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The result of discrete element simulations has tens of thousands of time frames and hundreds of billions of interacting particles in
each frame, which may lead to very large data sets. The existing postprocessing visualization technology cannot deal with such
large-scale data, which will bring a negative impact to the simulation, affect the simulation speed, and make it difficult to
realize the runtime steering. In this work, an attempt has been made to optimize visualization methods by directly accessing
DEM simulation results, data exchanging straightly between GPUs, and accelerating pixel composition by GPU. The key
feature of this work is that the entire process from DEM simulation to graphical rendering and image composition is done
inside the same GPU.

1. Introduction

The particle system is common in daily life, industrial pro-
cess, ecological environment, and other aspects. With the
rapid development of computer technology, discrete element
method (DEM) simulation proposed in the 1970s has been
widely used in particle systems [1, 2]. This method plays a
significant role in the engineering and technology design of
mining, architecture, pharmaceutical, and food processing
[3–5].

However, the output of DEM simulation is complex and
not intuitive, which is difficult to understand directly [6]. By
showing the results of simulations graphically, scientific
visualization can make many abstract, difficult-to-
understand principles, or rules easy to understand, and the
tedious and boring data becomes lively and interesting.
Therefore, scientific computing visualization is a crucial part
of the scientific discovery process, while DEM simulation is
no exception.

Traditional visualization of DEM simulation generally
adopts a postprocessing mode [6, 7], which is to save the

results of simulation time steps to the storage device in a
predefined frequency during the simulation. After that, the
data can be visualized and analyzed when needed. There
are three prominent problems in this manner: (1) the simu-
lation result data must be sampled in both time and space
dimensions due to the limited storage capacity. So, the valid
information may be discarded that the scientific data integ-
rity cannot be guaranteed; (2) due to the limited perfor-
mance of disk I/O, operations such as transmission,
management, and partition preprocessing of hyperscale data
between compute nodes, disk arrays, and visualization nodes
consume a large amount of system resources and time,
which greatly reduces the efficiency of DEM simulation
and fails to meet the requirements of real-time data analysis;
(3) the simulation status cannot be monitored in real-time
mode.

In recent years, computer hardware capability has been
continuously improved, which enables scientists to solve
more complex and larger scientific problems. At the same
time, the generated data from simulation has also exploded.
Now, the size of data from one simulation has reached the
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order of TB/PB. However, the speedup of supercomputer’s I/
O cannot catch up with that of computation. In order to deal
with this situation, an idea has emerged that running simu-
lation and visualization on the same parallel supercomputer
in order to share data, which is so-called in situ visualization.

At present, the number of particles simulated by DEM
can reach 100 billion [8], and the real-time storage of the
data will seriously affect the simulation process. In situ visu-
alization refers to a different approach with the traditional
postprocessing: the data is processed at the same place and
same time while it is being produced by the simulation,
allowing visualization to be done without involving disk I/
O. This effectively reduces data I/O overhead and meets
the needs of large-scale numerical simulation real-time visu-
alization. The in situ visualization deals with the result via
direct access to the simulation’s memory without occupying
extra disk space.

There are many advantages to in situ visualization.
Firstly, in situ visualization can deal with simulation results
at smaller intervals, which may help to more detailed scien-
tific discoveries. Since the disk space is limited and data I/O
takes up a lot of time, simulation limits the number of steps
they output for postprocessing visualization. But in situ visu-
alization can work at a low cost and has a small influence on
the simulation program. In addition, some simulations gen-
erate so much data that the data size must be reduced, for
example, by subsampling, but this is not necessary for in situ
visualization. Last but not least, in situ visualization is deeply
coupled to the simulation, so it can be used to either monitor
or steer simulations.

In practice, this approach is rarely used for two reasons.
First, most scientists are reluctant to use their supercom-
puter for visualization, especially when computing resource
is expensive. Second, combining parallel simulation pro-
grams with visualization programs would require a lot of
effort. However, in situ visualization is a viable solution to
the upcoming extreme-scale data problem in the field of sci-
entific supercomputing, and it will be the inevitable direction
for future scientific computing visualization.

