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In sensor networks, UAVs are often introduced to assist data collection tasks. UAVs can operate as data ferry nodes, connecting
distributed areas that are separated from each other. This paper proposes a data collection method for distributed wireless sensor
networks based on UAV and introduces the idea of edge computing in it. In the single-hop transmission scenario, the K-means++
clustering method is used for sensor node clustering and cluster head election in the initial state. In the next rounds of data
collection, UAV is used to assist in the election of new cluster heads and data collection tasks, taking into account the relative
distance and the relative remaining energy relationship of the sensor nodes in their clusters. In addition, reasonable priorities
are set for some nodes that have never been elected in the previous rounds and for the dead nodes. In the multihop
transmission scenarios, for nodes that cannot deliver directly, the optimal relay node is selected for routing by
comprehensively considering factors such as transmission angle, transmission distance, and remaining energy of the node in
each cluster. The method proposed in this paper coordinates the overall energy consumption of sensor nodes in the
environmental monitoring area, delays the death time of key sensor nodes, and extends the network lifetime. At the same time,
an improved ACO is used to reasonably plan the data collection path of the UAV. Compared with the comparison scheme, the
improved ACO can obtain a better shortest path length and has the fastest convergence speed when reaching the shortest path.

1. Introduction

In recent years, with the rapid development of wireless net-
works and the technical advantages of wireless sensor net-
works, such as self-organization, rapid deployment, high
error tolerance, and low cost, sensor networks are often
used to monitor and collect ecological environment data,
collect information in the process of geological monitoring,
and sense some areas that are not suitable for human
beings to stay and live for a long time. However, due to
the influence of the volume of sensor nodes and the diffi-
culty of replacing batteries of a large number of sensor
nodes, how to reduce energy consumption when collecting
data is an important problem. After a large number of sen-
sor nodes are deployed, how to effectively collect sensor
network data and how to effectively prolong the service life
of sensor nodes in the process of sensor network data col-

lection have become hot issues in academic and industrial
circles in recent years.

For sensor data monitoring and collection tasks in spe-
cial environments, multiple sensor data collection areas
may be separated from each other due to geographical envi-
ronmental factors such as rivers, mountains, and swamps.
Deploying relay nodes in these areas will consume a lot of
manpower and material resources and is very inconvenient
to implement. The use of UAVs can effectively solve the
impact of ground environmental factors on data collection
tasks. With the increasing maturity of UAV technology,
UAVs have been widely used in vehicle networking, agricul-
ture, military reconnaissance, and other fields, and civil
UAVs are also gradually popularized.

By introducing UAVs into wireless sensor networks, it
can form a delay-tolerant network with traditional sensor
networks, and effectively assist sensor networks in data
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collection tasks by using the “store-carry-forward” method.
The UAV serves as a relay to collect data from sensor net-
works in remote areas and transmit it to the data center
for processing, thus avoiding manual data collection and
effectively addressing the impact of environmental factors
on data collection on the ground.

UAVs assist wireless sensor networks where the UAV can
move over the network, retrieve and collect data from sensor
nodes. Using effective routing protocols can reduce energy
consumption, avoid long-distance transmission and redun-
dant transmission, and prolong the service life of sensors.

We have previously studied data collection by UAV-
assisted wireless sensor networks. In reference [1], we
mainly proposed a data collection strategy based on drone
technology in wireless sensor networks, using K-means++
method to conduct clustering and cluster head election in
the initial state. Then, on the basis of comprehensive consid-
eration of relative distance and relative residual energy of
each sensor node, UAV is used to assist cluster head election
and data collection. In addition, for some unelected nodes, a
reasonable priority is set to make the energy consumption of
sensor nodes more balanced. Experiments show that this
strategy reduces the energy consumption and improves the
performance of sensor networks. On the basis of the previ-
ous work, this paper further expands and utilizes UAV-
related technology to assist data collection from multiple
distributed sensor network areas separated from each other
due to geographical environmental factors, so as to make
the energy consumption of sensor nodes in the monitoring
area more balanced. The main contributions of this paper
are as follows.

Introducing the idea of edge computing into the data
collection process of distributed sensor network can greatly
improve the efficiency of data collection. We discuss the case
that the sensor node transmits the environmental data to the
cluster head node through single-hop or multihop transmis-
sion mode. This method is not only flexible but also has low
cost, which solves the problem that the data collection task
of sensor network cannot be carried out uniformly in the
environment monitoring area under complex geographical
conditions.

Due to the limited battery capacity and high energy con-
sumption of UAV, an efficient and energy-saving routing
protocol is needed in both military and commercial applica-
tions. In addition, the deployment and trajectory planning of
UAVs have a significant impact on the performance of rout-
ing protocols. Therefore, an improved ACO is used in this
paper to plan the UAV’s path, and the “store-carry-
forward” method is adopted to collect sensor data from each
cluster head node. In this way, the data is transmitted to the
data center with a small path cost and time cost.

The remaining chapters of this paper are organized as
follows. The second chapter mainly introduces the related
work, including the data collection method of the sensor
network and the typical UAV path planning method. The
third chapter mainly introduces the system model. The
fourth chapter mainly introduces the data collection of
UAV-based sensor network. The fifth chapter mainly intro-
duces the UAV path planning based on improved ACO. The

sixth chapter mainly introduces the simulation experiment
and result analysis. The seventh chapter mainly introduces
the conclusion and outlook.

2. Related Work

2.1. Data Collection Method of Sensor Network. For the data
collection scheme of traditional sensor network, the data col-
lection performance of the sensor network can be greatly
improved by introducing mobile nodes as assistance, which
has been paid attention to by most researchers [2–4]. In
recent years, due to the reduction of UAV cost and the rapid
development of UAV technology, using UAV as an auxiliary
node to assist sensor network in data collection has become
a research hotspot [5–8]. Traditional mobile nodes are sus-
ceptible to ground path restrictions and often cannot fully
utilize the performance of sensor networks. However, the
UAV has broken through the node’s movement path restric-
tion and has better flexibility in data collection tasks.

Chen et al. [9] proposed a universal NOMA-enabled
UAV-assisted data collection protocol to maximize the total
rate of wireless sensor networks during the data collection
process. Xu et al. [10] introduced blockchain into the
UAV-assisted IoT scenario and proposed a data collection
system that takes into account both safety and energy effi-
ciency, which can effectively improve the safety and effi-
ciency of data collection. In order to ensure the timeliness
of the collected data, Zhu et al. [11] optimized the trajectory
and wake-up time allocation of the UAV as well as the trans-
mission power of the sensor nodes to minimize the task
completion time. Ma et al. [12] modelled the convergence
node, UAV deployment, and resource allocation as a
mixed-integer nonconvex optimization problem. They used
heuristic methods to effectively solve the problem, thereby
prolonging the life of the network. Ebrahimi et al. [13] used
UAVs in dense wireless sensor networks to use projection-
based compressed data collection (CDG) as a novel solution
to collect data. Du et al. [14] used UAVs to vehicle toler-
ance delay network (VDTN) for message storage and for-
warding and proposed a VDTN routing protocol based on
UAV, which considered both the probability of each
encounter and the duration of connection between mobile
nodes. This method not only reduced network overhead
and end-to-end delay but also improved the reliability of
message forwarding.

In summary, the existing data collection methods of sen-
sor network rarely consider the problem of distributed wire-
less sensor networks composed of multiple isolated
monitoring areas. In this network environment, how to col-
lect data from the sensor network to reduce the overall
energy consumption of the network and how to plan the
UAV to optimize the data collection path of the separated
monitoring area are problems worthy of study. These are
also the focus of this paper.

