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A spatially polarized time-frequency distribution (SPTFD) based on dual-polarized double-fed antenna arrays is adapted to deal
with polarization-unstable signals. A linear time-frequency (TF) representation was used for an instantaneous frequency (IF)
estimate, primarily due to its simplicity and immunity to cross-interference. Using a set of linear TF transformations using
Gaussian windows and Fourier oscillation kernels, the IF estimated window widths of multiple unstable signals are obtained.
This paper introduces a new method for estimating the direction of arrival (DOA) of polarized waves using adaptive linear
time-frequency transforms. In this paper, a narrowband far-field point source on the receiving array is analyzed. The source
signal is split into two orthogonally polarized components. The optimal window is determined by the first derivative of the IF;
for this purpose, we take a simple algorithm for solving the derivative and optimize it. In developing TF-adaptive and fully
automatic TF display technology, the first method is to use the time-adaptive window for minimizing the IF estimate mean
square error (MSE) sum at each moment, while the second procedure is to adjust according to time and frequency and
minimize estimate MSE sum at each position in the TF region. Due to its combination with signal polarization, the spatial
time-frequency distribution (STFD) gains more freedom and thus perfects the phonon space estimation of noise and signal.
On the SPTFD platform, polarized time-frequency multiple signal classification (PTF-MUSIC) is used for the estimation of
signal direction of arrival, which outperforms conventional time-frequency MUSIC. Using the example of a synthesized signal,
this method outperforms conventional techniques in DOA estimation.

1. Introduction

In many aspects of technology, we are studying changes in
the spectrum. Descriptive information for such a signal can
be obtained from a time-frequency representation (TFR),
which projects the signal into the time-frequency region,
exposing momentary changes in its spectral content [1]. In
recent decades, various TFRs have been developed and used
in a wide range of applications [2, 3]. These techniques have
taken advantage of signal sparseness inside TF regions [4].
Time-frequency analysis is an effective method for DOA
estimation of unstable signals. To improve the performance
of DOA, [5–7] propose new DOA estimation methods.

In TFR, the linear transform can be viewed as a window
to the Fourier transform; prominent examples of this type
are the short-time Fourier transform (STFT) and the S trans-
form (ST) [8]. Cohen’s TF distribution is based on a gener-

alized instantaneous autocorrelation function. During the
analysis, these signals can generate unwanted error signals,
which can be hidden, so it is necessary to have a suitable core
[9]. The instantaneous frequency (IF) is the most fundamen-
tal concept in TF, reflecting the instantaneous change rate of
the signal phase function, a simple and well-known instanta-
neous frequency estimation method by the maxima location
of the TFR [10]. To accurately express the frequency law of
the signal, TFR is generally required according to the design
of the signal because no TFR can optimize all signals like all
fixed graphs. Therefore, much research has been devoted to
adaptive TFRs whose parameters can be changed with the
signal without being disturbed by the user. In this case,
energy concentration measurement (ECM) is widely used
to determine the energy distribution over the signal compo-
nents to automatically select good TFR criteria [11, 12]. A
multiview approach to adaptive TFR is to build multiple
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TFRs and combine them according to predetermined cri-
teria [13–15].

The accuracy of IF is a primary measure of TF, so we can
use it to measure the statistical performance of IF to get a
more accurate TFR. In several works [16, 17], the accuracy
of IF estimation for TFR was investigated, where the accu-
racy of the estimate depends on the width of the window
and optimizing for this requires optimizing for unknown
first derivatives of information. Because of this limitation,
this paper uses the intersection of confidence intervals
(ICI) to approximate the optimal width in [18]. In [19], a
three-stage adaptive algorithm was proposed to reduce the
computational complexity required to obtain the linear
TFR improved in [20]. However, the optimal width depends
on the statistical performance of the IF estimation. [21] uti-
lized a new general formula that describes the error and var-
iation of IF estimation in noisy environments, resulting in
the optimal window width for linear TFR. Meanwhile, in
[22, 23], polarization information is adopted, which further
improves the estimation performance of DOA. Then, an
adaptive method based on the combination of polarization
and time-frequency domain information is proposed.

In Materials and Methods, we will discuss the time-
frequency distribution patterns of spatial polarization and
two automation linear TFRs. The one utilizes a time-
adaptive window for minimizing the MSE sum values. In
another TFR, a TF-adaptive window is used to minimize
the location of the estimated MSE in the TF region. The part
also introduces the polarized time-frequency MUSIC. The
method in this paper is evaluated in the Results and Discus-
sion. Through numerical calculation, it is proved that the
procedure is superior to general and complex algorithms.