The main contributions of this paper are summarized as
follows:

(1) This paper proposes a novel parallel in situ visualiza-
tion framework for DEM simulation program based
on GPU. The entire process from data generation to
graphics rendering to image compositing is all com-
pleted in GPU, minimizing the visualization time

(2) Based on C + +, CUDA, OpenGL, and other lan-
guages or libraries, this work solves specific problems
such as parallel off screen rendering and data trans-
fer between GPUs and realizes the above-
mentioned in situ visualization framework

(3) The paper has done extensive tests on the imple-
mented program. The test results show that com-
pared with traditional visualization programs, this
method has an order of magnitude improvement in
time. And this method has good scalability, the time

required for visualization is proportional to the
image resolution, and the higher the resolution, the
shorter the visualization time per unit resolution

2. Related Work

In recent years, with the rapid increase in the amount of
simulation data, in situ visualization method has been paid
more and more attention and has gradually been widely
used. In 2010, Yu et al. [9] proposed a customized copro-
cessing in situ processing method, which was applied to a
turbulent combustion simulation and ran on the Cray XT5
supercomputer, using up to 15260 CPU cores. In 2013, Dor-
ier et al. [10] designed and implemented an in situ visualiza-
tion framework called Damaris and tested it in the CM1
atmospheric simulation, achieving good results. In 2014,
Ahrens et al. [11] proposed a highly interactive, image-
based in situ visualization method, which promoted the
exploration of simulation results and significantly reduced
data movement and storage. In 2017, Camata et al. [12] used
Paraview Catalyst to visualize turbine current simulation in
situ and found that both in situ visualization and in-transit
data analysis are negligible and enable monitoring the sedi-
ment appearance at runtime.

The general in situ visualization framework meets the
needs of in situ visualization of many simulation programs
to some extent. In 2011, Fabian et al. [13] proposed a general
in situ visualization framework, Catalyst. The framework is
based on VTK graphics library and ParaView. Through the
integration of Catalyst plug-ins, many simulations add the
function of in situ visualization. In 2011, Kuhlen et al. [14]
developed the in situ visualization library Libsim, which is
based on VisIt visualization tools to enable simulation pro-
grams to achieve in situ visualization with minor modifica-
tions. However, the existing general in situ visualization
framework has the problem of low efficiency.

For the existing DEM simulation program, Xiaojiang
Fang has made a real-time visualization program before.
Fang et al. [15] implemented a parallel online visualization
program for DEM particle simulation in 2011. OpenGL
library was used for image rendering, and image composit-
ing was implemented with the IceT library. By introducing
FBO (Frame Buffer Object (FBO)), the off-screen rendering
of the simulation results is realized. Furthermore, image
compositing was accelerated with the help of CUDA.

3. System Implementation

3.1. Implementation Strategy. The system design is shown in
Figure 1. DEM simulation is carried on GPU, and the results
are generated in its video memory. Then, the result is
directly used by the rendering program. Each rendering pro-
cess renders the result data in the video memory to generate
local images, i.e., the rendering process in gpu1 generates
local images corresponding to the local data in gpu1. Then,
all the images generated by each rendering process are gath-
ered by the image compositing process to produce the final
image. Data transmission between GPUs is also completed
directly without the help of CPU, and all the simulation
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and graphic rendering tasks are executed inside GPU. These
not only accelerate the rendering calculation but also avoid
the data transferring consumption between GPU and CPU.

To do this, there are several problems that must be
solved:

(1) In general, there is no display device installed on the
simulation node. And some graphics cards dedicated
to scientific computing, such as the Tesla series, have
no image output capabilities. So, it is crucial to real-
ize efficient in situ rendering in such a nonscreen
visualization environment

(2) How to transfer data efficiently between CUDA-
based simulation program and OpenGL-based visu-
alization program

(3) Which parallel rendering architecture is chosen to
optimize visualization

(4) How to realize pixel data transmission efficiently
between GPU processes without CPU as a bridge

(5) How to use GPU to accelerate pixel composition in
the stage of image composition

(6) Choose an appropriate image compositing strategy
according to the computer hardware architecture

3.2. Parallel Off-Screen Rendering. In general, the output
device of the visualizer is the screen. However, DEM simula-
tion is a parallel program running on the cluster computer,
with no screen as the output device. Therefore, solving the
problem of parallel off-screen rendering is the first problem
to realize in situ visualization [16].