2.2. Typical UAV Path Planning Method. Typical UAV path
planning methods are mainly divided into two categories:
classic UAV path planning methods and UAV path plan-
ning methods based on intelligent algorithms. The classic
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UAV path planning methods mainly include A-star algo-
rithm, cell decomposition method, and artificial potential
field method. UAV path planning methods based on intelli-
gent algorithms mainly include genetic algorithm, particle
swam optimization, and wolf colony algorithm.

The A-star algorithm is a direct search algorithm for
planning the shortest flight path of UAVs in static state. At
the same time, the A-star algorithm is one of the heuristic
algorithms [15]. Its basic algorithm idea is to use the heuris-
tic function to evaluate some candidate nodes and select the
node with the best condition as the next node on the path.
This is a purposeful search method that effectively avoids
blind searches. The A-star algorithm can achieve faster cal-
culation speed when the path matrix is small and efficiently
obtain the UAV path information that needs path planning.
However, when the number of paths increases sharply, its
running time also increases accordingly, which is not suit-
able for path planning problems in dynamic states.

The artificial potential field path planning is a method
that uses virtual forces in the environment to assist path
planning. The basic idea of this algorithm is to abstract the
movement process of the UAV in the environment as a
movement process of the UAV under the virtual artificial
potential field. The target point to be reached by the UAV
is a gravitational field for it, and the obstacles in the path
are a repulsive field for it. Under the combined action of
the gravitational field and the repulsive field, the UAV starts
from the starting point, avoids obstacles, and finally reaches
the destination node. Generally speaking, the path generated
by using the artificial potential field to plan the UAV’s path
is smooth and safe, but this method has the problem of gen-
erating local optimal solutions, and there are certain human
factors in the design of the repulsion field and the gravita-
tional field. When there are obstacles near the target node,
the UAV may not be able to reach the target node, which
also limits the development of artificial potential field.

Particle swarm optimization is a kind of evolutionary
algorithm. It simulates a predation behaviour of a flock of
birds randomly searching for food, without requiring any
leader. In Particle swarm optimization, the potential solution
of each UAV optimization problem can be abstracted as a
“particle” in the search space, that is, a bird. “Particles” fol-
low the current optimal “particles” to search in the solution
space. These “particles” are initially some random solutions,
and the optimal solution is found after many iterations of
optimization. Particle swarm optimization is widely used in
the field of UAV path planning. It has good convergence
and path optimization capabilities and is suitable for the
optimization of continuous problems. However, the algo-
rithm may get trapped in local optimal solutions and cannot
handle optimization problems in discrete cases well.

Wolf colony algorithm is an algorithm based on the
swarm intelligence of wolves. The algorithm simulates the
predation behaviour of wolves and how wolves distribute
their prey. The main body of the wolf colony algorithm is
composed of three intelligent behaviours: wandering, calling,
and besieging. The algorithm’s method of generating the
head wolf uses the “winner is king” rule, while the algo-
rithm’s method of updating the wolf colony uses the “stron-

ger survival” mechanism. In solving the problem of UAV
path planning, the wolf colony algorithm improves the prob-
ability of obtaining the optimal solution of UAV path plan-
ning in a limited time to a certain extent and reduces the
understanding space. Although it can deal with simple
UAV path planning problems and realize UAV path plan-
ning in a continuous environment, it cannot realize path
planning in a discrete environment, and the iteration con-
vergence speed is slow.

Reinforcement learning is a new algorithm based on
learning. In recent years, reinforcement learning has been
widely used. Chen et al. [16] applied reinforcement learning
to the Internet of Vehicles and proposed an online deep
reinforcement learning scheme. Each mobile user only made
use of local information to make decisions such as channel
auction, computational task unloading, and input packet
scheduling, so as to optimize task unloading of the air-
ground integrated multiaccess edge computing (MEC) sys-
tem. Reinforcement learning has also been applied in path
planning. In order to reduce communication delay between
vehicles, Wu et al. [17] proposed a multichannel vehicle edge
computing routing scheme based on cooperative learning to
solve the communication path selection problem in multi-
channel vehicle environment. Tong et al. [18] modelled the
UAV-assisted data collection problem as a limited range Mar-
kov decision process with limited state and action space and
developed a deep reinforcement learning algorithm to find
the asymptotically optimal strategy. The introduction of rein-
forcement learning breaks the previous idea of using intelli-
gent algorithm to optimize the path and provides a new
method for path planning. Therefore, we can consider future
work and design reinforcement learning algorithm for our
own application scenarios to optimize the flight path of UAV.

3. System Model

Edge computing refers to an open platform that integrates
network, computing, storage, and application core capabili-
ties to provide the nearest end service on one side of the
object or data source. Edge computing provides faster ser-
vices and is used to enforce business, security, and privacy.
Introducing the idea of edge computing in the data collec-
tion process of distributed sensor networks can greatly
improve the efficiency of data collection.

In a distributed sensor network environmental data mon-
itoring and collection task which has multiple partitioned
monitoring areas, multiple sensor nodes in each monitoring
area are responsible for environmental data sensing. The sen-
sor node transmits the environmental data to the cluster head
node through single-hop transmission or multihop transmis-
sion. After that, the cluster head node aggregates and fuses
the data of each sensor node. Starting from the data center,
the UAV uses a “store-carry-forward” method according to a
certain path planning method to collect data from the cluster
head nodes in each partitioned area. The UAV returns the col-
lected data to the data center for transmission and processing.
The application scenario of sensor network data collection sys-
tem is shown in Figure 1. The entities in the system and their
functions are described as follows:
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Sensor Node (SN). The sensor node is used to collect the
sensing data in the environmental monitoring area,
such as temperature, humidity, light intensity, and the
acid, alkali, and salt concentration in the soil, etc. The
sensor node periodically sends the sensed environmen-
tal data to the cluster head node and at the same time
transmits its own remaining energy information to
the cluster head node.

Relay Node (RN). Due to the limited communication
distance of the sensor node, when the Euclidean dis-
tance between the sensor node and the cluster head
node is greater than the communication distance, the
relay node is responsible for relaying the transmitted
data. The relay node can replace an unreachable link
with multiple links of better quality to obtain better
network coverage.

Cluster Head Node (Cluster Head, CH). The cluster head
node converges and fuses the data information collected
by the sensors in the cluster. At the same time, the cluster
head node is responsible for interacting with the UAV,
transmitting the collected sensing data to the UAV, and
receiving control information from the UAV.
Data Center. The data center gathers the environmen-
tal monitoring data collected by UAV from each parti-
tioned monitoring area and performs data processing.

By delegating computing and processing tasks to sensor
nodes and UAV nodes, many controls will be achieved
through local equipment without having to hand over to
the data center in the cloud. The processing process is com-
pleted at the local edge layer, which greatly improves pro-

cessing efficiency. This way, because it is closer to the
terminal, the demand can be solved at the edge.

The whole system model can be divided into two parts:
data collection of sensor network based on UAV and UAV
path planning based on improved ACO. Between them, the
data collection of UAV-based sensor network is divided into
two cases: single-hop transmission and multihop transmis-
sion, according to the relationship between communication
distance and transmission distance.

The system model is based on the following premise
assumptions. (1) The position coordinates of each sensor node
are fixed and the initial energy is known. (2) The UAV stores
the mapping relationship information between the identity
document (ID) of the sensor node and its location coordinates.
(3) The sensor nodes can adjust the signal transmission power
adaptively according to the distance of the nodes. (4) The
communication channel is a symmetric propagation channel.
(5) Issues such as communication security and encryption will
not be considered for the time being.