2. Materials and Methods

2.1. Spatial Polarimetric Time-Frequency Distributions. In
Figure 1, a electromagnetic wave incident into the array
can be described as

E tð Þ = Eθ tð Þθ + Eϕ tð Þϕ = Eθ tð Þ cos θð Þ cos ϕð Þ½
− Eϕ tð Þ sin ϕð Þ�x + Eθ tð Þ cos θð Þ sin ϕð Þ½
+ Eϕ tð Þ cos ϕð Þ�y + Eθ tð Þ sin θð Þz,

ð1Þ

where ϕ and θ are the spherical azimuth and elevation unit
vectors observed by the source. The x, y, and z are unit vec-
tors along the x, y, and z directions, respectively. For gener-
ality and simplicity, we assumed that the signal is located in
the x − y plane and the array is in the y − z plane. Accord-
ingly θ = 90° (θ = −z),

E tð Þ = −Eϕ tð Þ sin ϕð Þx + Eϕ tð Þ cos ϕð Þy + Eθ tð Þz: ð2Þ

We express sðtÞ in terms of the amplitude of the source
measured by the receiving reference sensor, which has a
polarization angle γ ∈ ½0, π/2� and a polarization phase dif-
ference η ∈ ð−π, π�. s½v�ðtÞ and s½h�ðtÞ are the source horizon-
tal and vertical polarization part components, which can be
described by spherical fields, EθðtÞ and EϕðtÞ, as

Eθ tð Þ = s v½ � tð Þ = s tð Þ cos γð Þ,
Eϕ tð Þ = s h½ � tð Þ = s tð Þ sin γð Þejη:

ð3Þ

A signal is linearly polarized if η = 0° or η = 180°. Replac-
ing (3) into (2) gets

E tð Þ = s tð Þ −cos γð Þ sin ϕð Þx + cos ϕð Þ sin γð Þejηy + cos γð Þz� �
:

ð4Þ

We assume that N signals enter on the array of M dual-
polarized antennas. The distance between sensors is d, and d
is not more than λ/2 for ensuring that there is no array
ambiguity. In another word, the expected direction of the
incident signal is only one. When d is λ/2, there are high
array sensor utilization rate and effect guarantee. The nth
source vertical and horizontal components are

s v½ �n tð Þ = sn tð Þ cos γnð Þ ≜ cn1sn tð Þ,
s h½ �
n tð Þ = sn tð Þ sin γnð Þejηn ≜ cn2sn tð Þ,

ð5Þ

where the parameters cn1 = cos ðγnÞ and cn2 = sin ðγnÞejηn
represent the vertical and horizontal polarization coeffi-
cients. The signal entering on the mth dual-polarized
antenna is

y
m
tð Þ = y v½ �

m tð Þ, y h½ �
m tð Þ

h iT
= 〠

N

n=1
a v½ �
nmEn ⋅ z, a h½ �

nmEn ⋅ y
h iT

= 〠
N

n=1
a v½ �
nms

v½ �
n tð Þ, a h½ �

nms
h½ �
n tð Þ cos ϕnð Þ

h iT
,

ð6Þ

where “ ⋅ ” denotes the dot product, En represents the nth

source electric field vector, and a½v�nm and a½h�nm, respectively,
denote the mth elements of the vertically and horizontally
polarized array vectors, a½v�ðϕnÞ and a½h�ðϕnÞ. We assume
that both a½v�ðϕÞ and a½h�ðϕÞ are known and normalized

(ka½v�ðϕÞk2 = ka½h�ðϕÞk2 =M) and the array has been cali-
brated. It should be pointed out that in the array calibration
of the relevant area, the cos ðϕnÞ term in the horizontally
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Figure 1: Dual-polarized array.
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polarized array manifold can be introduced, so it will not be
considered. Then, the above equation is simplified as

y
m
tð Þ = a v½ �

nms
v½ �
n tð Þ, a h½ �

nms
h½ �
n tð Þ

h iT
= sn tð Þ a v½ �

nm a h½ �
nm

h iT
⊙ cn1 cn2½ �T

� �
≜ sn tð Þanm ⊙ cn,

ð7Þ

where the vector cn = ½cn1, cn2�T = ½cos ðγnÞ, sin ðγnÞejηn �T is
the nth source polarization signature.

