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Object detection in the 2D domain is well developed owing to the wide application of CMOS image sensors and the great success
of deep learning technologies in recent years. However, under circumstances such as autonomous driving, the variation of weather
conditions and light conditions makes it impossible to perform reliable detection using regular 2D image sensors. 3D data
generated by a Lidar or Radar is more robust to such environments, hence serving as an essential complement to 2D data in
such scenarios. Well-established anchor-based detectors in the 2D domain suffer from time-consuming anchor configuration
and cannot be exploited directly to process 3D data. This paper proposes an anchor-free network that encodes the raw point
cloud into a hierarchical pillar representation to locate objects. Without predefined anchors and NMS postprocessing, our
method directly predicts the center points and box properties to accomplish the detection task efficiently. In addition, a PCA-
based initialization for the convolutional kernel is proposed to accelerate the training process. Experiments are implemented
on the KITTI benchmark, and our method can achieve competitive performance with other anchor-based methods.
Comprehensive ablation studies further verify the validity and rationality of each part of the proposed method.

1. Introduction

Object detection is one of the most important tasks in the
field of computer vision, which has a wide range of applica-
tions in individual recognition, content understanding,
autonomous driving, etc. In general, the task of object detec-
tion is to mark locations and determine categories of key tar-
gets with bounding boxes. In the past decades, huge 2D data
have been collected from widely applied commercial 2D
image sensors. Taking advantage of the cutting-edge deep
learning technology, many convolutional neural network-
(CNN-) based algorithms [1–9] have been designed for 2D
object detection and have shown their superiority and effec-
tiveness. Because of the 3D nature of many real-world prob-
lems, 3D object detection attracts more and more attention.

3D data, usually represented as point clouds, can effec-
tively depict the real world with accurate geometry informa-
tion, which is robust to changing light conditions, different
object textural, and color variation. With the increasing

availability, 3D data has been serving as an essential comple-
ment to general 2D sensors in many scenarios. However, the
sparse and unordered structure of point clouds could not be
directly processed by a conventional CNN, which urges
novel network structures to encode the point clouds.

Considering point clouds’ irregular and sparse proper-
ties, most existing data-driven 3D object detection
approaches can be categorized into point-based and voxel-
based ones. Inspired by the pioneering work PointNet [10]
and PointNet++ [11], point-based methods can take the
raw point clouds as input to extract features without any
data transformation or information loss. However, the
real-time performance and effectiveness of point-based
methods are not satisfactory due to the time-consuming
point sampling procedure and the poor encoder perceptual
ability. On the other hand, voxel-based methods [12, 13]
transform the point clouds into some regular data represen-
tations which can be processed by CNN. Furthermore, the
introduction of sparse convolution dramatically improves
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the performance and speed of voxel-based methods. Never-
theless, these methods are sensitive to the parameters of
voxel partition and cause local information loss in raw point
clouds inevitably. Recently, PointPillars [14] utilizes the ver-
tical columns called pillars to organize point clouds and
avoid complicated 3D convolutional operations. It alleviates
the parameter configuration problem in preprocessing and
shows considerable accuracy and speed. Pillar-based
methods organize the raw point cloud into two-
dimensional regular grids so that traditional 2D convolution
operations can be applied. It is significantly effective for
Lidar-based sparse point clouds; however, it is prone to
missing small or far-away objects. Inspired by this, this
paper focuses on how to solve the local information loss
problem based on a pillar-based object detection model.

Current popular voxel-based (including pillar-based)
methods often leverage anchors, which are some manually
designed bounding boxes, to accomplish detecting and clas-
sifying. Although anchors provide some useful priors and
enable the methods to predict offsets directly, applying them
in the 3D objection detection is difficult. First, hyperpara-
meters including aspect ratios, orientations, and anchor
numbers needed to be predetermined and adjusted accord-
ingly to diverse datasets. Manual hyperparameter tuning is
time-consuming and inaccurate, which limits the applicabil-
ity. Second, a great number of anchor boxes are generated
during training and inference so that all possible locations
of the ground truth bounding boxes can be covered. This
introduces huge memory consumption and a serious class
imbalance between the positive and negative anchors. Third,
the necessary Non-Maximum Suppression (NMS) for deter-
mining the final detection results can lead to an extra com-
putational burden.