4. Data Collection of UAV-Based
Sensor Network

4.1. Sensor Clustering and Cluster Head Election in the Initial
State. Abstract each area in the partitioned environmental
monitoring area. Assume that each monitoring area is a rect-
angle with lengthA and width B.N sensor nodes are randomly
distributed, as shown in Figure 2. The communication dis-
tance of each sensor node is R. The sensor node transmits
the sensed data to the cluster head node of its own cluster.
The cluster head node performs data fusion on the collected
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Figure 1: System application scenario.
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sensed data, waits for the arrival of the UAV, and interacts
with the UAV. Then, the data is transferred to the data center.

For each separated environmental monitoring area,
when the coverage of the monitoring area exceeds the com-
munication range of the sensor node, two ways can be used
to realize the communication between sensor nodes. (1)
Divide a large area so that the range of each divided area will
not exceed the communication range of sensor nodes,
thereby ensuring single-hop transmission between sensor
nodes. (2) Sensor nodes use multihop transmission to trans-
mit data to other nodes through relay nodes.

First discuss the first case, that is, clustering a larger net-
work, so that each sensor node can communicate with all
other nodes in the cluster. The cluster number Num of sen-
sor nodes is calculated according to Equations (1) and (2).
Num takes an integer value in the interval ½Num1,Num2�.

Num1 = Area

π × R/2ð Þ2 , ð1Þ

Num2 = 2 × Area

R2 , ð2Þ

where Num1 is the smallest value of the number of sensor
node clusters in the environmental monitoring area, Num2
is the largest value of the number of sensor node clusters
in the environmental monitoring area, Area is the area of
the environmental monitoring area, and R is the communi-
cation distance of the sensor nodes. The environmental
monitoring area can be of any shape. In order to simplify
the description, a regular shape is selected for illustration.
The basic idea of calculating the number of clusters of sensor
nodes in a regular shape area or an irregular shape area is the
same.

Because the main factor affecting the energy consump-
tion of sensor nodes is transmission distance, the distance
is evaluated as a similarity. Compared to the K-means algo-
rithm, the K-means++ algorithm significantly reduces the
error of classification results. So, we use the K-means++
algorithm to cluster the nodes in the sensor network.

In the initial state, by using the K-means++ algorithm,
the clustering of randomly distributed sensor nodes in the
environmental monitoring area is completed, and the initial
cluster head nodes are elected. The initial cluster head node
broadcasts its own node information in the cluster and uses

time division multiple access (TDMA) [19] to allocate trans-
mission time slots for the data collection of other sensor
nodes in the cluster. During each round of data collection,
the normal sensor nodes in each cluster use allocated time
slots to transmit the sensing environmental data to the clus-
ter head node and declare their remaining energy informa-
tion. The data packet contains the remaining energy
information of the node and the environmental monitoring
data collected by the node in this round. The data packet for-
mat is shown in Figure 3. After the cluster head node obtains
the remaining energy information of all nodes in the cluster,
it forms the remaining energy matrix for the current round
of transmission.

4.2. UAV-Assisted Cluster Head Election and Data Collection
in a Single-Hop Scenario. In the process of UAV-assisted
sensor network data collection, each sensor node is fixed in
the environmental monitoring area. Therefore, the relative
distance value of each sensor node in the cluster is calculated
using

Dis i½ � =
∑∀nj∈Ck

d ni, nj

� �
Ckj j × dmax

, ð3Þ

where Dis½i� represents the intracluster distance relationship
of the i-th node in each cluster, ni and nj represent the i-th
node and the j-th node, Ck represents the k-th cluster, dðni
, njÞ represents the Euclidean distance between the current
node and all nodes in the cluster, jCkj represents the total
number of the nodes in the k-th cluster, and dmax represents
the maximum Euclidean distance between the current node
and other nodes in the cluster. dðni, njÞ is calculated accord-
ing to

d ni, nj

� �
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xa − xbð Þ2 + ya − ybð Þ2 + za − zbð Þ2

q
, ð4Þ

where the coordinate of node ni is ðxa, ya, zaÞ and the coor-
dinate of node nj is ðxb, yb, zbÞ.

In an environmental monitoring region, the position of
each sensor node is fixed. Then after clustering in an initial
state, the cluster of the node is fixed. Therefore, UAV only
needs to calculate the relative distance of each sensor node
once, which greatly reduces the calculation burden of the
UAV.

During each round of data collection, the cluster head
node collects and fuses the collection data of each node in
the cluster and transmits the remaining energy information
of each node in the cluster to the UAV. The UAV calculates
the relative residual energy value of each node in each cluster
according to

Eng i½ � = Er,Ck
nið Þ

Er,Ck
maxð Þ , ð5Þ

where Er,Ck
ðniÞ represents the remaining energy of the i-th

node in the k-th cluster during the r-th round of data trans-
mission, Er,Ck

ðmaxÞ represents the maximum remaining
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Figure 2: Abstract of a single monitoring area.
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energy of the node in the k-th cluster during the r-th round
of data transmission, i is an integer value in the interval ½1, q�
, and q is the total number of nodes in the current cluster.

Since the goal is to select the node with the smallest rel-
ative distance from other nodes in the cluster and the largest
relative residual energy as possible as the new cluster head
node in the next round, therefore, the UAV is used to calcu-
late the priority of each node to be elected as the cluster head
in each cluster according to the Equation (6) and save it in
Pri½i�.

Pri i½ � = Eng i½ � −Dis i½ �, ð6Þ

where i is an integer value in the interval ½1, q� and q is the
total number of nodes in the current cluster.

If there is a node in the cluster that has never been
elected as a cluster head in the previous 1/p (p is the propor-
tion of cluster heads to all sensor nodes), its priority is added
to the original basis by u (u ≥ 1, and u is an integer). That is
to say, in the next round, a node that has not been elected as
a cluster head for a long time and has a relatively small rel-
ative distance from other nodes and a relatively large resid-
ual energy has a greater probability of becoming a new
cluster head node. The equation is described in

Pri i½ � = Eng i½ � −Dis i½ � + u: ð7Þ

When there is a node with a remaining energy value of 0
in the cluster, the priority value of the node is permanently
set to −u (u ≥ 1, and u is an integer), as shown in

Pri i½ � = −u: ð8Þ

Through the above method, the UAV calculates the pri-
ority of each node in the sensor network to be elected as the
cluster head in the next round and forms a priority matrix.
The node corresponding to the item with the largest element
value in the priority matrix becomes the cluster head node
elected in the next round. The priority matrix Total Pri
formed by all clusters in the UAV is shown in

Total Pri =

Pri11 Pri21 Pri31

Pri12 Pri22 Pri32

Pri13 Pri23 Pri33

⋯ Prik1

⋯ Prik2

⋯ Prik3

⋮ ⋮ ⋮

Pri1i Pri2i Pri3i

⋱ ⋮

⋯ Priki

2
66666664

3
77777775
: ð9Þ

Among them, each column in the matrix represents the
priority of each node in each cluster to be elected as the clus-
ter head in the next round. There are k columns in total, rep-
resenting k clusters. For clusters with fewer nodes, add
several zeros at the end of the column.

UAV will use the identification number of the cluster
head node in the next round as the control information to
transmit to the current cluster head node. The current clus-
ter head node broadcasts the information of the cluster head
node in the next round in the cluster. The new cluster head
node uses TDMA to allocate data transmission time slots for
each node in the cluster. During the next round of data col-
lection, the normal node will transmit the remaining energy
information and data information to the new cluster head by
the allocated time slot.