Our work uses the OpenGL library for image rendering.
OpenGL is an industry standard open source library for 2D/
3D image generation and manipulation. The most notable
feature of the library is that it is independent of the operating
system, and its application can be easily ported to another
operating system with high compatibility and scalability.
As a state-based API, OpenGL requires a context to main-
tain the state between multiple API calls. So, a tool library
is needed to create the contexts. Prior to EGL, an application
obtained an OpenGL context by calling the X server via the
GLX library. Depending on the version of X server, X had to
be run as a privileged process. While this approach enables
the use of the graphics hardware in these GPU-accelerated
supercomputers for graphics purposes, the launch of an X-
Windows server on each compute node is far from elegant.
The extra X Windows server software introduces additional
complexities for queuing systems’ prologs and epilogs and
may introduce OS jitter or other system effects at a level
unacceptable to the system operators. In addition, the com-
plexity of configuring and supporting windowing systems
for HPC can be daunting due to the degree of specialization
(and often minimalism) of their compute node OS software.

As Figure 2 shows, EGL simplifies this architecture by
allowing applications to obtain an OpenGL context without
an X server. Embedded-System Graphics Library (EGL) [16]
is a software interface that provides applications with access
to platform native OpenGL rasterization. Different from the
traditional library, such as GLX, EGL is specifically designed
for supporting platforms that use custom windowing sys-
tems or no windowing system at all. So, EGL library is a
good choice to create the OpenGL context.

There are many advantages to getting rid of the depen-
dence on window system. By eliminating the need for a run-
ning windowing system, a significant application
deployment obstacle is removed. The windowing system
process and associated OS services consume compute node
resources, occupying a small amount of system memory
and increasing the number of active kernel threads and user
mode processes. Launch-time loading of windowing system-
associated shared libraries and configuration files creates
additional I/O activity during parallel job launch, slowing
job launch and potentially causing disruption to other run-
ning jobs. Moreover, another exciting benefit of EGL in the
context of multi-GPU compute nodes is that it provides
APIs that enable applications to take simple and direct
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control over the association of a host CPU thread with a par-
ticular physical GPU, thereby ensuring optimal use of the
compute node NUMA topology. This will be discussed in
detail in Section 3.7. Therefore, EGL is the best route for
portable and efficient parallel OpenGL rendering on high-
performance computing systems.

3.3. Coupling of Simulation Program and Visualization
Program. The coupling between simulation and visualization
is the key to the in situ program. In the DEM simulation, the
calculation program is implemented in CUDA, and the
result of each time step is generated in the video memory
of GPU. Therefore, the best way to realize in situ visualiza-
tion is to directly pass the pointer to the result data to the
visualization program, rather than transport result data itself
between two programs. This not only avoids the data dupli-
cation but also avoids the I/O bottlenecks of data transfer
between CPU and GPU.

The in situ visualization software takes advantages of
CUDA and OpenGL interoperability technology to map
OpenGL’s workspace to CUDA’s memory. The simulation
results of CUDA do not need to be sent back to CPU, but
are directly used by the OpenGL process, which greatly
speed up the entire procedure. The combination of CUDA
and OpenGL can be realized by using two types of memory
buffer, namely, Pixel Buffer Object (PBO) and Vertex Buffer
Object (VBO). The VBO is responsible for the vertex data
and passes the result of the CUDA to the OpenGL for ren-
dering. Similarly, the PBO is in charge of the pixel data
and passes the rendering result of the OpenGL to the CUDA
to complete the image composition.

3.4. Parallel Rendering Architecture. The visualization of
DEM simulation has the requirements of large-scale data
rendering, high-resolution output, and real-time interaction.
So, single processor is far from enough. It is necessary to use
parallel rendering.

In order to realize parallel rendering, the parallel render-
ing architecture should be selected first, which determines
the working mechanism of parallel graphics rendering sys-
tem and is the foundation of it. The essence of the rendering
task is to calculate the effect of each primitive on each pixel.
Due to the arbitrary nature of the modeling and viewing
transformations, a primitive can fall anywhere on (or off)
the screen. Thus, we can view rendering as a problem of
sorting primitives to the screen. A standard rendering pipe-
line consists of two principal parts: geometry processing
(transformation, clipping, lighting, and so on) and rasteriza-
tion (scan conversion, shading, and visibility determination).
Molnar et al. describe a classification scheme of parallel ren-
dering architecture, which is based on where the sort from
object coordinates to screen coordinates occurs [17]. The
sort can take place anywhere in the rendering pipeline: dur-
ing geometry processing (sort-first), between geometry pro-
cessing and rasterization (sort-middle), or during
rasterization (sort-last), as shown in Figure 3.

