
Research Article
A New Heuristic Computation Offloading Method Based on
Cache-Assisted Model

Junhua Wu ,1 Cang Fan ,1 Guangshun Li ,1 Zhuqing Xu ,1 Zhenyu Jin ,1

and Yuanwang Zheng2

1School of Computer Science, Qufu Normal University, Rizhao 276826, China
2Shandong Huatong Used Car Information Technology Limited Company, Jining 272000, China

Correspondence should be addressed to Guangshun Li; guangshunli@qfnu.edu.cn

Received 21 January 2022; Revised 24 February 2022; Accepted 1 March 2022; Published 25 March 2022

Academic Editor: Yan Huo

Copyright © 2022 Junhua Wu et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Mobile edge computing (MEC) solves the high latency problem of cloud computing by offloading tasks to edge servers. Due to
limited resources, it is necessary to improve the efficiency of computation offloading. However, there is a lot of redundant data
transmission between MEC servers and users in the existing methods. Additional data transmission increases the task
processing delay. To reduce the total delay, a new cache-assisted computation offloading strategy is proposed. In response to a
large number of similar requests from users, a new cache management mechanism is designed. This mechanism can select
reusable calculation results more accurately in the cache space through an approximate matching method and improve the
cache hit ratio. Then, aiming at the problem of offloading efficiency, the delay optimization problem is transformed into an
optimal path problem, a cost function is defined to determine the optimal offloading position, and an improved path planning
method is used to plan the optimal offloading path. The simulation results indicate that the proposed scheme can improve the
cache hit ratio and reduce the total processing delay of tasks compared with other standard schemes.

1. Introduction

With the development of Internet, increase in the number of
network devices generates huge data traffic [1]. It is expected
that in the next few years, the load on cloud data centers will
be under tremendous pressure. Mobile edge computing
(MEC) [2] as a new computing paradigm has been proposed
to deal with the problem. MEC servers are deployed at the
base stations (BSs) in the MEC system, which can execute
the delay sensitive applications in close proximity to the
end-users [3]. The edge servers can deploy the computation
and storage resources to nearby IoT devices and offer data
processing services [4]. Unlike traditional mobile cloud
computing (MCC) [5], MEC is able to extend the
cloud computing power and the services to the edge of net-
work for two reasons: on the one hand, MEC ensures that
data processing relies primarily on local devices rather than
cloud servers; on the other hand, it usually does not need to
establish a relationship with a remote cloud server, and it

can meet the requirements of local users [6, 7]. The edge sys-
tems support fine-grained access to different dimensions of
data [8]. In addition, mobile devices are faced with the prob-
lems such as the energy consumption of battery, the limited
resources and the computing capacity in terms of the local
processing [9]. Therefore, computation offloading has
emerged, which can optimize the transmission delay of the
task and reduce the user’s computing burden [10]. However,
if the users can offload all application tasks to MEC server,
the server is likely to be overloaded. While studying the
problem of computation offloading, the service cache is also
an important topic for MEC [11]. The service cache pre-
stores the database or library related to the application and
allows the corresponding task to be offloaded. Due to the
limited resources in edge servers, the caching decisions must
be made carefully to maximize system performance [12].
However, how to use cache to reduce the service delay while
maximize storage utilization is still a key issue in the edge
network. But the heterogeneity of edge network and the

Hindawi
Wireless Communications and Mobile Computing
Volume 2022, Article ID 3501329, 11 pages
https://doi.org/10.1155/2022/3501329

https://orcid.org/0000-0001-8723-2389
https://orcid.org/0000-0002-1156-2741
https://orcid.org/0000-0001-6147-0637
https://orcid.org/0000-0001-9576-6938
https://orcid.org/0000-0001-5971-0670
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/3501329


uneven distribution of users make it difficult for the system
to balance cache and offloading. To deal with this problem,
this paper proposes a cache-assisted offloading method and
a target server matching strategy based on the cost of task
to determine the appropriate target server to meet user’s
needs.