In this way, the UAV flies to each cluster head node to
perform the task of collecting environmental monitoring
data information, and the data information collected from
each cluster head node is transmitted to the data center
through the “store-carry-forward” DTN data transmission
mode. The data center analyses, processes, and predicts the
collected environmental monitoring data to complete a
round of sensor network data collection tasks.

4.3. UAV-Assisted Data Collection in a Multihop Scenario.
When the clustering range of each environmental monitor-
ing area is greater than the communication range of the sen-
sor node, that is, for the second case, the nodes outside the
communication range need to use multihop transmission,
and the communication with the cluster head node is com-
pleted by selecting the relay node.

First, use the same method as the previous method to
perform the clustering of sensor nodes and the election of
cluster heads under the initial conditions. After that, the
same UAV-assisted cluster head election method is used to
elect the cluster head nodes of each environmental monitor-
ing area in the next round. The UAV uses a “store-carry-
forward” approach to collect data from each cluster head
node and passes it to the data center for processing. Next,
the selection method of the relay node and the correspond-
ing routing process are mainly explained. The model of data
transmission using relay nodes is shown in Figure 4.

In the illustrated transmission model, during a round of
data collection, nodes are mainly divided into three catego-
ries: cluster head nodes, relay nodes, and ordinary sensor
nodes. Among them, the cluster head node is responsible
for collecting the data sensed by noncluster head nodes in
the cluster, performing data fusion, and then interacts with
the UAV node. The relay node is selected from the set of
candidate relay nodes and is responsible for relaying the data
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Figure 3: Packet format.
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of sensor nodes that cannot directly reach the cluster head
node. The relay node also completing its own data sensing
task. The ordinary sensor node mainly completes the basic
environmental data sensing task. In the above figure, θ is
the angle in the middle of the connection between the candi-
date relay node and the ordinary sensor node and the con-
nection between the ordinary sensor node and the cluster
head node.

In the entire sensor network, the positions of all nodes
are fixed. Therefore, it is assumed that after the initial state
clustering is completed, each sensor node forms a mapping
table of the distance between each node in the cluster and
other nodes in the cluster.

Since ID and coordinates of each node in each cluster are
known and they have a one-to-one correspondence, after the
cluster head node broadcasts the next round of cluster head
messages, the ordinary sensor node that needs to transmit
data first obtains the distance between it and the cluster head
node by querying the node distance mapping table. When
the distance is less than the communication distance of an
ordinary sensor node, the ordinary sensor node transfers
the collected data to the cluster head node by direct delivery.
When the distance is greater than the communication dis-
tance of an ordinary sensor node, the ordinary sensor node
selects a relay node according to the method described
below.

Assume that the position distribution relationship of
cluster head node, candidate relay node, and ordinary sensor
node is shown in Figure 5.

According to geometric knowledge, the calculation
method of the included angle θ is shown in

θ = cos−1
d22 + d23 − d21
2 × d2 × d3

, ð10Þ

where d1 is the distance between the cluster head node and
the candidate relay node, d2 is the distance between the can-
didate relay node and the ordinary sensor node, and d3 is
the distance between the ordinary sensor node and the clus-
ter head node.

If the ordinary sensor node cannot directly transmit the
data to the cluster head node, the nodes within the one-hop
communication range of the ordinary sensor node are classi-
fied and stored in different sets. The classification method is
based on the above-mentioned included angle θ, and nodes
meeting different conditions will be divided into different
sets.

Since the goal is to transfer data in the direction closer to
the cluster head node, for nodes within the communication
range of ordinary sensor nodes, nodes within the range of
θ ∈ ½π/2, π� are stored in the invalid set. The nodes in this
set will never be selected. Next, divide the nodes in the range
of θ ∈ ½0, π/2Þ into three sets. The Pri1 set stores the nodes in
the range of θ ∈ ½0, π/6Þ. The Pri2 set stores the nodes in the
range of θ ∈ ½π/6, π/3Þ. The Pri3 set stores the nodes in the
range of θ ∈ ½π/3, π/2Þ. The priority relationship of the nodes
is Pri1 > Pri2 > Pri3. Then, calculate the priority of each
candidate relay node in the Pri1, Pri2, and Pri3, as shown in

Pris i, jð Þ = λ × π/2ð Þ − θ

π/2 + 1 − λð Þ × dij, ð11Þ

where Prisði, jÞ represents the priority function for the i-th
ordinary sensor node in the cluster to select the j-th candi-
date relay node in the range of the set s for relaying. The
set s is one of Pri1, Pri2, and Pri3. λ is the weight coefficient,
and λ ∈ ð0, 1Þ. θ is the angle in the middle of the connection
between the candidate relay node and the ordinary sensor
node, and the connection between the ordinary sensor node
and the cluster head node. The larger the value of ðπ/2Þ − θ,

Cluster head
node

Candidate relay
node

Candidate relay
node

Ordinary sensor
node

θ

Figure 4: Data transmission model using relay node.
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the closer the position of the candidate relay node is to the
direction of the cluster head node within the range of the
candidate set. dij is the Euclidean distance between node i
and node j. In order to reduce the number of hops from
the ordinary sensor node to the cluster head node as much
as possible, data should be transmitted to the candidate relay
node closest to the cluster head node and farthest within the
communication distance of the node. That is, a candidate
relay node with a larger priority function value is more likely
to become the final relay node.

Next, perform energy discrimination on the candidate
relay node j with the largest priority function value Prisði, j
Þ. When the remaining energy of node j is greater than the
average remaining energy of all nodes in the set Pri1, Pri2,
and Pri3, the candidate relay node becomes the final relay
node. Otherwise, the node with the second priority function
value is judged. By analogy, the energy discrimination
method of nodes is shown in

Flag j½ � = Eresidual j½ �
Eavg

, ð12Þ

where Flag½j� is the flag bit for whether node j is elected. If
its value is greater than 1, node j is elected as the final relay
node. Eresidual½j� is the remaining energy value of the current
candidate relay node j, and Eavg is the average remaining
energy of all nodes in the set Pri1, Pri2, and Pri3. If there
is no node in the set Pri1 that meets the requirements, the
nodes in the set Pri2 are judged. If there is no node in the
set Pri2 that meets the requirements, the nodes in the set P
ri3 are judged until a suitable relay node is selected. If there
is no suitable relay node for relaying, the ordinary sensor
node is marked as unreachable.

If the data transmission range of the optimal relay node
still cannot transmit data to the cluster head node, continue
to select the next hop relay node for relay transmission accord-
ing to the above method. If within the specified number of
hops, the data still cannot be transmitted to the cluster head
node, the ordinary sensor node is marked as unreachable.

4.4. Energy Consumption Model of Wireless Sensor Networks.
Since the energy consumption of nodes in a wireless sensor
networks is mainly composed of transmission energy con-
sumption and receiving energy consumption, in the process
of data transmission and data reception of sensor nodes, for
short-distance transmission, the free space model is adopted,
and for long-distance transmission, the multipath fading
model is adopted [20]. The wireless transmission model is
shown in Figure 6.