Due to the large scale of the DEM simulation, if the sort-
first or sort-middle parallel rendering architecture is
adopted, the assignment of the primitives would take a large
amount of computing power. In contract, there is no need to
determine the attribution of particles in the sort last archi-
tecture, which reduces a lot of operations. In addition, our
software is an interactive visualization system, and the num-
ber of particles in different regions of the screen is constantly
changing, so the load balancing problem is difficult to solve.
However, the load balance among processes has been con-
sidered in DEM simulation process, and the number of par-
ticles in each process is relatively balanced. Therefore, the
rendering process of in situ visualization can adopt the same
data division method as the simulation program.

3.5. Pixel Data Transmission for Image Composition. As
mentioned above, image composition is required in the
sort-last parallel rendering architecture after rasterization.
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Figure 3: Sort-first, sort-middle, and sort-last parallel rendering.
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Data transmission between rendering processors is the bot-
tleneck in image composition which takes up more than half
of the entire rendering time.

Figure 4 shows the process of transferring pixel data from
one GPU to another in the image composition stage. The pixel
data needs to be transferred fromGPU to CPU first, then pixel
data is transferred to the specified CPU process through data

transfer between MPI processes and finally uploaded to the
corresponding GPU. This process requires data transfer
between GPU and CPU two times, in addition of data I/O
between CPU processes. Such a data transmission mode con-
sumes the bulk of the time of the image composition.

The emergence of unified virtual addressing (UVA) and
GPU direct communication technologies developed by
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NVIDIA Corporation enables unified addressing of GPU
memory and CPU memory in multi-GPU systems, which
further enables direct point-to-point access between
GPUs [18].

UVA provides a unified virtual addressing between dif-
ferent devices, so that the program of each device can access
the data of other devices through a unified pointer. As
shown in Figure 5 left, CPU, gpu0, and gpu1 have their
own independent memory spaces, which cannot be accessed
by each other. However, with UVA, CPU and GPUs have a
single memory space. Developers do not need to consider
the separate memory spaces of the CPU and GPUs, but inte-
grate them into a unified memory addressing space, which
makes GPU direct communication possible.

The image composition algorithm based on GPU direct
can not only avoid a large amount of data exchange between
the GPU and the CPU but also use the high bandwidth
between GPUs and powerful computing power of the GPU
efficiently. GPU direct has two communication paths, one
is through PCIe lanes, and the other is through NVLink
links. Before the emergence of NVLink, multiple GPUs com-
municate with each other through the PCIe. However, with
the increase in computing power, the transmission capabili-
ties of PCIe can no longer meet the needs. To solve this
problem, NVIDIA has developed a new interconnect archi-
tecture, namely, NVLink. NVLink is a bus and communica-
tion protocol which uses a point-to-point structure and
serial transmission for the interconnection of multiple
graphics processors, which greatly improves the data com-
munication capabilities between GPUs. For example, the

maximum communication speed is 16GB/s if two GPUs
are connected through the PCI lanes. In contract, if the
GPUs are connected through NVLink links, the speed of
direct communication can reach 80GB/s, which is increased
by 5 times. Moreover, GPU direct communication through
NVLink frees the path between CPU and GPU, which avoids
the communication competition between CPU-GPU and
GPU-GPU.

We employ NVLink for GPU direct communication in
order to improve the speed of image composition. The pixel
data in process 1 does not need to pass through the CPUs,
but is directly sent to the GPU of process 2. This mode solves
the bottleneck problem of communication in the image
composition.

3.6. Pixel Composition with CUDA. Image composition is the
key final stage in sort-last parallel rendering which consists
of two main stages: pixel transmission and pixel composi-
tion. We have optimized the pixel transmission process with
NVLink GPU direct communication, but pixel composition
is another bottleneck in image composition.

The Z-buffer algorithm is utilized for pixel composition,
that is, comparing the depth value of the pixels at the corre-
sponding positions of the two images and taking the pixel
with the smaller depth value as the pixel value at that posi-
tion in the composite image. The conventional method
accomplishes the algorithm with CPUs, which deals with
each pixel one by one. This option consumes more time
and slows down the speed of image composition.