For a dual-polarized sensor, we define the general short
Fourier transform (GSFT) as

Dx i½ � t, fð Þ =
ð+∞
−∞

w t − τ, σ t, fð Þð Þx i½ � tð Þe−j2πf τdτ, ð8Þ

where the Gaussian window is defined as

w t, σ t, fð Þð Þ = 1ffiffiffiffiffiffi
2π

p
σ t, fð Þ

exp
−t2

2σ2 t, fð Þ
� �

: ð9Þ

Formulas (1)–(9) correspond to the single dual-
polarization sensor case. With an M-sensor array, for each
polarization i, i = v or h, the data vector is

x i½ � tð Þ = x i½ �
1 tð Þ, x i½ �

2 tð Þ,⋯, x i½ �
M tð Þ

h iT
= y i½ � tð Þ + n i½ � tð Þ =A i½ � Φð Þs i½ � tð Þ + n i½ � tð Þ:

ð10Þ

Using formula (10), the case of extending the polariza-
tion time-frequency distribution of a single sensor to multi-
ple sensors is obtained. Instead of the scalar TFD of (8), we
define the polarization STFD matrix of the data vector

Dx i½ � t, fð Þ =
ð+∞
−∞

w t − τ, σ t, fð Þð Þx i½ � tð Þe−j2πf τdτ, ð11Þ

which, for the no-noise case, can be represented as

Dx i½ � t, fð Þ =A i½ � Φð ÞDs i½ � t, fð Þ A i½ � Φð Þ
� �H

: ð12Þ

According to (10), the double polarization data vectors
can be built as follows:

x tð Þ =
x v½ � tð Þ

x h½ � tð Þ

24 35 =
A v½ � Φð Þ 0

0 A h½ � Φð Þ

24 35 s v½ � tð Þ

s h½ � tð Þ

24 35
+

n v½ � tð Þ

n h½ � tð Þ

24 35 =
A v½ � Φð Þ 0

0 A h½ � Φð Þ

24 35 Q v½ �

Q h½ �

" #
s tð Þ

+
n v½ � tð Þ
n h½ � tð Þ

24 35 = B Φð ÞQs tð Þ + n tð Þ,

ð13Þ

where

B Φð Þ =
A v½ � Φð Þ 0

0 A h½ � Φð Þ

" #
, ð14Þ

represents block diagonal, and

Q =
Q v½ �

Q h½ �

" #
, ð15Þ

represents the signal polarization characteristic vector,
where

q v½ � = cos γ1ð Þ,⋯, cos γNð Þ½ �T,
Q v½ � = diag q v½ �

� �
,

ð16Þ

q h½ � = sin γ1ð Þejη1 ,⋯, sin γNð ÞejηN� �T,
Q h½ � = diag q h½ �

� �
:

ð17Þ

Correspondingly,

B Φð ÞQ =
a v½ � ϕ1ð Þ cos γ1ð Þ ⋯ a v½ � ϕnð Þ cos γNð Þ

a h½ � ϕ1ð Þ sin γ1ð Þejη1 ⋯ a h½ � ϕnð Þ sin γNð ÞejηN

24 35
= ~a ϕ1ð Þ ⋯ ~a ϕNð Þ½ �:

ð18Þ

The matrix (18) can be considered as the extended mix-
ing matrix, within ~aðϕnÞ denoting the nth signal joint spatial
polarization characteristic. For the nth signal, the extended
spatial polarization characteristic vector is

~a ϕnð Þ =
a v½ � ϕnð Þ cos γnð Þ

a h½ � ϕnð Þ sin γnð Þejηn

" #
: ð19Þ

Obviously, the double polarization array can double the
spatial dimension of the vector.

The polarization, spatiality, and time-frequency charac-
teristics can be combined with the source signal incident
on the receiver array. The STFD of a dual-polarization data
vector xðtÞ can be as follows:

Dx t, fð Þ =
ð+∞
−∞

w t − τ, σ t, fð Þð Þx tð Þe−j2πf τdτ: ð20Þ

Dxðt, f Þ is called the SPTFD matrix. This matrix is a gen-
eral method that can solve some common problems in array
processing, as described in the following.

When the noise effect is neglectful, the SPTFD matrix is
connected with the signal TFD matrix by

Dxx t, fð Þ = B Φð ÞQDs t, fð ÞQHBH Φð Þ: ð21Þ
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Firstly, the time-frequency points are selected by the
algorithm in the next section to construct the matrix. Then,
eigenvectors are obtained by eigendecomposition of formula
(21). Finally, the noise subspace Un constructed by eigenvec-
tors is used for subsequent spatial spectrum estimation.