In brief, the main contributions of this paper are
threefold:

(1) This paper considers the MEC server cooperative
cache system. To reduce the access delay and the
computation overhead, we design a new cache man-
agement strategy based on dynamic data approxi-
mate matching. Through an approximate matching
algorithm based on the sample distance, a data set
similar to the input data is selected from the collab-
orative cache space. By obtaining the corresponding
calculation result for reuse, the cache hit ratio can
be improved

(2) In order to improve the offloading efficiency, this
paper proposes a new computation offloading
method. According to the time sensitivity and com-
munication cost, the optimal target server can be
estimated; then the computation offloading problem
can be transformed into an optimal path planning
problem; finally, the optimal offloading path can be
planned

(3) Evaluating the effectiveness of HCAM through spe-
cific simulation experiments

The rest of the paper is organized as follows. Section 2
summarizes the most related work. Section 3 introduces
the system model in detail. In Section 4, we describe the
cache-assisted offloading strategy. Section 5 introduces
the efficiency evaluation. The simulation results are reported
in Section 6. Finally, the conclusion and the future work are
discussed in Section 7.

2. Related Works

In recent years, some augmented reality tasks have higher
requirements for real-time performance when processing
data. So, the traffic of mobile data continues to grow. It is
not difficult to find that data requested by users is highly
repetitive, which will lead to a large amount of redundant
data transmission. In recent years, the caching problem has
attracted the attention of researchers as a method to solve
the delay problem [13, 14]. Cache is a new strategy to
improve the performance and the service quality of mobile
edge networks. It includes offloading tasks to the
mobile edge cloud and storing computation results in the
local storage located at the edge of network. This technology
avoids redundant and repetitive processing of the same task,
thereby simplifying the offloading process and improving
the utilization of network resources [15, 16]. As a new
method to alleviate the unprecedented network traffic,
mobile edge caching has been widely used in the wired inter-
net, and it has proved that it can reduce delay and energy

consumption [17]. To date, a lot of research works have
focused on optimizing caching methods to solve the delay
and energy consumption problems in computation offload-
ing. In [18], the author considered the horizontal coopera-
tion between mobile edge nodes for joint caching and
proposes a new transformation method to solve the problem
of edge caching and improve cache hit rate of the network.
In [19], authors designed a heterogeneous collaborative edge
cache framework by jointly optimizing node selection and
cache replacement in mobile networks. The joint optimiza-
tion problem is expressed as a Markov Decision Process
(MDP), and Deep Q Network (DQN) is used to solve the
problem, which alleviates the offloading traffic load. In
[20], the problem of edge cache optimization in fog radio
access networks (F-RANs) was studied, and a distributed
edge cache scheme was proposed, which reduced the delay
of service and the traffic load. In [21], authors combined
user’s context behavior to optimize the cache and modeled
the problem of maximizing the click-through rate of the
content as a knapsack problem. In the MEC paradigm, a
heuristic intelligent caching algorithm was proposed, which
had the better cache hit rate and the stability and the lower
overhead. In [22], authors studied the problem of vehicle
edge caching in the actual vehicle scenes. In order to obtain
the higher hit ratio, the service process was modeled as a
joint process of vehicle movement and parking through the
approximation theory, and a method based on the practical
vehicle edge cache solution realizes the trade-off between
hit ratio and interrupt request ratio. In [23], the computa-
tion offloading method of cached data was studied, and a
new cache-aware computation offloading strategy was pro-
posed. The goal was to minimize the equivalent weighted
response time of all tasks with the constraint of computa-
tional power and caching capacity. In [24], the authors
designed the underlying structure of cache causality and
task’s dependency model and designed an alternate minimi-
zation technique to reduce the complexity to alternately
update the cache placement and the offloading decisions.
In [25], the authors considered a complexed scenario, in
which multiple moving MDs are sharing multiple heteroge-
neous MEC servers, and a problem named as minimum
energy consumption problem in deadline-aware MEC sys-
tem is formulated.