GPU is a highly parallel, multithreaded, many-core pro-
cessor. Take Tesla V100 as an example, the number of
stream processors has reached 5120. So, the GPU is espe-
cially well-suited to address problems that can be expressed
as data-parallel computations, in which the same program
is executed on many data. In Z-buffer algorithm, the calcu-
lation of each pixel in the image is independent of each
other, so it is very suitable for accelerating with GPUs. As
a result, the system takes advantage of CUDA for the pixel
composition, making full use of the high concurrency of
the GPU to replace the serial computing of the CPU.

3.7. NUMA-Aware Image Compositing Strategy. Image
compositing stage is the key to the performance of sort-last
rendering system, in which each processor generates images
corresponding to its subset of data from the simulation
locally, and these images should be combined into a final
result after rendering separately. In Sections 3.5 and 3.6,
we have optimized pixel data transmission and pixel data
composition in the image compositing stage. In addition, it
is equally important to choose an appropriate image compo-
sition algorithm. The choice of image composition algo-
rithm is not only related to the algorithm itself but also
related to the hardware structure. The best performing algo-
rithms are different on different high-performance comput-
ing systems. This chapter will consider the characteristics of
the algorithm and the hardware structure to choose the most
appropriate image composition algorithm.

In general, nonuniform memory access (NUMA) is a
computer memory design used in multiprocessing, where

Figure 8: The final image of MTO.
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the memory access time depends on the memory location
relative to the processor [19]. Under NUMA, a processor
can access its own local memory faster than nonlocal mem-
ory. However, the performance asymmetries arising from
modern NUMA architectures affect not only CPU memory
accesses but also data transfers to and among devices for
disk and network I/O and accelerators such as GPUs. In
modern computers with multi-GPUs, UVA provides a single
virtual memory address space for all memory in the system,

and GPU direct enables direct communication between
GPUs, both of which makes CPU and GPU access host
memory and video memory to form a NUMA memory
access system.

We develop the in situ visualization system on dgx-1
platform. The access speed to different memory spaces, such
as host memory and video memory, is distinct, so the DGX-
1 platform is a NUMA system. The topology of the DGX-1 is
shown in Figure 6. There are 8 GPUs in the system, where
each GPU is connected to the CPU through a PCIe switch,
and two GPUs are directly connected through NVLink.
The connection between 8 GPUs uses a hybrid cubic grid
topology. The 8 GPUs are divided into two groups. GPUs
within groups are connected to each other, while each
GPU is connected to only one of the GPUs of the other
group. As shown in Figure 6, the GPUs in the left group
are connected with each other, but the GPU0 in the left
group, for example, is only connected with the GPU4 in
the right group. Furthermore, the connections between
GPUs are divided into low-speed channels and high-speed
channels. In Figure 6, the dark blue arrows indicate Hamil-
tonian cycles defined on the mesh. Each connection in this
ring enables 2× bandwidth compared to other links. In sum-
mary, there are three types of GPU communication channels
in DGX-1: NVLink high-speed channels, NVLink low-speed
channels, and PCIe channels. If we can make full use of the
characteristics of NUMA architecture and choose a suitable
image parallel compositing algorithm, the parallel image
composition time will be reduced.

Currently, there are three parallel image synthesis algo-
rithms: binary tree, binary swap [21], and direct send [22],
which is shown in Figure 7.

The subimages rendered by each GPU are distributed in
8 GPUs, and our target is to compose them to the final
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image. When using binary tree and binary swap algorithm to
realize image compositing, there are 8 processes, which are
the power of 2 to 3, so there are three stages in the two algo-
rithm. According to the topology of dgx-1 GPUs, there are
NVLink links between the GPUs that need to transfer data
in each stage. The direct send algorithm has only one stage.
Each process divides its own subimage into 8 tiles and sends
them to the process responsible for the image space, so there
is data transfer between each of the 8 processes. However, it
can be found from the topology that not both of the 8 GPUs
have NVLink connections. For example, GPU0 in the left
group is only connected to GPU4 in the right group and
can only communicate with other GPUs through PCIe chan-
nels. In addition, multiple processes may send pixel data to
the same process at the same time, the direct send composit-
ing strategy has the risk of communication competition.
From this perspective, the binary tree and binary swap algo-
rithm are better than direct send. According to the charac-
teristics of the algorithms, half of the binary tree algorithm
exits the image synthesis process at each stage. All processes
of binary swap and direct send algorithm participate in the
whole process, so the utilization of computing resources is
higher in the latter two algorithms. In conclusion, the effi-
ciency of binary swap algorithm should be the best on dgx-1.