2.2. Three-Step Method for IF Estimation. Abdoush et al. [21]
gave a general expression relating the error and variance of
the IF estimate to the smoothness of the observation window
and the IF. The correct IF estimation demands a data-based
approach to choose at least reasonable window width.
Therefore, the paper summarizes and extends the “low com-
plexity” described in [19, 20]; the method includes three pro-
cesses, as shown in Figure 2, which will be explained in this
section. On this basis, this paper proposes a new linear TFR
method based on estimation error and variance. The one
uses a time-varying window for minimizing the MSE sum
value estimated by IF at each moment, while in the latter
TFR, the TF value is adjustable to minimize the MSE of each
point in the TF region.

For practical application, we will limit ourselves to a dis-
crete version of GSFT, which we define as

Dx kt , kf
� �

= 〠
N−1

n=0
x l½ �w kt − l, σ kt , kf

� �� �
e−j2πkf l/Nð Þ, ð22Þ

where x½kt� represents a length Kt discrete time series corre-
sponding to xðktTsÞ by sampling interval Ts and kf = −Kt/
2,⋯, Kt/2 − 1 denoting frequency index.

2.2.1. Preliminary TFR. For any TFR, the optimized formula
(22) requires an understanding of the IF. So, in adaptation,
the first step is to create a preliminary TFR (PTFR) that
roughly estimates the IF orbit. Although this stage can toler-
ate minor estimation errors, however, more significant esti-
mation errors are propagated to the after step, so the final
IF estimation accuracy decreases. To this end, Pei and
Huang in [20] adopted an STFT of optimizing window
width according to the ECM. While it performed well, when
we used different multicomponent signals to detect this
ECM, we found that the approach was beneficial for a noisy
element and detrimental for a rapidly changing part. That is,

in TFR, only quasistable components are selected. In this
paper, we design an STFT based on the standard deviation
of conventional rates based on PTFR. The rate is defined
as the ratio of the effectivity bandwidth Beff to the effectivity
duration Teff of the signal being analyzed.

ν0 =
Beff
Teff

=
1
N

∑Kt /2−1
k=−Kt /2

k − k0ð Þ2 X k½ �j j2

∑Kt−1
kt=0

kt − kt0ð Þ2 x kt½ �j j2
" #1/2

, ð23Þ

where X½k� represents the discrete Fourier transform of x½kt�:

k0 =
∑Kt /2−1

k=−Kt /2
k X k½ �j j2

∑N/2−1
k=−Kt /2 X k½ �j j2

,

kt0 =
∑Kt−1

kt=0
kt x kt½ �j j2

∑Kt−1
kt=0

x kt½ �j j2
:

ð24Þ

If the normalized power spectral density (that is, the nor-
malized unit) of a signal is regarded as a function of proba-
bility mass, the second central moment of the signal B2

eff is
the second central moment of its frequency, Beff is its stan-
dard deviation, and it represents the bandwidth of the signal.
We can think of Teff as the time width of a signal, as before.
In this way, the conventional ratio ν0 can be understood as
the linear chirp scanning the frequency range Beff through-
out Teff . We use the regular rate to determine the overall
constant change rate of the signal IF regularity, which can
be used as a fixed observation window for the PTFR to set
the standard deviation of the STFT according to σ =
ð3/7Þ1/4/ ffiffiffiffiffiffiffiffiffiffi

2πν0
p

.

2.2.2. IF Rate Estimation. In stage 2 of the adaptive algo-
rithm, we get a rough estimate of IFR (IFR: IF rate, that is
first derivative of IF). For this end, the IF is estimated by
the main trajectory of PTFR. On this basis, the IFR is
obtained by the IF first derivative. If the signal is multicom-
ponent, each component must be found before differentiat-
ing each IF ridge. Here, the IF component separation is
implemented according to the image processing algorithm
described in [24]. It involves converting the TFR to a binary
image and then performing a component connection pro-
cess, in the case of TFR longer than a predetermined thresh-
old, according to the adjacent connection criterion,
extracting the connection peak from the TFR. This approach
does not require prior knowledge of the relevant compo-
nents but instead assumes that the IF ridge can be distin-
guishable in the TFR, which are many real-world signals,
including most signals [25–27].