One solution is to employ an anchor-free detector.
Recently, anchor-free detectors have obtained continuous
developments and breakthroughs in the field of 2D object
detection [15, 16]. They directly estimate the key points
and sizes of the objects without hyperparameter configura-
tion and the generation of anchors. Later, some anchor-
free 3D object detection approaches [17] have been pro-
posed and outperform classical anchor-based ones.

All in all, the pillar-based approach improves voxel-
based approaches by encoding the raw data into a lower
dimensional representation. It has a faster inference speed
but at the cost of local information loss. The anchor-free
detector can learn from the data rather than relying on pre-
defined anchors and boxes. It can regress more accurate
bounding boxes and has achieved great success in 2D object
detection, it deserves more investigation in the 3D domain.

Motivated by these facts, this paper proposes a hierarchi-
cal pillar-based anchor-free 3D object detection model.
Compare with other pillar-based approaches, we further
partition the pillars into subpillars and learn the hierarchical
features of local regions. Then, the proposed method aggre-
gates multilevel features to generate high-quality spatial rep-
resentations with the CNN backbone. In addition to existing
anchor-free approaches, we introduce an improved center
point allocation strategy to further improve the accuracy
and alleviate the positive-negative imbalance problem. At

the training stage, we exploit a principal component analy-
sis- (PCA-) based method to initialize the convolutional ker-
nels. At the inference stage, our model can generate the
center location directly and avoid the NMS for postproces-
sing. Experiments and ablation studies are carried out on a
well-known benchmark KITTI [18] to evaluate the perfor-
mance of the proposed method.

The contributions of this paper can be summarized as
follows:

(1) An anchor-free detector for point cloud 3D object
detection without NMS is proposed. It can be end-
to-end joint optimized and achieve competitive per-
formance with other anchor-based methods

(2) The point cloud is encoded into a hierarchical pillar-
based feature representation, which can capture the
local structure and mitigate the information loss in
preprocessing. Subsequent multilevel feature aggre-
gation in the CNN backbone can extract robust fea-
tures and enhance detection accuracy

(3) Our proposed PCA-based initialization [19] is incor-
porated into the CNN backbone for 3D objection
detection. The convolutional kernels can be initial-
ized with more informative values, which accelerates
the training process of CNN and reduces the effect of
gradient diffusion caused by random parameters

(4) A novel center point allocation strategy is designed
to train the model. Experimental results demonstrate
its effectiveness in the 3D object detection problem

The rest of the paper is organized as follows: Section 2
describes the related works. Section 3 provides an introduc-
tion to the proposed method for 3D object detection. Exper-
imental results on the dataset are presented and discussed in
Section 4. Section 5 concludes the paper.

2. Related Works

2.1. 3D Object Detection with Point Clouds. A point cloud is
a set of points with sparse distribution and irregularity.
PointNet [10] is the pioneer to take raw point clouds as
input and extract 3D features by shared multilayer percep-
trons. PointNet++ [11] further proposes the set abstraction
levels to capture local patterns among the point clouds. Suc-
cessive object detection works [20–22] based on the above-
mentioned PointNet or PointNet++ model to process origi-
nal points directly are called point-based approaches. [20]
detects the 2D proposals from the RGB images and imple-
ments the 3D frustum projection on them. Then, a PointNet
is applied to extract ROI features of the points in frustums
and refine the 3D bounding box. [21] directly proposes 3D
proposals from the point cloud and combines the local spa-
tial features learned on canonical coordinates with global
semantic features to obtain better locations. [22] produces
some initial predictions with voxel representation as input
and generates the fused features of interior points for further
refinement. [23] proposed a two-stage 3D object detection
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approach from sparse-to-dense. In the first stage, it makes
proposals at all the foreground points; then, in the second
stage, it incorporates the point cloud feature and the seman-
tic feature to refine the bounding box. [24] improves the set
abstraction layer in PointNet++ and designs a novel sam-
pling strategy called F-FPS. Then, it uses an anchor-free
detector to regress the object’s position. These point-based
methods prefer to design a second fine-tuning stage to
regress a more accurate box position locating. Although they
show impressive performance, they trade off efficiency for
accuracy and are not suitable for real-time applications.