4. Result and Discussion

4.1. Test Environment. The visualization method described
in this paper was tested with a DEM parallel simulation pro-
gram. The original DEM simulation program remains basi-
cally unchanged. For the purpose of in situ visualization,
three functions are added to the DEM program: initialize
(), visualize (), and finalize (). The initialize () is responsible
for the initialization of visualization-related resources,
including the creation of OpenGL rendering context, the
creation and resource allocation of FBO, VBO, and PBO,

and initialization of shared memory. The visualize () is in
charge of the main visualization work, which consists of
geometry processing, rasterization, and image composition.
And the finalize () commits to resource release and
destruction.

In this paper, the DEM program simulates the evolution
of methanol to olefins (MTO) with 6 million particles. The
program is paralleled in 8 MPI processes. The result of visu-
alization is shown in Figure 8. There is gas blowing up at the
bottom of the reactor, and the solid particles are fully stirred
by the gas.

The performance of our program was tested on DGX-1,
which is a single-node multicore CPU multi-GPU platform.
The platform is equipped with 2 Intel (R) Xeon (R) E5-2698
(2.20GHz) CPU, 512GB memory, and 8 Tesla V100
graphics cards with 32GB video memory. The graphics
cards are connected to each other by 24 NVLink links with
the connection topology shown in Figure 5. The operating
system on the platform is Ubuntu 16.04.

4.2. Comparison of Total Rendering Time. This test mainly
compares the performance of the visualization method
adopted in this paper with the other two common methods.
Method1 is an optimization method adopted by Fang et al.
[15], in which GPU is also used for rendering while CPU
takes responsibility for data transmission, and pixel
compositing is performed by GPU, called GCG for short.
Method2 represents a typical real-time visualization method,
in which GPU is used for rendering, but data transmission
and pixel compositing are all carried by CPU, called GCC
for short. Method3 is the approach proposed by this paper,
in which image rendering, data transmission, and image
compositing are all completed by GPU, called GGG for
short.

We choose 1024 × 1024, 2048 × 1024, and 8192 × 2048
as the generated image resolutions. A represents the
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resolution of a small screen, B represents the screen resolu-
tion of an ordinary desktop computer, and C represents
the resolution of a large screen for engineering applications.
The image compositing algorithm adopted the binary swap
strategy.

As Figure 9 shows, at all three image resolutions, the
visualization time of GGG is significantly better than that
of GCG and GCC, and it becomes more apparent at higher
image resolutions. At 1024 × 1024 resolution, the visualiza-
tion time of all three methods is less than the simulation
time. If the visualization is performed every 10 time steps,
the impact of the visualization on the simulation program
can be ignored. But in the case of a resolution of 8192 ×
2048, the visualization time of method1 and method2 has
increased to 6-7 times the simulation time. If the interval is
also every 10 simulation time steps, the visualization time
will account for 37%~42% of the total time, which has seri-
ously affected the simulation.

4.3. Visualization Time Comparison in Detail. In order to
analyze the performance of the method this paper presented,
the time consumed in the three stages of graphics rendering,
data transmission, and image composition at three image
resolutions of 1024 × 1024, 2048 × 1024, and 8192 × 2048
were measured, respectively, which is shown in Figures 10–
12.

In terms of the total time of visualization, GGG is the
best, and the performance is better at higher resolution.
From the view of each stage of the visualization, the render-
ing time of the three methods is the same, and the main dif-
ference is the data transmission time and the image

composition time. GGG utilizes direct GPU communication
to avoid data transfer between GPU and CPU, which makes
full use of the bandwidth of GPU point-to-point communi-
cation, avoids I/O competition on the PCIe bus, and thus,
reduces the time consumption on data transmission. Fur-
thermore, GPU is applied to pixel compositing, which is
more effective than CPU.

4.4. Sensitivity to the Number of Particles. This test mainly
measures the visualization time of the method proposed in
this paper at different resolutions and different particle sizes
for testing the sensitivity to the number of particles. We test
three numbers of particles: 60,000, 600,000, and 6,000,000,
and five image resolutions: 512 × 512, 1024 × 1024, 2048 ×
2048, 4096 × 4096, and 8192 × 8192.

The main factors affecting the total visualization time are
the image resolution and the number of particles. As Table 1
shows, the higher the resolution, the longer the visualization
time. And the influence of the number of particles is more
obvious when the resolution is small, but it is almost negligi-
ble when the resolution is high.