For the derivation, [19] adopted the conventional differ-
ence operator. However, we know that this method is very
sensitive to identifying discrete signals with noise. Therefore,
the signal-to-noise ratio of the differential signal is usually
lower than that of the original signal. Thus, in [20], the dif-
ference operator is replaced by principal component analy-
sis, which executes eigenvalue decomposition for the 2 L
estimations neighbouring f̂ I ½kt� to approximate f I ′½kt�. In

Construct a PTFR

Extract the IF components and estimate the
corresponding IFR

Use the IFRs to adjust the window size of a
final adaptive TFR

Figure 2: Flowchart of adaptive TFRs based on linear TF
transforms.
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this article, we use a more straightforward way to find first-
order differentials. First, the estimates f̂ I ½kt� are smoothed
according to

êf I kt½ � = 1
2L + 1

〠
kt+L

kt−L
f̂ I kt½ �, kt = L,⋯, Kt − L, ð25Þ

where L represents a positive integer. The above smoother
represents a simple average moving filter used to improve
the SNR of the differential signal [28]. After above smooth-
ing the signal, the IFR is estimated using a traditional differ-
ence operator. As L increases, the degree of noise reduction
increases, but the attenuation of the differential amplitude
also becomes more remarkable. In addition, filtering the IF
estimates according to (25) can help exclude possible out-
liers before derivation. Still, the accuracy of this method is
limited because there is a certain relation between consecu-
tive sampling errors in TFR [10]. Therefore, be careful when
choosing L. Here, the smoothing width is 11.

2.2.3. Optimizing Window Width. After extracting the IF and
IFR, they can be optimized for appropriate window widths.
At this step, two ways adjust the TFR window width. In
one case, the window width can be set in terms of time or
frequency. For all signals, the primary purpose of this width
optimization is to perform an optimal tradeoff at each
moment or frequency. Therefore, when the window width
is optimal, its cost function is the smallest. Since both adap-
tivity STFT (ASTFT) and ST can be done rapidly with FFT,
the advantage of this method is that its complexity is slight.
On the other hand, you can set a window to change at differ-
ent times and frequencies. Within the TF region, width
adjustment is allowed, and the second method requires more
flexibility; however, since σ½kt , kf � is related to kt and kf , in
(22), GSFT cannot be implemented with FFT.

We design an ASTFT that minimizes the IF estimation
MSE sum at any moment. Because the TFRs generated by
ASTFTs generally do not have crossterms, the TFRs can be
approximated to the TFRs corresponding to the individual
components of the overall signal. In this example, the for-
mula can be generalized to the case of multicomponent sig-
nals with TF regions. That is, with ASTFT, an estimate of the
IF with no offset can be obtained, and the total MSE can be
obtained:

MSEtot kt , σ kt½ �½ � = 〠
Ln

l=1

2πf Il′ kt½ �σ2 kt½ �
� �2

+ 1
	 
5/2

32π5/2σ3 kt½ �C0
, ð26Þ

where Ln represents the signal component number at the
moment instant ktTs and f Il ′½kt� represents the lth single
IF component IFR. The optimal window width is defined
by minimizing MSEtot½kt , σ½kt��, which may be approxi-
mated by

σopt kt½ � ≈ arg minσ kt½ � 〠
Ln

l=1

2π f̂ Il′ kt½ �σ2 kt½ �
� �2

+ 1
	 
5/2

σ3 kt½ � : ð27Þ

Note that MSEtot½kt , σ½kt�� represents the summation of
all functions, each of which is completely convex and has
an overall minimum value on σl½kt�, and there also is an
overall minimum value for MSEtot½kt , σ½kt��. Therefore, it
is contained in the following range:

σopt kt½ � ∈ min σ1 kt½ �,⋯, σLn kt½ �� �
, max σ1 kt½ �,⋯, σLn

kt½ �� �� �
:

ð28Þ

A good approximation of σopt½kt� is obtained in two
steps: first, σl½kt� is found corresponding to the estimated
IFR minimum and maximum; thus, for width between
the above two limits, the optimal candidates depend on
the objective function form (27). The TFR we obtained
is called optimal ASTFT (OASTFT).

To reduce the sum of MSE estimated by IF, the width of
the frequency domain correlation window in ST is opti-
mized. It is required to obtain the 1st- and 2nd-order fre-
quency derivative information of the window widths. Not
knowing the nature of the differential equation, it has to be
designed accordingly, making the method impractical;
therefore, we cannot go on like this.