Some research works have concentrated on introducing
the concept of edge caching in different systems, proposing
the new frameworks or models to solve the optimization
problem during offloading. In [26], a cooperative offloading
and buffering model was designed, an optimization problem
containing two independent problems was constructed, and
a resource management algorithm was developed to guide a
BS to jointly schedule the calculation of offloading and allo-
cate the data buffers. The total delay of system communica-
tion can be minimized through the optimal offloading and
caching decisions. In [27], authors proposed a collaborative
edge caching scheme, defined the joint optimization prob-
lem as a Dual-Time-Scale Markov Decision Process
(DTS-MDP), and proposed a framework based on Deep
Deterministic Policy Gradient (DDPG). In [28], in view of
the high link load of edge cache and the small storage space

2 Wireless Communications and Mobile Computing



of the server, a cloud-edge collaborative cache model based
on the greedy algorithm was proposed. In [29], the problem
of edge caching in the optical fiber computing networks was
analyzed, and a capacity-aware edge caching framework
was proposed. The problem of average download time mini-
mization is described as a multiclass processor queuing pro-
cess, and an algorithm based on the Alternating Direction
Multiplier Method (ADMM) was proposed. In [30], a new
intelligent edge is defined, which combines a heterogeneous
IoT architecture with edge computing, caching, and commu-
nication. In [31], an offloading framework that enables task
caching was proposed in edge computing to jointly optimize
the response delay and the energy consumption of roadside
units. In [32], in order to minimize the total delay consump-
tion of tasks, the authors jointly considered computation off-
loading, content caching, and resource allocation as an
integrated model, designed an asymmetric search tree, and
improved the branch and bound method to obtain a set of
accurate decision-making and resource allocation strategies.
By summarizing the research of computation offloading
method with cached data in MEC, we can conclude that
the combination of edge caching and computation offload-
ing has made progress in meeting user’s requirements and
improving user’s experience.

In summary, most of the existing works do not take into
account the influence of cache management and also not
have full investigation of the collaboration of MEC servers.
Thus, when the MEC environment changes dramatically,
the burst request volume can bring sudden increased com-
putation load to MEC servers, and the edge network links
in certain regions will also become congested, leading to a
significant impact on the efficiency of computation offload-
ing. Accordingly, we take full use of the characteristics of
edge cache to propose a computation offloading method
based on cache-assisted, which can improve the cache hit
ratio and the offloading efficiency.

3. Network Model

3.1. System Architecture. Computation offloading is a proven
and successful example that can be used to enable resource-
intensive applications on mobile devices. Efficient data shar-
ing extends the collaboration capabilities of edge system
[33]. For emerging mobile collaboration applications, when
multiple users are at the same distance, offloaded tasks can
be copied. Researchers urgently need to design a collabora-
tive offloading scheme and cache popular calculation results
that may be reused by other mobile users. In multi-acess
mobile edge computing, tasks offloaded from the users are
usually associated with the specific services, and these ser-
vices need to be cached in MEC nodes to perform tasks.
Deciding which services to cache and which tasks to perform
on each MEC node with limited resources is critical to max-
imizing the efficiency of offloading [34]. In this section, con-
sidering an optimized regional collaborative cache system
architecture. Table 1 presents the key notations of optimiza-
tion model and corresponding descriptions.

As shown in Figure 1, considering a distributed multi-
user MEC system consisting of multiple MEC servers con-

nected via backhaul links, each of which can provide
computation and storage power to meet the delay-sensitive
requirements of tasks. This article assumes that only one
task is generated per user. In this system, let N = f1, 2,⋯,
ng denotes all users, and let Ri = fsi, ci, tig denotes a random
generating task i. si represents the size of tasks; ci denotes the
amount of computation resource needed to execute
the application task, quantified in CPU cycles; ti represents
the time required to perform the task. In this system model,
each BS is equipped with a MEC server to handle offloading
requests. According to their own needs, the users can choose
to perform tasks locally or offloaded to the edge servers.
Assuming that each task occupies only one virtual machine,
the user-generated request determines whether the virtual
machine is occupied or not based on the offloading decisions.
In this paper, the optimized cache managementmodel and the
offloading strategy are designed to reduce the user’s request
delay, which are introduced in the following sections.