Another category falls into voxel-based approaches, which
preprocesses the raw point clouds into some compact represen-
tations. VoxelNet [12] organizes the points into voxels and then
extracts 3D dense features through the voxel feature encoding
(VFE) layer and 3D convolution. SECOND [13] utilizes a sparse
convolution network to accelerate the convolution operations
in training and inference. Recently, PointPillars [14] generates
2D pseudoimages by encoding point clouds on vertical columns
(pillars) and eliminates the time-consuming 3D convolution.
Most of the voxel-based methods are one-stage detectors with
high computational efficiency but suffer from the information
loss problem due to voxelization. [25] proposed a two-stage
pillar-based approach to address the imbalance issue caused
by anchors; it incorporates the concept of the pillars and multi-
view feature learning; then, a pillar-to-point projection is
employed to refine the result. Our method is aimed at preserv-
ing more local information using a hierarchical pillar represen-
tation at a minimal cost of speed.

2.2. Anchor-Free Object Detection. Most of the existing
object detection methods design a large number of prede-
fined anchors for bounding box generation, which results
in complex hyperparameter configuration and huge memory
consumption. Anchor-free detectors directly predict the key
points and sizes of the bounding boxes with high speed. The
success of anchor-free methods in 2D object detection [15,
16] inspired researchers to investigate anchor-free 3D detec-
tors. VoteNet [26] aggregates the votes of object centroids to
obtain the object proposals directly from point clouds. But
VoteNet is not a completely anchor-free model for the rea-
son that it employs some anchor templates in the size pre-
diction process. Later, [17] proposes an anchor-free
detector and further simplifies the postprocessing to increase
the detection efficiency. However, the performance of
anchor-free approaches highly depends on the central point
allocation strategy and 3D bounding box regression.

All the related works are summarized in Table 1.

3. Proposed Method

In this section, we introduce the proposed hierarchical
pillar-based anchor-free 3D object detection model. As
shown in Figure 1, the overall network is composed of the
following parts: a point cloud encoder that transforms the
unordered point clouds into 2D pseudoimages; a CNN back-
bone based on PCA initialization to further extract features,
and anchor-free detectors. In the following, we describe each
part of the proposed method in detail.

3.1. Point Cloud Encoder. Our proposed point cloud encoder
is based on the high-efficiency PointPillars [14] but can fur-
ther capture the local structure and mitigate the information
loss in the point cloud encoding process. The input point
cloud P is a set of points with irregular distribution in
Euclidean space.

First, P is discretized into W ∗H vertical columns with
uniform grids in the x-y plane. Considering the sparsity of
point cloud data, we apply zero-padding when one pillar con-
tains too few points and K nonempty pillars are preserved.
Second, several hierarchical feature extraction (HFE) levels
are introduced to group the points into local patterns and
aggregate the information. At the first HFE level, each pillar
with enough points is divided intoM amount of evenly height
subpillars according to the resolution parameters in the verti-
cal direction. Following [14], the points in each subpillar are
augmented as a 9-dimensional representation and are used
to calculate the average vertical coordinate �zi. Random sam-
pling is implemented on the subpillars with more than N
amount of points. Then, the selected subpillars are applied
with a linear layer followed by a batch normalization (BN)
layer, a ReLU layer, and a max operation to produce an output
subpillar feature.

In the subsequent HFE levels, we employ the FPS algo-
rithm [11] to sample the input subpillars according to the
average vertical coordinates. Then, we group the informa-
tion of two adjacent subpillars in the vertical direction for
each selected subpillar to generate fewer larger subpillars.
By using the identical structure in the first HFE level, we
can further obtain the corresponding output features in the
current level i. Through these hierarchical groupings of the
points and subpillars, our encoder can abstract local patterns
of the points and retain the information of vertical direction
in the final point cloud feature with the size (C, K). At last, a
pseudoimage of size (C,H,W) is created by scattering the
feature to the raw pillar locations.