The influence of particle number is mainly reflected in
two processes. First, the particle data needs to be transferred
from simulation to visualization. And each process renders
the particle data into an image. However, in the method
adopted in this paper, CUDA and OpenGL interoperation
is applied to directly pass the pointer of the simulation result
to OpenGL for visualization, thereby avoiding the bottleneck
problem of transmitting particle information from CPU to
GPU. So, the first impact has been eliminated. Therefore,
the effect of particle size on visualization is mainly reflected

Table 1: Visualization time at different particle sizes and image resolutions.

Number of particle 512 × 512 1024 × 1024 2048 × 2048 4096 × 4096 8192 × 8192
60,000 1.5 2.4 5 17.5 59.4

600,000 1.6 2.5 5.2 18 59.5

6,000,000 2.3 3.1 5.5 18.2 59.6
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in rendering. When the resolution is high, the time of image
composition is much longer than that of rendering, so the
effect of particle size on the total visualization time is not
obvious.

4.5. Resolution Sensitivity Analysis. This test measures the
visualization time of the proposed method at different reso-
lutions. The simulation example employed in the test con-
tains 6 million particles. We choose nine image resolutions:
512 × 512, 1024 × 512, 1024 × 1024, 2048 × 1024, 2048 ×
2048, 4096 × 2048, 4096 × 4096, 8192 × 4096, and 8192 ×
8192. Then, we calculate the average visualization time per
unit resolution; the test results are shown in Figure 13. As
the figure shows, the higher the resolution, the shorter the
average visualization time per unit pixel. Finally, the curve
tends to be stable.

4.6. Performance of Different Image Compositing Strategies.
For the methods in this paper, three common image parallel
compositing strategies are tested: binary tree, binary swap,
and direct send. The test employed a DEM simulation exam-
ple containing 6 million particles, the program has 8 simula-
tion/visualization processes, and the test program runs on
the DGX-1 platform. The total visualization time using three
compositing strategies at three resolutions of 1024 × 1024,
2048 × 1024, and 8192 × 2048 was measured.

As Figure 14 shows, the performance of binary swap is
the best in all the three resolutions, the binary tree strategy
is the second, and direct send is the worst. The DGX-1 plat-
form is a NUMA system, on which the speed of data trans-
mission between GPUs is different. When using the direct
send compositing strategy, a GPU needs data from the other
7 processes. Some of these 7 processes transmit data through
the NVLink high-speed channel, some transmit data

through the NVLink low-speed channel, and some transmit
data through PCIe. This leads to waiting between processes,
slowing down the image compositing. According to the
topology of dgx-1, binary tree and binary swap composition
strategy can avoid passing data through the PCIe channel.
Taking GPU0 as an example, suppose we use the binary
swap algorithm. In the first stage, GPU0 exchanges data with
GPU1. In the second stage, it exchanges data with GPU2. In
the third stage, it exchanges data with GPU4. It can be seen
from the topology that GPU0 has NVLink connection with
GPU1~GPU4, but no NVLink connection with
GPU5~GPU7. Therefore, in the binary swap algorithm,
GPU0 avoids direct communication with GPU without
NVLink links. In addition, compared with the binary tree
strategy, the processes in the binary swap participate in the
image compositing during the whole process, so it is faster
and more efficient.

5. Conclusion

This paper discusses a parallel in situ visualization method
for large-scale DEM simulations, utilizing NVIDIA’s latest
communication hardware, NVLink, to realize direct high-
speed communication between GPUs, avoiding data transfer
between GPU and CPU. And the entire process from data
generation to graphics rendering to image compositing is
all completed in GPU, minimizing the visualization time.

The method described in this article takes advantage of
sort-last parallel rendering architecture, and the data is
divided in the same way as the simulation. The results gen-
erated by the simulation program are stored in the video
memory. The graphics memory address is mapped to
OpenGL through CUDA and OpenGL interoperation.
OpenGL completes graphics rendering, and then, the
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rendering results images are mapped to CUDA to imple-
ment image composition.

The parallel in situ visualization method proposed in this
paper was tested on a DEM parallel simulation program.
The test results show that compared with traditional visual-
ization programs, this method has an order of magnitude
improvement in time. And this method has good scalability.
The time required for visualization is proportional to the
image resolution, and the higher the resolution, the shorter
the visualization time per unit resolution.
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