The previous OASTFT algorithm has achieved a good
balance among the signal components in the TF region,
but it needs to be adjusted more to make it more adaptable.
If the IF ridges can be separated within the TF region, then
the window width of the GSFT can be adjusted individually.
We can roughly estimate the IFs and IFRs, so the problem is
how to defend the standard deviation of a window about the
on-ridge and off-ridge time-frequency points. At IF, the first
and second derivatives of the standard deviation and fre-
quency are 0, and then, window width is optimal. Therefore,
we define a window width interval Δf determined by the fol-
lowing formula on each upper ridge point of the IF compo-
nent according to

σ kt , kf
� �

=
3/7ð Þ1/4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π f̂ Il′ kt½ �

 r , 0 ≤ kf − f̂ Il kt½ �
  ≤ Δf

2
, ð29Þ

whereas outside the section, the window width is achieved
by two-dimensional linear interpolation in [20]. The last
interpolation ensures that the σ½kt , kf � 1st- and 2nd-order

frequency derivatives are close to 0 neighbouring f̂ Il½kt�, so
the width chosen is best for MSE. Also, the coarse IF esti-
mate can be far from its actual value due to noise. Therefore,
preferably, not only the width of (29) is specified for f̂ Il½kt �
but also for adjacent frequencies. In experiments, we found
that several frequency bands are wide enough to obtain
accurate IF estimates. The resulting transformation is
expressed by optimal GSFT (OGSFT).
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The adaptation plan adopted consists of the three phases
mentioned above. Its main work is to realize PTFR, extract
and track IF components, thus obtain the corresponding
IFR value, and realize adaptive TFR. The PTFR designed in
this paper is STFT, and its computational complexity is Oð
N2 log NÞ. The chosen IF component extraction and track-
ing algorithm is presented in [24]; the computational cost
for this analysis procedure is outside the scope of this work.
The final TFR can be a time-adaptive ASTFT or a TF-
adaptive GSFT. OASTFT can be done by FFT. That is,
OASTFT needs to operate on the order of OðN2 log NÞ.
The TF-adaptive GSFT algorithm has high adaptability,
but because the FFT program cannot complete the conver-
sion, it will lead to OðN3Þ level of computational complexity.

2.3. Polarimetric Time-Frequency Music and Spatial
Polarimetric Correlations. For improving the signal spatial
resolution with well-defined time-frequency characteristics,
time-frequency multiple signal classification (TF-MUSIC)
has recently been proposed [29]. This method provides an
essential summary for applying MUSIC to polarization
arrays, which searches for the minimum of the array vector
derived from the SPTFD matrix defined in the combined
space and polarization domains. The advantages of the algo-
rithm mainly include the following two points: the algorithm
integrates polarization information and time-frequency
information to increase the utilization rate of multidimen-
sional information. The algorithm adaptively recognizes
the time-frequency points of autoterms and avoids the trou-
ble of manual selection.

Consider the following spatial signature matrix:

F ϕð Þ = 1ffiffiffiffiffi
M

p
a v½ � ϕð Þ 0

0 a h½ � ϕð Þ

" #
: ð30Þ

Because ka½i�ðϕÞk2 =M, FHðϕÞFðϕÞ represents the iden-
tity matrix. For searching from the spatial and polarization
joint domains, the spatial polarization vector is defined as

f ϕ, cð Þ = F ϕð Þc
F ϕð Þck k = F ϕð Þc, ð31Þ

where the vector c = ½c1 c2�T represents an unknown unit

norm vector of polarization coefficients. In (31), kFðϕÞck =
½cHFHðϕÞFðϕÞc�1/2 = ðcHcÞ1/2 = 1.

The PTF-MUSIC spectrum is provided from the follow-
ing function:

P ϕð Þ = mincfH ϕ, cð ÞUnUH
n f ϕ, cð Þ� �−1

= minccHFH ϕð ÞUnUH
n F ϕð Þc� �−1, ð32Þ

where Un represents the noise subspace from the SPTFD
matrix of (20) utilized the selected time-frequency points.
For DOA estimation, different STFD or SPTFD matrices
can be combined using TF average and joint block diagonal-
ization techniques [29]. Picking these points from regions of

high energy concentration associated with global or local
sources can improve the signal-to-noise ratio and make the
MUSIC algorithm more noise-robust than its traditional
MUSIC counterpart [30]. In (32), by acquiring the smallest
eigenvalue for the matrix FHðϕÞUnUH

n FðϕÞ, this method
can perform simple eigendecomposition on the 2 × 2matrix,
thus avoiding performing a large number of operations in
the polarization region. In this way, the spectrum of PTF-
MUSIC can be described as

P ϕð Þ = λ−1min FH ϕð ÞUnUH
n F ϕð Þ� �

, ð33Þ

where λmin½⋅� represents the smallest eigenvalue solution.
The DOA value of the source is the highest in the spectrum.
Corresponding to each angle ϕn of arrival of N signals, n =
1, 2,⋯,N , each polarized signal parameter can be estimated
as follows:

ĉ ϕkð Þ = vmin FH ϕkð ÞUnUH
n F ϕkð Þ� �

, ð34Þ

where vmin½⋅� represents the eigenvector corresponding to the
minimality eigenvalue λmin½⋅�.