3.2. Problem Formulation. Latency is an efficiency manifesta-
tion of system executing user’s requests and a direct evalua-
tion criterion of user experience. In this paper, the delay is
composed of four parts: the communication time between
MEC servers and users MTli

; the calculating time for servers
to execute tasks CTli

; the waiting time for other tasks WTli
;

and the time for BS forwarding to target MEC server BTli
.

Defining the offloading decision variables L = fl1, l2 ⋯ ,
lng, a binary variable is used to represent the task executing
locally or offloaded to the edge server:

li =
1, the server caching resources,
0, other:

(
ð1Þ

Assuming that the channel adopts microwave link and
the communication mode is full duplex, the calculation for-
mula of the communication rate τi between the MEC server
and the user is as follows:

τi =w log2 1 + Pi hij j
Ii + n0

� �
, ð2Þ

where w is the channel bandwidth, Pi is the data rate sent by

Table 1: Symbol definition list.

Notions Description

N Number of users

M Number of servers

si Size of the task i

ti Processing time of task i

ci Computing resource required by task i

li Computation offloading decision i

f0 Computing capacity of the MEC server

Ti The processing time of task i

Tn The total processing time

3Wireless Communications and Mobile Computing



the user, hi is the channel gain, Ii is the channel interference,
and n0 is Gaussian white noise. Therefore, the calculation
formula of MTli

is:

MTli
= si
τi
: ð3Þ

The calculation formula of CTli
:

CTli
= ci
f0
: ð4Þ

Because the MEC server accepts user requests on a first-
come, first-served basis, the formula for WTli

is as follows:

WTli
= 〠

k

i=1
MTli

+ CTli

� �
: ð5Þ

k is the number of transmitted tasks before the task Ri.
When MTli

≥ ti, the server chooses to forward task i. The
calculation formula of BTli

is as follows:

BTli
= si
φi
: ð6Þ

φi is the forwarding transmission rate of BS. To sum up,
the sum delay of task Ti is defined as the sum of MTli

, CTli
,

WTli
, and BTli

. The calculation formula of Ti is as follows:

Ti =MTli
+ CTli

+WTli
+ BTli

: ð7Þ

The calculation formula of Tn is as follows:

Tn = 〠
N

i=1
Ti: ð8Þ

This problem is equivalent to assigning task to the
resource node in different region, minimizing the total pro-
cessing time of all tasks. When the limited cache capacity of
edge server is relaxed, it can be transformed into a classic
transmission problem [35]. The optimization problem is as
follows:

min Tnð Þ: ð9Þ

4. Optimal Offloading Solution

4.1. Content Update Method. In the MEC distributed archi-
tecture, a scenario of dynamic probabilistic cache is designed
according to the time-varying content, and it can adapt to
the time-varying content popularity without knowing the
popularity. In the environment of the server collaboration,
due to the different needs of users and the different requests
cluster into the area of radius r, different regions are con-
nected by optical fiber, and the collaboration area of MEC
server can realize sharing of content. In the case of limited
cache capacity, the MEC server must take the initiative to
cache. The BS can parse part of the content request and
place the cached content without returning the obtained
result through the backhaul link, which relieves the pressure
on the communication link. However, the popularity of the
content changes with time, and the dynamic probability
cache can adapt to the time-varying instantaneous content
popularity and improve the cache hit rate of instantaneous
content. In this article, the probability pi of user is randomly
requesting task i, i ∈ ð1, nÞ obeys Zipf’s law, and therefore, pi
is calculated as follows:

pi =
1/iη

∑n
i=11/iη

: ð10Þ

η is the value of the Zipf’s distribution exponent.

