. Bulat, J. Kossaifi, G. Tzimiropoulos, and M. Pantic,
“Toward fast and accurate human pose estimation via soft-
gated skip connections,” in 2020 15th IEEE International Con-
ference on Automatic Face and Gesture Recognition (FG 2020),
Buenos Aires, Argentina, November 2020.

W. McNally, K. Vats, A. Wong, and J. McPhee, “EvoPose2D:
pushing the boundaries of 2D human pose estimation using
neuroevolution,” 2020, https://arxiv.org/abs/2011.08446.

B. Xiao, H. Wu, and Y. Wei, “Simple baselines for human pose
estimation and tracking,” Proceedings of the European confer-
ence on computer vision (ECCV), Springer, 2018.

J. Carreira, P. Agrawal, K. Fragkiadaki, and J. Malik, “Human
pose estimation with iterative error feedback,” in 2016 IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), Las Vegas, NV, USA, June 2016.

P. Hu and D. Ramanan, “Bottom-up and top-down reasoning
with hierarchical rectified Gaussians,” in 2016 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), Las
Vegas, NV, USA, June 2016.

W. Yang, S. Li, W. Ouyang, H. Li, and X. Wang, “Learning fea-
ture pyramids for human pose estimation,” in 2017 IEEE Inter-
national Conference on Computer Vision (ICCV), Venice, Italy,
October 2017.

L. Ke, M.-C. Chang, H. Qi, and S. Lyu, “Multi-scale structure-
aware network for human pose estimation,” Proceedings of the

[62]

(63]

(64]

[65]

[66]

[67]

(68]

(69]

[70]

17

european conference on computer vision (ECCV), Springer,
2018.

W. Tang, P. Yu, and Y. Wu, “Deeply learned compositional
models for human pose estimation,” Proceedings of the Euro-
pean conference on computer vision (ECCV), Springer, 2018.

T. Sekii, “Pose proposal networks,” Proceedings of the Euro-
pean Conference on Computer Vision (ECCV), Springer, 2018.

F. Zhang, X. Zhu, and M. Ye, “Fast human pose estimation,” in
2019 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), Long Beach, CA, USA, June 2019.

M. Fieraru, A. Khoreva, L. Pishchulin, and B. Schiele, “Learn-
ing to refine human pose estimation,” in 2018 IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition
Workshops (CVPRW), Salt Lake City, UT, USA, June 2018.

U. Igbal and J. Gall, “Multi-person pose estimation with local
joint-to-person associations,” European Conference on Com-
puter Vision, 2016Springer, 2016.

E. Levinkov, J. Uhrig, S. Tang et al., “Joint graph decomposi-
tion & node labeling: problem, algorithms, applications,” in
2017 IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), Honolulu, HI, USA, July 2017.

E. Insafutdinov, M. Andriluka, L. Pishchulin et al., “ArtTrack:
articulated multi-person tracking in the wild,” in 2017 IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), Honolulu, HI, USA, July 2017.

Y. Chen, Z. Wang, Y. Peng, Z. Zhang, G. Yu, and J. Sun, “Cas-
caded pyramid network for multi-person pose estimation,” in
2018 IEEE/CVF Conference on Computer Vision and Pattern
Recognition, Salt Lake City, UT, USA, June 2018.

G. Papandreou, T. Zhu, N. Kanazawa et al., “Towards accurate
multi-person pose estimation in the wild,” in 2017 IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
Honolulu, HI, USA, July 2017.


https://arxiv.org/abs/1704.00028
https://arxiv.org/abs/2105.07245
https://arxiv.org/abs/2105.07245
https://arxiv.org/abs/2011.08446

	A Structure-Aware Adversarial Framework with the Keypoint Biorientation Field for Multiperson Pose Estimation
	1. Introduction
	2. Related Work
	2.1. Human Pose Estimation
	2.2. Multiscale Feature Extraction
	2.3. Generative Adversarial Networks

	3. Method
	3.1. Multiscale Feature Representation for Joint Heatmaps and KBOF
	3.1.1. Network Architecture
	3.1.2. Confidence Heatmap of Keypoint and KBOF Detection
	3.1.3. Confidence Maps for Keypoint Detection
	3.1.4. Keypoint Biorientation Field for Keypoint Association

	3.2. Generator
	3.3. Discriminator
	3.4. Adversarial Training

	4. Experiments
	4.1. Datasets
	4.2. Evaluation Metrics
	4.3. Experimental Settings

	5. Result and Discussion
	5.1. Results on the MPII Dataset
	5.2. Results on the COCO Dataset
	5.3. Comparison Analysis of the Number of Subnets
	5.4. Ablation Experiment

	6. Conclusion
	Data Availability
	Conflicts of Interest
	Acknowledgments
	Supplementary Materials