The spatial resolution capability of the array has a lot to
do with the propagation characteristics of the signal [30].
This depends on the manifold vector normalized inner
product of each array. For potential problems involving spa-
tial and polarization dimensions, the extended array mani-
fold ~aðϕÞ is used to define the joint spatial polarization
correlation coefficient between the source nl and nk, that is,

βnl ,nk =
1
M

~aH ϕnk

� �
~a ϕnl

� �
= c∗nk1cnl1β

v½ �
nl ,nk + c∗nk2cnl2β

h½ �
nl ,nk

=
1
M

c∗nk1cnl1 a v½ � ϕnk

� �� �H
a v½ � ϕnl

� ��
+c∗nk2cnl2 a h½ � ϕnk

� �� �H
a h½ � ϕnl

� ��
,

ð35Þ

where β½i�
nl ,nk = ð1/MÞða½i�ðϕnkÞÞ

Ha½i�ðϕnlÞ represents the spa-
tial relation coefficient.

An interesting case phenomenon occurs with the identi-
cal array manifolds between vertically and horizontally
polarization, i.e., a½v�ðϕÞ = a½h�ðϕÞ. For the condition, β½v�

nl ,nk
= β½h�

nl ,nk , and the spatial polarization joint relation coefficient
is the individual spatial polarimetric correlations product:

βnl ,nk = β v½ �
nl ,nkρnl ,nk , ð36Þ

within

ρnl ,nk = cHnkcnl = cos γnl

� �
cos γnk

� �
ej ηnl

−ηnkð Þ

+ sin γnl

� �
sin γnk

� �
,

ð37Þ
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denoting the polarization correlation coefficient. Particu-
larly, for linear polarization, ηnl = ηnk = 0, and (37) reduces
to

ρnl ,nk = cos γnl − γnk

� �
: ð38Þ

Since jρnl ,nk j ≤ 1, the equality holds only when the
polarization states of the two light sources are the same;
compared with the single spatial correlation coefficient,
the spatial polarization correlation coefficient is small.
Due to the polarization diversity dropping correlation value,
the introduced method ρnl ,nk was adopted, which was con-
verted into enhanced signal source identification. In this
way, it is difficult to resolve the two sources with a single
monopolar spatial array manifold a½v�ðϕÞ or a½h�ðϕÞ with an
extended spatial polarized array manifold, defined by ~aðϕÞ,
which can be easily separated. This improvement is more pro-
nounced when the signal spatial relation coefficient is large,
but the individual polarization correlations are low.

3. Results and Discussion

This paper focuses on the improvement of the adaptive
time-frequency analysis algorithm, so the polarization
parameters are assumed to be known prior parameters in
the simulation process. The results of the three-step adaptive
time-frequency analysis are analyzed by simulation. Simula-
tion conditions are as follows: the signal component 1 nor-
malized frequency is from 0.15 to 0.1; the signal
component 2 normalized frequency is from 0.2 to 0.4; the
number of sampling points is 1024; the SNR is 0 dB. The
simulation results are shown in Figure 3. The black asterisk
line in the figure represents the truth value; the red box line
represents the estimated result. It can be seen that the algo-
rithm can accurately estimate the instantaneous frequency of

the signal. It is possible to select time-frequency points to
construct the spatially polarized time-frequency distribution
matrix. Then, the spatial spectrum estimation algorithm is
simulated and analyzed under the following conditions: the
normalized frequency of the two signal components is the
same as before; the incidence angles are 20 degrees and 40
degrees, respectively. The number of snapshots is 512; the
SNR is 0 dB. Simulation results of spatial spectrum estima-
tion of polarization time-frequency MUSIC algorithm based
on adaptive time-frequency analysis algorithm are shown in
Figure 4. The blue triangle curve is the spatial spectrum esti-
mation result of signal component 1. The green circle curve
is the result of spatial spectrum estimation of signal compo-
nent 2. It can be seen from the marked DOA estimation
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results of the figure that the algorithm can accurately distin-
guish and estimate the angle of the incident signal.