3.2. CNN Backbone Based on PCA Initialization. Inspired by
our previous work [17, 19], we design a CNN backbone based
on PCA initialization to create the dense features for the fol-
lowing anchor-free detector. As depicted in Figure 2, the back-
bone is composed of the top-down part and the upsampling-
concatenation part. The top-down part can be formulated as
several blocks with 2D convolution and downsampling opera-
tions to extract features with high semantic and decreasing
spatial size. Each block is applied with several convolution
layers, a BN layer, and a ReLU layer sequentially. The convo-
lutional kernels are all initialized by PCA as follows:

For a convolution layer with Ci input channels and Co
output channels, we firstly randomly divide the input feature
maps into Co groups. Then, we implement a fully covered
sampling on each feature map group with the kernel size
to obtain the patch sets. After mean normalization, the
covariance matrix and eigenvector matrix for each patch
set is calculated. And the eigenvector with the largest eigen-
value is selected to initialize the weights of convolution ker-
nels for each group, the initialization value is along which
the data has the maximum variance, i.e., maximum informa-
tion entropy of the sampled patches.
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The features produced by each block are then
upsampled to the same spatial size by applying transposed
convolution followed by BN and ReLU. Finally, features
from various blocks are concatenated to the final point
cloud feature.

3.3. Anchor-Free Detector. The proposed anchor-free detec-
tor contains two modules to accomplish the proposal gener-
ating and classification: (1) a center point classification
module that produces the keypoint heatmap in the x-y plane
for each object category and (2) a bounding box annotation

Table 1: Summary of methods for 3D object detection.

Methods Data representation Detector Key innovation

[12] Voxel-based Anchor-based
(1) Voxel feature encoding layer
(2) 3D CNN

[13] Voxel-based Anchor-based
(1) 3D sparse convolution
(2) Better data augmentation

[14] Pillar-based Anchor-based
(1) Voxel division without vertical direction
(2) Avoid 3D convolution operation

[25] Pillar-based Anchor-free
(1) Aligned pillar-to-point projection
(2) Multiview feature learning

[17] Voxel-based Anchor-free Anchor-free detector

[26] Point-based Anchor-based Deep Hough voting

[20] Point-based Anchor-based
(1) Introduction of RGB images
(2) Frustum projection

[21] Point-based Anchor-based
(1) Rough 3D proposals based on raw point cloud
(2) Fuse local spatial features and global semantic features on the second stage

[22] Voxel-based Anchor-based
(1) Voxel-based first-stage prediction
(2) Combined with point features for refinement

[23] Point-based Anchor-based
(1) Spherical anchor
(2) PointsPool

[24] Point-based Anchor-free
(3) Feature-based furthest point sampling (F-FPS)
(4) 3D centerness assignment strategy
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Figure 1: The network architecture of a hierarchical pillar-based anchor-free 3D detection model.
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module that regresses offset, 3D object size properties, and
the orientation. All heads of the two modules share the com-
mon features from the backbone, and each of them consists
of an independent 3 ∗ 3 convolution layer and a 1 ∗ 1 convo-
lution layer.

3.3.1. Center Point Classification Module. The center point
classification module generates the keypoint heatmap H,
which describes the object centers in the x-y plane. The 3D
ground truth bounding box parameters are converted to
the center point location label in the discretized x-y coordi-
nate system by applying origin location subtraction, pillar
side length division, and floor operation.

In the traditional center point allocation, there is only
one pixel selected to be the positive sample for each ground
truth center. This results in a severe positive and negative
sample imbalance in center point classification. To mitigate
the problem, we calculate the heatmap label for each pixel
of the pseudoimage as follows and propose an improved
center point allocation strategy:

Hx,y,c =

1, if d = 0,

1 − 1
r x, yð Þ , if d = 1,

1
d
, else,

8
>>>>><
>>>>>:

ð1Þ

where rðx, yÞ is the diagonal length of the ground truth 2D
bounding box and d is the maximum Euclidean distance
between the pixel ðx, yÞ of the pseudoimage and the ground
truth 2D bounding box centroid along both x- and y-axes in
BEV.