For the symmetric propagation channel, the energy con-
sumption when the sensor node transmits k bits data in the
data packet to d meters away is shown in [21]

d0 =
ffiffiffiffiffiffiffiffi
Ef s

Emp

s
, ð13Þ

ETx k, dð Þ = ETxele
kð Þ + ETxf s/mlp

k, dð Þ, ð14Þ

ETx k, dð Þ =
Eele × k + Ef s × k × d2, d ≤ d0,

Eele × k + Emp × k × d4, d > d0:

8<
: ð15Þ

The energy consumption of sensor nodes receiving k bits
data is calculated according to

ERx kð Þ = Eele × k, ð16Þ

where ETxðk, dÞ is the data sending energy consumption,
ERxðkÞ is the data reception energy consumption, Eele is
the energy consumption per bit of the transmitter or
receiver, Ef s is the free space model parameter, and Emp is
the multipath fading model parameter.

d1

d2

d3

Cluster head
node

Ordinary sensor
node

Candidate relay
node

θ

Figure 5: Position distribution relationship of three kinds of nodes.
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Emp ⁎ k ⁎ d4

k bits packet Receive
electronics

ERx (k)

d

Eele ⁎ k

Figure 6: Wireless transmission model.
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The data fusion energy consumption of sensor nodes for
k bits data is shown in

EF kð Þ = k × Eda, ð17Þ

where EFðkÞ is the energy consumption of data fusion and
Eda is the energy consumption parameter of data fusion.

5. UAV Path Planning Based on Improved ACO

When there are multiple separated environmental monitor-
ing areas, these different monitoring areas have different
area and different number of sensor nodes, as shown in
Figure 1 in Chapter 3. How to make the UAV start from
the data center, use the new cluster head node information
obtained in the previous round, use appropriate algorithms,
follow the preplanned path to collect data from the cluster
head nodes in each monitoring area, and transfer the col-
lected environmental data to the data center is an important
issue.

This problem can be simplified to a traveling salesman
problem (TSP) with a fixed starting point and ending point
[22]. The TSP problem is one of the most well-known prob-

lems in the field of mathematics. It can be described as fol-
lows: suppose a UAV starts from the data center and needs
to fly to N sensor cluster head nodes for data collection. It
must plan the flight path. The restriction is that each cluster
head node can only be passed once and finally needs to
return to the data center to submit sensing data. The goal
of selecting the flight path is to require the resulting flight
path to be the minimum of all paths. The TSP problem is
an NP-hard problem with the computational complexity of
NPC. Next, the research focus of this chapter will be put for-
ward: UAV path planning method based on improved ant
colony optimization.

For solving the task of UAV starting from a fixed data
center, collecting sensing data from the cluster head nodes
that in the separated environmental monitoring area in turn,
and returning the collected data to the data center, this sec-
tion uses an improved ACO to obtain a better approximate
optimal solution. Introducing the simulated annealing algo-
rithm with dynamic simulated annealing probability coeffi-
cient and tempering algorithm to further optimize the
UAV’s data collection path.

The algorithm process of the improved ACO is as
follows.

Start

Initialize pheromone and
heuristic value

Introduce simulated
annealing iteration

Excute ant search
algorithm

Initialize the taboo table
of ants

Set the starting node of
the ant search algorithm

Calculate the cluster
head node to be reached

next

Path update
complete

Ant search complete

Calculate the shortest
path objective function

value

Better than the
value at the previous

temperature

Update path and
shortest path value

Update dynamic SA
probability coefficient

Whether to meet the
new path acceptance
probability condition

Update pheromone

Whether to meet the
tempering conditions

Execute tempering
algorithmUpdate temperature

Whether to complete
the simulated

annealing iteration

Obtain the optimal path
and shortest path value

End

No No No

No

Yes

No

Yes

No

Yes

Yes

Yes

Yes

Figure 7: Execution flow chart of improved ACO.
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Step 1. Initialize ant pheromone and heuristic value. Initialize
the pheromone value of each edge in the UAV data collec-
tion path and the taboo table of each ant. The pheromone
value on each edge is initialized to a smaller value r0. The
taboo table of each ant is used to record the sensor cluster
head nodes that the ant has walked so far. Initialize the taboo
table of each ant as the sensor cluster head node where the
ant is currently located, and set the length of the taboo table
to a. In the initial state, the pheromone value released by the
ant on each edge is 0.

Step 2. Introduce the simulated annealing to iterate to con-
struct the flight path of UAV. At the temperature T of the
simulated annealing algorithm, perform an ant search. Ant
k determines the sensor cluster head node to be reached in
the next step according to the probability pkijðtÞ, until it
finally forms a legal UAV data collection path. Among them,
the cluster head nodes that have passed are recorded in the
taboo table. These nodes recorded in the taboo table cannot
be included in the cluster head nodes that the ant will reach

in the future. The calculation method of probability pkijðtÞ is
shown in

pkij tð Þ =
τij tð Þ
� �α ηij tð Þ

h iβ
∑s∈ak τis tð Þ½ �α ηis tð Þ½ �β

0, other,

8>>><
>>>:

, j ∈ ak, ð18Þ

where pkijðtÞ is the selection probability of ant kmoving from
cluster head node i to cluster head node j in the t-th iteration
and α is the pheromone factor. The larger the value of α, the
greater the influence factor of the pheromone in the selec-
tion probability of the cluster head node. β is the heuristic
value factor. The larger the value of β, the greater the influ-
ence factor of the heuristic value in the selection probability
of the cluster head node. ak represents the cluster head node
set that is not restricted by the taboo table. τijðtÞ represents
the pheromone on the edge ði, jÞ of the ant in the t-th itera-
tion, and ηijðtÞ represents the heuristic value for the ant to

1. Initialize pheromone and heuristic value;
2. Initialize the taboo table of ants;
3. Introduce Simulated Annealing iteration;
4. Execute ant search algorithm;
5. Set the starting node of the ant search algorithm;
6. Calculate the cluster head node to be reached next;
7. If Path update is not complete then
8. Return to step 5 and continue to execute;
9. Else
10. If Ant search is not complete then
11. Return to step 4 and continue to execute;
12. Else
13. Calculate the shortest path objective function value;
14. If Better than the value at the previous temperature then
15. Update path and shortest path value;
16. Update pheromone;
17. If the tempering conditions are met then
18. Execute tempering algorithm;
19. Update temperature;
20. If the Simulated Annealing iteration is completed then
21. Obtain the optimal path and shortest path value;
22. Else
23. Return to step 3 and continue to execute;
24. End if
25. Else
26. Go to step 19;
27. End if
28. Else
29. Update dynamic SA probability coefficient;
30. If the new path acceptance probability condition is satisfied then
31. Go to step 15;
32. Else
33. Go to step 16;
34. End if
35. End if
36. End if

Algorithm 1:The improved ACO.
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move from the cluster head node i to the cluster head node j
in the t-th iteration. This value is usually the reciprocal of
the distance dij between cluster head node i and cluster head
node j. S are the cluster head nodes that are not restricted by
the taboo table. With the constraint of Equation (18), the ant
will not pass through the cluster head node again, thus
ensuring that the UAV will not repeatedly pass the same
cluster head node during the data collection process.