Finally, the performance of the proposed algorithm is
simulated and analyzed. The relationship between RMSE
and SNR and snapshot number is analyzed, and the time-
frequency MUSIC algorithm based on traditional time-
frequency analysis is compared. The simulation analysis
conditions of RMSE and SNR are as follows: the normalized
frequency and incident angle of the two signals are the same
as before; the number of snapshots is fixed at 512. The SNR
increased from -11 dB to 15dB with a step size of 1 dB. The
simulation results are shown in Figure 5. In the figure, the
black star curve is the estimation result of the proposed algo-
rithm, and the red circle curve is the result of the traditional
algorithm. The results show that the RMSE of both methods

decreases in the case of SNR increasing, and the proposed
algorithm is significantly better than the traditional algo-
rithm. The effect is more evident at low SNR. At about
0 dB, there is still about 0.2 degree of improvement. The sim-
ulation analysis conditions of RMSE and snapshot number
are as follows: the normalized frequency and incident angle
of the two signals are the same as before; the SNR is fixed
at 0 dB; the number of snapshots increases gradually from
64 to 1024, taking the whole power of 2. The simulation
results are shown in Figure 6. In the figure, the black star
curve is the estimation result of the proposed algorithm,
and the red circle curve is the result of the traditional algo-
rithm. The results show that the RMSE of both methods
decreases in the case of snapshot number increasing, and
the proposed algorithm is obviously better than the tradi-
tional algorithm. When the number of snapshots is low,
due to the small number of samples, the results of the two
algorithms are relatively close, but the proposed algorithm
is still better than the traditional algorithm. As the number
of snapshots increases, the RMSE of the proposed algorithm
decreases rapidly compared with the traditional algorithm.
In practice, considering the actual finite length received data,
the spatially polarized time-frequency distribution matrix is
estimated according to the received data obtained by many
snapshot number. As the snapshot number increases, the
matrix estimation is more accurate. After the eigendecom-
position, the noise subspace estimation is more accurate,
thus improving DOA estimation performance.

Additionally, the relationships between the estimation
success probability and SNR and snapshot number are ana-
lyzed, and the time-frequency MUSIC algorithm based on
traditional time-frequency analysis is compared. The simu-
lation analysis conditions of the estimation success probabil-
ity and SNR are as follows: the normalized frequency and
incident angle of the two signals are the same as before;
the number of snapshots is fixed at 512. The SNR increased
from -11 dB to 5 dB with a step size of 1 dB. When the esti-
mation error is less than 1.5 degrees, the estimation is judged
to be successful. The simulation results are shown in
Figure 7. In the figure, the black star curve is the estimation
result of the proposed algorithm, and the red circle curve is
the result of the traditional algorithm. The results show that
the estimation success probability of both methods increases
with SNR increasing, and the proposed algorithm is signifi-
cantly better than the traditional algorithm. The improve-
ment of the estimation success probability is more evident
at low SNR. The simulation analysis conditions of the esti-
mation success probability and the snapshot number are as
follows: the normalized frequency and incident angle of the
two signals are the same as before; the SNR is fixed at
-2 dB; the number of snapshots increases gradually from 64
to 1024, taking the whole power of 2. When the estimation
error is less than 1.5 degrees, the estimation is judged to be
successful. The simulation results are shown in Figure 8. In
the figure, the black star curve is the estimation result of
the proposed algorithm, and the red circle curve is the result
of the traditional algorithm. The results show that the esti-
mation success probability of both methods increases with
snapshot number increasing, and the proposed algorithm
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is obviously better than the traditional algorithm. When the
number of snapshots is low, due to the small number of
samples, the results of the two algorithms are general, but
the proposed algorithm is still better than the traditional
algorithm. As the number of snapshots increases, the estima-
tion success probability of the proposed algorithm increases
rapidly compared with the traditional algorithm. From
many aspects, the performance of the proposed algorithm
is obviously due to the traditional algorithm. The polariza-
tion spatial time-frequency DOA estimation algorithm com-
bines the three-step adaptive time-frequency analysis
algorithm to achieve good results.

4. Conclusions

This paper introduces a new method for estimating the
direction of arrival of polarized waves using time-
frequency adaptive linear time-frequency transforms. A lin-
ear TFR was used as an IF estimate, primarily due to its sim-
plicity and immunity to cross-interference. The optimal
window relies on the IF 1st-order derivative. Therefore, a
simple algorithm is used for deriving the derivative and opti-
mizing it accordingly. Due to its combination with signal
polarization, STFD gains more freedom and thus promotes
the estimation of the signal and noise phonon space. On
the SPTFD platform, PTF-MUSIC is used for the estimation
of signal DOA, which outperforms conventional time-
frequency MUSIC. Through the analysis of the simulation
results in the previous section, it is proved that the proposed
algorithm is superior to the traditional algorithm in many
aspects. Compared with the traditional algorithm, the
improvement is more significant.
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