Because some pixels around the ground truth center
location can create a bounding box with sufficient IoU with
the ground truth box, we divide the pixels of the pseudo-
image into positive set P and negative set N following the
threshold values. All other pixels are ignored in the training
stage. To further balance the gradient of positive and nega-
tive sets, we introduce the following focal loss [9] as the cen-
ter classification loss to train the heatmap.

Lcls = −
1
N

〠
x,y,c

1 − Ĥx,y,c
� �α log Ĥx,y,c

� �
, if Hx,y,c > tpos,

1 −Hx,y,c
� �β Ĥx,y,c

� �α log 1 − Ĥx,y,c
� �

, if Hx,y,c < tneg,
0, else,

8
>><
>>:

ð2Þ

where N is the number of center points in the detection
range and α, β are the hyperparameters set to 2 and 4 in
the experiments.

3.3.2. Bounding Box Annotation Module. This module
regresses the corresponding bounding box annotation for
each positive center point, which includes a two-
dimensional center point offset regression, a z-axis center
coordination regression, a three-dimensional object size
regression, and a two-dimensional orientation regression.

There exists a discretization error when transforming the
float center point locations to 2D pillar coordinates in the
previous center point classification module. Moreover, the
increase in positive center point samples and some wrong
predictions in the heatmap can lead to an inaccurate center
point location in BEV. To recover the deviation caused by
these reasons and obtain more precise object centers, the off-
set head generates the offset map Ô for the center points in
the x-y plane which is shared by all object categories. A
logistic function is applied to constrain the output values
to fall between 0 and 1. We use the L1 loss [4] as the offset
loss.

Loff =
1
N
〠
pc

〠
i

φ Ô~pc ,i
� �

−Opc ,i

���
���: ð3Þ

To further obtain the center points in 3D Lidar coordi-
nate system, the z-axis coordinate head regresses the center
location in the z-axis. This head creates a z-value map Z
for the center points which are shared by all object catego-
ries. Due to the unconstrained z-value regression range,
the gradients of inliers and outliers are imbalanced in the
traditional L1 loss, making it difficult to regress. Following
[27], we use the balanced L1 loss to train the z-axis coordi-
nate.

Lz =
1
N
〠
pc

Lb Ẑ~pc
− Zpc

���
���

� �
: ð4Þ

where

Lb xð Þ =
a
b

b xj j + 1ð Þ ln b xj j + 1ð Þ − a xj j, if xj j < 1,

γ xj j + C, otherwise,

8
<
:

ð5Þ

where a, b and γ are the hyperparameters, which satisfy al

Input feature map

Block 1 Block 2
Final point

cloud feature

PCA initialization PCA initialization 3 × 3 conv

1 × 1 conv

Deconv

Figure 2: The CNN backbone structure of the proposed method.
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nðb + 1Þ = γ and are set to a = 0:5, γ = 1:5 in the
experiments.

We also regress the length, width, and height properties
for the bounding box in the object size head. Similar to z
-values, the size loss is in a balanced L1 form.

Lsize =
1
N
〠
pc

Lb Ŝ~pc − Spc

���
���

� �
, ð6Þ

where Ŝ denotes predicted object sizes and S is the ground
truth values.

Finally, the yaw rotation around the z-axis is predicted
in the orientation head. To avoid angle confusion, we regress
two trigonometric functions (sin ðθÞ and cos ðθÞ) for the
rotation angle θ and decode it in the inference stage. We
employ the L1 loss as the orientation loss to train the orien-
tation regression.

Lori =
1
N
〠
pc

〠
i

φ R̂~pc ,i
� �

− Rpc,i

���
���, ð7Þ

where R̂ represents the predicted orientation feature map
and R is the ground truth values.

The overall loss for the first stage of the proposed net-
work is defined as follows:

L1 = λclsLcls + λoffLoff + λzLz + λsizeLsize + λoriLori, ð8Þ

where λ denotes the weight for the center point classification
loss and the regression losses.