Step 3. Obtain the shortest flight path of the UAV in the t-th
iteration. After the t-th iteration, each ant has completed a

tour through each cluster head node. Calculate the length
of the path travelled by each ant, and save the shortest path
travelled, thereby obtaining the objective function value.
Compare the newly obtained shortest path value with the
original shortest path value (the shortest path value gener-
ated by the first iteration process is not compared, and the
result of the next iteration is waited for). If the newly
obtained shortest path value is better than the shortest path
value at the last temperature, then directly update the UAV
flight path and shortest path value. Then, follow Step 4 to
update the pheromone on each edge. If the newly obtained
UAV flight shortest path value is not better than the shortest
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Figure 8: Number of rounds where 10% of the nodes die.
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path value at the last temperature, update the dynamic sim-
ulated annealing probability coefficient according to

ωcurrent = ωmax − ωmax − ωminð Þ × tcurrent
tmax

, ð19Þ

where ωcurrent is the dynamic simulated annealing probabil-
ity coefficient of the current iteration number, ωmax is the
maximum dynamic simulated annealing probability coeffi-
cient, ωmin is the minimum dynamic simulated annealing

probability coefficient, tcurrent is the current iteration num-
ber, and tmax is the maximum iteration number.

Then, the Metropolis acceptance criterion [23] is used to
calculate the probability Pcurrent of introducing the dynamic
simulated annealing probability coefficient at the current
temperature Tcurrent to decide whether to accept the new
path. The probability Pcurrent at temperature Tcurrent is calcu-
lated according to

Pcurrent = ωcurrente
dE/kTcurrent , ð20Þ
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Figure 10: Number of rounds where half of the nodes die.
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where dE is the difference between the shortest path objec-
tive function value of this iteration and the shortest path
objective function value of the previous iteration, k is the
coefficient, and Tcurrent is the current temperature value.

Randomly generate a random number a0 in the ð0, 1Þ
interval. If a0 ≤ Pcurrent , accept this solution, update the
UAV flight path, and update the shortest path value. Other-
wise, discard the solution generated in this iteration. From
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the Equation (20), it can be concluded that as the iteration
progresses, the temperature T is continuously reduced due
to the effect of the cooling coefficient, and the value of
ωcurrent continues to decrease with the increase of the num-
ber of iterations. Therefore, the value of the probability
Pcurrent is continuously reduced. That is, the probability of
accepting a poor solution is constantly decreasing, similar
to the annealing crystallization process of crystals in nature.

Step 4. Update the pheromone value. The update of the pher-
omone on each edge of the path includes the volatilization of
the pheromone due to the passage of time and the newly
produced pheromone released by the ants when they passed
by. Pheromone is updated according to the rules shown in

τij t + 1ð Þ = 1 − ρð Þτij tð Þ + 〠
m

k=1
Δτkij t, t + 1ð Þ, ð21Þ

where τijðt + 1Þ is the pheromone on the edge ði, jÞ at the
ðt + 1Þ-th iteration and τijðtÞ is the pheromone on the edge
ði, jÞ at the t-th iteration. ρ is the pheromone volatilization
factor, and ρ ∈ ð0, 1�. 1‐ρ is the pheromone maintenance fac-
tor. k is the k-th ant. m is the total number of ants. Δτkijðt, t
+ 1Þ is the pheromone released by the k-th ant on the edge
ði, jÞ when it passes during the t-th iteration. Δτkijðt, t + 1Þ is
calculated according to the method shown in

Δτkij t, t + 1ð Þ = Q
lk
μ , ð22Þ

where Q is the pheromone enhancement factor, lk is the
length of the path constructed by the k-th ant, and μ is the
coefficient. The smaller the path length lk, the Equation
(22) shows that the higher the pheromone content on each
edge of the path, and the greater the probability of being
selected by other ants.

After all ants complete the pheromone update operation,
save and record the shortest path of current UAV data col-

lection. Then, initialize the taboo table and pheromone
increment.

Step 5. Judgement of tempering conditions. After the phero-
mone released by the ants on each edge is updated, it is
checked whether the tempering conditions are met, so as
to decide whether to perform the tempering operation.
Whenever the temperature T during the simulated anneal-
ing operation is less than or equal to the minimum value
of the tempering temperature Tmin tempering, and the current
tempering times Hcurrent has not reached the set maximum
upper limit of the tempering times Hmax, use Equation (23)
for tempering operation.

Tcurrent = Tmax tempering, ð23Þ

where Tcurrent is the current temperature value and
Tmax tempering is the highest temperature value of the temper-
ing temperature. According to the above operation, at most
Hmax tempering operations are performed, the objective
function value is more optimized.

Finally, use the cooling coefficient to update the temper-
ature value, and the update method is shown in

T t + 1ð Þ = T tð Þ × qcooling, ð24Þ

where Tðt + 1Þ is the temperature after the update, TðtÞ is
the temperature before the update, and qcooling is the cooling
coefficient.

Repeat the execution from Step 2 and loop in turn until
the termination condition of the improved ACO is met. The
final optimal path and shortest path value are output. The
execution process of the improved ACO is shown in
Figure 7 and Algorithm 1.

The improved ACO is implemented in the UAV node to
realize edge computing. Before the next round of data collec-
tion tasks arrive, the UAV plans the data collection path
through the new cluster head node ID and coordinate value
calculated by itself in the previous round. The UAV collects
sensor network data according to the data collection path
planned in advance. Among them, when the UAV performs
the first data collection task, it uses the cluster head node ID
and coordinate values obtained by the initial clustering to
plan the path, and can ignore the influence of other factors.

6. Simulation Experiment and Result Analysis

This chapter uses MATLAB R2019a to perform simulation
experiments to analyse the performance of the solutions pro-
posed and discussed above.

Dead nodes refer to the nodes whose remaining energy is
not enough to continue to complete the data collection task
of the sensor network. Figures 8–11 show the first rounds of
10% of the nodes die, 30% of the nodes die, half of the nodes
die, and all of the nodes die in the sensor network under
LEACH [24], Fuzzy [25], KM-CF [26], and DCSD-single
scheme proposed in this paper which is suitable for single-
hop scenarios. In a sensor network, the number of rounds

Table 1: Simulation experiment parameter settings of improved
ACO.

Parameters Parameter choice

Number of ants 100

Pheromone factor 4

Heuristic factor 3

Pheromone volatile factor 0.1

Pheromone enhancer factor 1

Cooling factor 0.95

Initial temperature 2000K

End temperature 0K

Upper limit of tempering temperature 1000K

Lower limit of tempering temperature 500K

Maximum number of tempering 2

Number of iterations 300
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in which 10% of the nodes die, 30% of the nodes die, half of
the nodes die, and all of the nodes die for the first time is an
important performance evaluation index for the life cycle of
the sensor network. As can be seen from the figure, com-
pared with the other three schemes, the scheme proposed
in this paper delays the first occurrence of the death of
10% nodes, the death of 30% nodes, the death of half nodes,
and the death of all nodes and has better performance.

As mentioned earlier, for scenarios with a large network
range, the UAV-assisted sensor data collection method pro-

posed in this paper for single-hop scenarios can be used to
divide an appropriate number of clusters. This method
makes the distance between the sensor node and the cluster
head node less than or equal to the communication distance
of the node to complete the single-hop transmission between
the sensor node and the cluster head node, which is the
DCSD-single scheme. Or use the UAV-assisted sensor net-
work data collection method proposed in this paper for mul-
tihop scenarios. Select a suitable relay node as a transmission
relay, and solve the unreachable problem caused by the

Table 2: Coordinate information of data center and cluster heads.