3.4. Inference Stage. In this stage, we employ the max pool-
ing operation to filter the peaks in the generated heatmap
as the predicted centers, which is efficient and can avoid
the time-consuming NMS. The inference algorithm for
generating the detected 3D bounding boxes is shown in
Algorithm 1.

4. Experiments and Result Analysis

In this section, we describe the dataset and summarize the
implementation details first. Moreover, for verifying the
validity and improvement of our method in the 3D object

detection problems, we provide the ablation studies and
compare the performance with other detection models on
the dataset.

4.1. Dataset and Implementation Details. We employ the
KITTI benchmark dataset [18] to evaluate the proposed
method for the 3D object detection problem and we only
use the Lidar point clouds. The dataset has a total number
of 7,481 training samples with annotation and 7,518 testing
samples without labeling. Following the standard conven-
tion, we split them into 3,712 samples for the training set
and 3,769 samples for the validation set. Three classes of
objects, i.e., cars, pedestrians, and cyclists, have been anno-
tated. Since the car class has the most samples and diversity,
as advocated by other researchers [17, 22], only the car cat-
egory is taken into consideration during the evaluation in
this paper. Following the official evaluation protocol, average
precision (AP) with the IoU threshold of 0.7 is selected as
the metric for the car class.

For KITTI car detection, we followed PointPillars [14]
to use a detection range [ð0,70:4Þ, ð−40, 40Þ, and ð−3, 1Þ]
along the X-, Y-, and Z-axes. The pillar side length is
set to 0.16m in the x-y plane. The max number of pillars
and max amount of points in each pillar is set to 12,000
and 100, respectively. We arrange two HFE levels in the
point cloud encoder. Two CNN blocks are applied to gen-
erate the pseudoimage, the number of convolutional layers
is set to 7 and 8 for each block, and the number of feature
map channels is set to 64 and 128 for each block, respec-
tively. We utilize the Adam optimizer to train the net-
work. The batch size is set to 4, the learning rate is set
to 0.0001, and trained for 180 epochs. At inference time,
the 3 ∗ 3 max pooling and AND operations are applied
to obtain the center points.

4.2. Ablation Studies. In this section, we will pay attention to
verifying the effectiveness and reliability of different parts in
the proposed method for the 3D object detection problem.
The ablation studies are implemented in four aspects and
the baseline model is a simplified version of the proposed
method, in which the normal pillar representation and the
traditional center point allocation strategy are applied, simi-
lar to PointPillars.

Input:P̂cðX̂, ŶÞ: the set of detected center locations of
category c in BEV; nc: the number detected centers of
category c; a: the pillar side length

Output: Detected bounding box set B
1: fori = 1, 2, 3,⋯, ncdo
2: Obtain the corresponding x-y offset, z coordinate, size,

orientation and fine-tune offset:

ðôðxÞi , ôðyÞi Þ, ẑi, ð̂li, ŵi, ĥiÞ, ðcsin i, ccos iÞ, ð f̂
ðzÞ
i , f̂ ðhÞi Þ

3: Bi = ðaðx̂i + 0:5Þ + ôðxÞi , aðŷi + 0:5Þ + ôðyÞi , ẑi + f̂
ðzÞ
i , l̂i, ŵi, ĥi + f̂

ðzÞ
i , atan2ðcsin i, ccos iÞÞ

4: end for

Algorithm 1: The detected 3D bounding box generating algorithm.
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The studies are carried out on a small subset of the
KITTI validation dataset, and the results are summarized
in Table 2.

To evaluate the effectiveness of the proposed point cloud
encode network, we replace the traditional pillar-based
encoder with it and denote it as method2 (m2). Compared
with the baseline method, m2 takes 1.95x time and gets a
2.45% mAP gain. It proves that vertical division can improve
the method further.

Method3 (m3) improves m2 with PCA initialization of
the CNN kernels. As shown in Table 2, m3 slightly improves
m2 on both time and accuracy.

Method4 (m4) employs the anchor-free detector but
without the size loss Lsize. Anchor-free detector reduces the
inference time significantly owing to the avoidance of gener-
ating a large number of anchor boxes and also improves the
mAP slightly.

Mehtod5 (HPAF) adds the size loss term to the total loss
in addition to method4. With the loss term added, the final
proposed HPAF achieves the best mAP among all the con-
figurations evaluated and spends no more time than m4.

4.3. Comparison with Other Methods. To further test the
effectiveness and robustness of the proposed model in 3D
object detection, we compare it with the state-of-the-art ones
including several one-stage methods and some two-stage
detectors. The AP results for 3D detection and BEV detec-
tion on the KITTI test set are shown in Table 3. As it can
be seen from Table 3, most of the two-stage methods outper-
form the one-stage ones. This indicates the introduction of
the second stage can contribute to refining the object loca-
tion in the first stage and enhance the detection perfor-
mance. However, these two-stage methods are time-
consuming and model-complicated. Among all the one-
stage methods, the proposed method outperforms VoxelNet,
SECOND, PointPillars, and AFDet by 15.57%, 4.29%, 0.89%,
and 5.40% for 3D mAP (IoU = 0:7), respectively. On the
other hand, the anchor-based methods need to predefine a
large number of anchors and employ postprocessing to filter
the predicted bounding boxes, which brings the computa-
tional burden and shows poor speed performance. Though
the proposed anchor-free method is outperformed by most
two-stage methods, it achieves competitive AP results com-
pared to the SOTA one-stage methods and shows its superi-
ority concerning detection speed, as illustrated in Figure 3.

Table 2: Experiment configuration evaluated.

Key innovations Baseline m2 m3 m4 HPAF

HFE × √ √ √ √
PCA initialization × × √ √ √
Anchor-free (w/o size loss term) × × × √ ×
Anchor-free (w/size loss term) × × × × √
Inference time (ms) 23 45 42 27 28

mAP@IOU = 0:7 %ð Þ 74.73 76.88 77.17 77.22 78.65

Table 3: Detection performance comparison among several methods on KITTI validation set (car class).

Methods Modality Anchor free Stage Speed (Hz)
3D detection AP (IoU = 0:7

)
BEV detection AP

(IoU = 0:7)
Easy Moderate Hard Easy Moderate Hard

F-PointNet [20] L+C N Two 5.9 83.76 70.92 63.65 88.16 84.02 76.44

PointRCNN [21] L N Two 10 89.19 78.85 77.91 90.21 87.89 85.51

Fast-PointRCNN [22] L N Two 15.4 89.12 79 77.48 90.12 88.1 86.24

VoxelNet [12] L N One 4.4 81.97 65.46 62.85 89.6 84.81 78.57

SECOND [13] L N One 20 87.43 76.48 69.1 89.96 87.07 79.66

PointPillars [14] L N One 42 87.44 77.67 75.76 89.88 87.43 85.01

AFDet [17] L Y One 35 85.68 75.57 69.31 89.42 85.45 80.56

Ours L Y One 35.7 88.65 78.20 76.17 90.04 87.80 84.14

150
Inference time (ms)

200 250100500
68

70

m
A

P@
Io

U
 =

 0
.7

72

74

76

78

80

82

VoxelNet
Second
Point pillars

AFDet
Ours

Figure 3: mAP versus inference time of one-stage methods.
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5. Conclusion

In this paper, we proposed a hierarchical pillar-based
anchor-free detector to address the 3D object detection task.
It encodes the raw point cloud as a hierarchical pillar repre-
sentation and predicts object center points directly without
predefined anchors. Experiments are conducted on the
KITTI dataset to examine the performance. Our method
can achieve competitive performance with the anchor-
based ones and speed up the model efficiency by introducing
PCA-based initialization and avoiding NMS postprocessing.

However, like other pillar-based methods, organizing
point cloud into global structures, such as voxels and pillars,
will cause local information loss inevitably. As a result, the
hyperparameters, such as voxel/pillar size, and the number
of hierarchy levels should be carefully tuned to fit into the
dataset so that one can get the best performance. Further
work will be focused on solving the 3D object detection
problems with the incorporation of RGB images and devel-
oping a more suitable loss function for object parameter
regression to improve the accuracy.
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