The category of the node Node number Node abscissa Node ordinate Node number Node abscissa Node ordinate

Data center 1 500.0000 1000.0000

Sensor network 1

2 221.5789 555.4625 3 42.1414 728.7543

4 41.1697 638.8750 5 266.0404 768.2090

6 108.4884 748.4868 7 35.6075 565.2155

8 135.1900 646.9238 9 249.1216 642.9315

10 119.5054 552.3907 11 199.0793 738.1214

Sensor network 2

12 1011.9638 770.9435 13 818.4280 657.0365

14 842.5954 778.2446 15 894.6581 608.0746

16 901.0757 706.7549 17 981.4248 656.3408

18 912.5777 831.7891

Sensor network 3

19 611.1036 430.7296 20 436.8288 384.1664

21 504.2333 379.2322 22 557.5915 354.8317

23 472.0340 473.5037 24 454.2806 296.9911

25 576.2068 289.9250

Sensor network 4
26 101.4379 27.3214 27 35.8978 71.9208

28 113.7558 118.9788

Sensor network 5
29 1242.7748 151.2065 30 1327.0224 163.8992

31 1271.5899 74.8152
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distance between the sensor node and the cluster head node
being larger than the node communication distance. It is the
DCSD-multi scheme.

The experimental scene is expanded. The DCSD-single
scheme in the single-hop scenario and the DCSD-multi
scheme in the multihop scenario are compared and tested
in a 400m ∗ 400m monitoring area with 200 sensor nodes
randomly distributed. Among them, in order to make multi-
hop transmission occur, appropriately expand the range of
each cluster in the DCSD-multi scheme in the multihop
transmission scenario, that is, reduce the number of cluster
head nodes in the network.

Because the flying height of the UAV will affect the dis-
tance between nodes, it will affect the energy consumption of
information transmission. Therefore, the following compar-
ative experiment considered the influence of the UAV’s
flight height on the experimental results.

Figures 12 and 13 show that when the number of cluster
head nodes in the DCSD-single scheme is 16 and the num-
ber of cluster head nodes in the DCSD-multi scheme are
12 and 8, the comparison graph of 10% of the nodes die,
30% of the nodes die, half of the nodes die, and all of the
nodes die for the first time and the comparison graph of
the network life cycle with the UAV flight altitude change.
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Figure 15: Optimal flight path of SA.
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Figure 16: Optimal flight path of GA.
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Figure 13 shows the impact of UAV flight height on the
performance of various schemes. As the flying height of the
UAV increases, the cluster head node needs more transmis-
sion power to transmit data to the UAV node, which leads to
an increase in the energy consumption of the cluster head
node and reduces the life cycle of the network. Therefore,
when the UAV is actually used to assist the sensor network
for data collection, under the premise of ensuring safety,
reducing the flying height of the UAV to a certain extent
can delay the death time of the sensor nodes in the environ-
mental monitoring area.

This chapter uses MATLAB R2019a to plan the UAV
data collection path. Assume that there are five environmen-
tal monitoring areas separated from each other due to geo-
graphical environmental factors, which form a distributed
wireless sensor networks through the flight transmission of
UAV. According to the method of “store-carry-forward,”
starting from the data center, the UAV collects data from
the cluster head nodes in each separated environmental
monitoring area through the designated algorithm, and then
according to the planned optimal path, the UAV finally
transmits the data to the data center. In most ecological
environmental monitoring scenarios, sensor nodes are
deployed on the ground, so the height of each sensor node
is ignored, and the network scenario is simplified to a two-

dimensional coordinate plane. This scene has a data center
and five separated sensor network environmental monitor-
ing areas.

The algorithm evaluation indicators in this chapter
mainly include the total path length of UAV data collection,
the minimum number of iterations required for each algo-
rithm to reach the shortest path, and the convergence speed
of each algorithm. Suppose the data center coordinates are
(500, 1000), the range of sensor network 1 is 300m ∗ 300
m, and the number of nodes is 100. The range of sensor net-
work 2 and sensor network 3 is 250m ∗ 250m, respectively,
and the number of nodes is 70, respectively. The range of
sensor network 4 and sensor network 5 is 150m ∗ 150m,
respectively, and the number of nodes is 50, respectively.
According to the cluster head election method described in
Chapter 4, the coordinates of the sensor cluster head nodes
in each monitoring area can be obtained during a certain
round of data collection. The simulation experiment param-
eter settings of the improved ACO are shown in Table 1.

This chapter conducts simulation experiments on four
intelligent algorithms. The node numbered 1 shown by the
five-pointed star logo represents the data center. The cluster
head nodes elected in each partitioned environmental mon-
itoring area are represented by number 2-31, respectively.
The coordinate of the data center and the coordinate infor-
mation of the cluster head nodes elected in each partitioned
sensor network are shown in Table 2.

Figures 14–17 show the results of using four algorithms
for UAV data collection path planning, respectively.
Figures 14–17 show the optimal flight path for UAV path
planning using four algorithms, respectively. Among them,
1 is the data center, which is the starting point and end point
of the UAV data collection process. Nodes 2-31 are cluster
head nodes distributed in each partition monitoring area.

The comparison of the number of iterations and the
shortest path length of the ant colony optimization,

Table 3: Performance comparison of four algorithms.

Algorithm name
Number of iterations

to convergence
Shortest path
length (m)

ACO About 180 4697.07

SA About 290 6389.05

GA About 270 4802.35

Improved ACO About 170 4410.41
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Figure 17: Optimal flight path of improved ACO.
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simulated annealing, genetic algorithm, and improved ACO
to achieve convergence is shown in Table 3.

The comparison of the iterative curves of the four algo-
rithms to reach the shortest path of UAV data collection is
shown in Figure 18. It can be seen from the figure that in
the experimental scenario proposed in this chapter, the qual-
ity of the solution is poor in the initial search execution stage
of the simulated annealing and the convergence speed of the
algorithm is slow when it reaches the shortest path. The
genetic algorithm also has the problem of low solution qual-
ity in the initial search execution stage, and the convergence
speed is slow when it reaches the shortest path. However,
compared with simulated annealing, genetic algorithm
greatly reduces the shortest path length. In comparison, the
ant colony optimization and the improved ACO can obtain
higher-quality solutions in a limited number of iterations;
that is, they can converge to the shortest flight path of the
UAV faster. Using the improved ACO to plan the UAV data
collection path can get a better shortest path length and can
get the convergent shortest path result at the fastest speed.

7. Conclusion and Outlook

This paper studies the data collection method of sensor
network based on UAV and introduces the idea of edge
computing into it. Distributed wireless sensor networks
separated from each other are assisted by UAV technology
for clustering and cluster head elections, which reduces the
overall energy consumption of the distributed sensor net-
work. Then, the improved ant colony optimization is used
to plan the UAV data collection path. Through the “store-

carry-forward” method, the UAV takes the shortest path to
carry the sensed data and transmits it to the data center.

In future work, we will consider the use of UAVs to
charge and collect data in the sensor network, consider the
impact of different sensor node distribution patterns on
the performance of the sensor network, and consider
multi-UAVs to coordinate the data collection of the sensor
network to further improve the efficiency of data collection
to serve a wider monitoring area and complete the corre-
sponding environmental monitoring tasks.

In addition, it is considered that the intelligent algorithm
(improved ACO) can be changed into a reinforcement learn-
ing algorithm, and a reinforcement learning algorithm that
conforms to its own scene can be set, so that the UAV can
plan the optimal path by itself, thus improving the data col-
lection efficiency of the sensor network.
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study are available from the corresponding author upon
request.

Conflicts of Interest

The authors declare that there is no conflict of interest
regarding the publication of this paper.

Acknowledgments

This work was supported by the National Natural Science
Foundation of China (62077032), the Inner Mongolia Natural

300250200150100500

Number of iterations

0.4

0.6

0.8

1

1.2

1.4

1.6
×104

Pa
th

 le
ng

th
 (m

)

ACO
SA

GA
Improved ACO

Figure 18: Comparison of iteration curves of four algorithms.

18 Wireless Communications and Mobile Computing



Science Foundation (2020MS06023), and the Inner Mongolia
Science and Technology Plan Project (2021GG0159).

References

[1] B. Yang and X. Bai, “Data collection strategy based on drone
technology in wireless sensor networks,” in 2020 16th Interna-
tional Conference on Mobility, Sensing and Networking (MSN),
pp. 129–136, Tokyo, Japan, 2020.

[2] S. Huang and H. Chang, “A farmland multimedia data collec-
tion method using mobile sink for wireless sensor networks,”
Multimedia Tools and Applications, vol. 76, no. 19,
pp. 19463–19478, 2017.

[3] K. G. Ngandu, K. Ouahada, and S. Rimer, “Smart meter data
collection using public taxis,” Sensors, vol. 18, no. 7, p. 2304,
2018.

[4] C. Li, Research on Energy-Saving Strategy of Wireless Sensor
Networks with a Mobile Agent Node, Chongqing University,
2018.

[5] J. Chen, F. Yan, S. Mao et al., “Efficient data collection in large-
scale UAV-aided wireless sensor networks,” in 2019 11th
International Conference on Wireless Communications and
Signal Processing (WCSP), pp. 1–5, Xi’an, China, 2019.

[6] Y. Wang, Z. Hu, X. Wen, Z. Lu, and J. Miao, “Minimizing data
collection time with collaborative UAVs in wireless sensor net-
works,” IEEE Access, vol. 8, pp. 98659–98669, 2020.

[7] M. O. U. Zhiyu, Y. Zhang, F. A. N. Dian, L. I. U. Jun, and G. A.
O. Feifei, “Research on the UAV-aided data collection and tra-
jectory design based on the deep reinforcement learning,” Chi-
nese Journal on Internet of Things, vol. 4, no. 3, pp. 42–51,
2020.

[8] J. Zhang, “Research on multi-UAV scheduling algorithms for
wireless sensor network data collection,” Modern Computer,
vol. 4, pp. 33–37, 2021.

[9] W. Chen, S. Zhao, R. Zhang, Y. Chen, and L. Yang, “UAV-
assisted data collection with nonorthogonal multiple access,”
IEEE Internet of Things Journal, vol. 8, no. 1, pp. 501–511,
2021.

[10] X. Xu, H. Zhao, H. Yao, and S. Wang, “A Blockchain-enabled
energy-efficient data collection system for UAV-assisted IoT,”
IEEE Internet of Things Journal, vol. 8, no. 4, pp. 2431–2443,
2021.

[11] G. Zhu, L. Guo, C. Dong, and X. Mu, “Mission time minimiza-
tion for multi-UAV-enabled data collection with interference,”
in 2021 IEEE Wireless Communications and Networking Con-
ference (WCNC), pp. 1–6, Nanjing, China, 2021.

[12] R. Ma, R. Wang, G. Liu, H. H. Chen, and Z. Qin, “UAV-
assisted data collection for ocean monitoring networks,” IEEE
Network, vol. 34, no. 6, pp. 250–258, 2020.

[13] D. Ebrahimi, S. Sharafeddine, P. Ho, and C. Assi, “UAV-aided
projection-based compressive data gathering in wireless sensor
networks,” IEEE Internet of Things Journal, vol. 6, no. 2,
pp. 1893–1905, 2019.

[14] Z. Du, C. Wu, T. Yoshinaga et al., “A routing protocol for
UAV-assisted vehicular delay tolerant networks,” IEEE Open
Journal of the Computer Society, vol. 2, pp. 85–98, 2021.

[15] Z. Qi, Z. Shao, Y. S. Ping, L. M. Hiot, and Y. K. Leong, “An
improved heuristic algorithm for UAV path planning in 3D
environment,” 2010 Second International Conference on Intel-
ligent Human-Machine Systems and Cybernetics, vol. 2,
pp. 258–261, 2010.

[16] X. Chen, C. Wu, T. Chen et al., “Information freshness-aware
task offloading in air-ground integrated edge computing sys-
tems,” IEEE Journal on Selected Areas in Communications,
vol. 40, no. 1, pp. 243–258, 2022.

[17] C. Wu, Z. Liu, F. Liu, T. Yoshinaga, Y. Ji, and J. Li, “Collabora-
tive learning of communication routes in edge-enabled multi-
access vehicular environment,” IEEE Transactions on Cogni-
tive Communications and Networking, vol. 6, no. 4,
pp. 1155–1165, 2020.

[18] P. Tong, J. Liu, X. Wang, B. Bai, and H. Dai, “Deep reinforce-
ment learning for efficient data collection in UAV-aided Inter-
net of Things,” in 2020 IEEE International Conference on
Communications Workshops (ICC Workshops), pp. 1–6, Dub-
lin, Ireland, 2020.

[19] J. Zhang and Y. Sui, “Key technology of TDMA—the technol-
ogy of time slot,” Applied Science and Technology, vol. 28,
no. 6, pp. 15–17, 2001.

[20] P. Nayak and A. Devulapalli, “A fuzzy logic-based clustering
algorithm for WSN to extend the network lifetime,” IEEE Sen-
sors Journal, vol. 16, no. 1, pp. 137–144, 2016.

[21] Z. Li, Y. Tao, Y. Zhou, and L. Yang, “Energy-balanced multi-
hop cluster routing protocol based on energy harvesting,”
Computer Science, vol. 47, no. S2, pp. 296–302, 2020.

[22] C. Gao, B. Feng, and L. Zhu, “Reviews of the meta-heuristic
algorithms for TSP,” Control and Decision, vol. 21, no. 3,
pp. 241–247, 2006.

[23] H. Chen, J. Wu, J. Wang, and B. Chen, “Mechanism study of
simulated annealing algorithm,” Journal of Tongji University
(Natural Science), vol. 32, no. 6, pp. 802–805, 2004.

[24] W. R. Heinzelman, A. Chandrakasan, and H. Balakrishnan,
“Energy-efficient communication protocol for wireless micro-
sensor networks,” Proceedings of the 33rd Annual Hawaii
International Conference on System Sciences, vol. 2, p. 10, 2000.

[25] J. Mi, X.Wen, C. Sun, Z. Lu, andW. Jing, “Energy-efficient and
low package loss clustering in UAV-assisted WSN using
Kmeans++ and fuzzy logic,” in 2019 IEEE/CIC International
Conference on Communications Workshops in China (ICCC
Workshops), pp. 210–215, Changchun, China, 2019.

[26] M. Shen, Research on Wireless Sensor Network Communica-
tion Based on Unmanned Aerial Vehicle, Hangzhou Dianzi
University, 2019.

19Wireless Communications and Mobile Computing


	Data Collection Method of Energy Adaptive Distributed Wireless Sensor Networks Based on UAV
	1. Introduction
	2. Related Work
	2.1. Data Collection Method of Sensor Network
	2.2. Typical UAV Path Planning Method

	3. System Model
	4. Data Collection of UAV-Based Sensor Network
	4.1. Sensor Clustering and Cluster Head Election in the Initial State
	4.2. UAV-Assisted Cluster Head Election and Data Collection in a Single-Hop Scenario
	4.3. UAV-Assisted Data Collection in a Multihop Scenario
	4.4. Energy Consumption Model of Wireless Sensor Networks

	5. UAV Path Planning Based on Improved ACO
	6. Simulation Experiment and Result Analysis
	7. Conclusion and Outlook
	Data Availability
	Conflicts of Interest
	Acknowledgments