4.2. Optimal Cache Management Strategy. In order to further
improve the cache hit ratio, this paper adopts an optimized
cache management strategy on the basis of the above content
update method. Assuming that the area near each BS is
divided according to empirical values, it is ensured that the
number of edge servers in each area is approximately
the same. Collaboration between servers can integrate cache
at the edge of network. In a collaborative environment, the
requested content can be transferred from one MEC server
to another MEC server. As the computation capacity of edge
servers are limited, repeated calculation of the same request
will consume computing resources and increase the waiting

AP

Cache

Server

User

Figure 1: Cache-assisted MEC offloading architecture.

4 Wireless Communications and Mobile Computing



delay of end users [36]. The above process will face two chal-
lenges: on the one hand, since there are almost no two iden-
tical images and voices in the scene of image recognition and
speech recognition, only the most similar data can be found
instead of the completely identical data, so the traditional
cache selection strategy based on the accurate matching is
no longer applicable [37]; on the other hand, users generate
a large amount of data every day, and it takes a lot of time to
search for the same or similar data in the massive data, and
the search becomes more difficult due to the increase of data
dimensions. To address such problems, we propose a new
cache management strategy based on the dynamic data
approximate matching as given below.

Among these spatial index data structure construction
methods, Baton-tree [38] is the most effective, and the com-
plexity of other methods is affected by the dimension of data.
When doing an approximate data look up with Baton-tree, it
can get a similar data set of the input data, and then, the gen-
eral approaches are to go through the similar data set and
find the closest data set to input data and return the result
but the search accuracy of that method is low. In order to
improve the search accuracy, KNN [39] algorithm can be
used to filter the data in the similar data set.

4.2.1. Matching Method Based on the Distance Threshold of
Cache Data. The existing KNN search algorithm generally
ignores the influence of distance on the accuracy of the algo-
rithm and believes that approximate data has the same dis-
tance weight [40]. In fact, the distance between data in the
set and the input data determines the similarity between
the data and the input data. In this paper, a matching algo-
rithm based on distance is proposed to search the data in
the similar data set acquired by Baton-tree algorithm more
accurately, so as to effectively improve the accuracy of data
selection.

When defining the weight of each data, the matching
method based on distance threshold takes into account the
Euclidean distance between each similar data and the input
data. Specifically, the farther the approximate data is from
the Euclidean distance of the input data, the smaller the
weight. Defining the Euclidean distance as disðdata0, dataiÞ,
the formula is as follows:

dis data0, datai
� �

=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x0 − xið Þ + y0 − yið Þ

p
, ð11Þ

where data0 denotes the input data R0 and datai denotes
approximate data of the input data R0. Let ðx0, y0Þ represents
the coordinate of data0, and let ðxi, yiÞ represents the coordi-
nate of datai. Given the input data data0 and the approxi-
mate data set dataset j, where ∀datai ∈ datasetj, ∀i ∈ j. θi is
used to indicate the weight value of the approximate data
datai, it can be calculated using the following:

θi =
j

data0, datai
� � : ð12Þ

θ0 is the weight threshold.

In this paper, the discriminant function between data0
and datai can be expressed as pi; it can be calculated using
the following:

pi = 〠
j

i=1
θi = 〠

j

i=1

j

dis data0, datai
� � : ð13Þ

Let jpij denotes the coordinate axis vector modulo pi,
vector P can be expressed as P =∑ j

i=1pi. Therefore, let λi
defines the similarity between input data and data in the
cache space; it can be indicated with cosine between pi and
P; the formula is calculated as follows:

λi =
pi, Ph i
pij j Pj j : ð14Þ

λ0 is the similarity threshold. For input data, datai is sim-
ilar to the data set obtained by the Baton-tree algorithm with
different distances:

dataset j = data1, λ1, θ1ð Þ, data2, λ2, θ2ð Þ,⋯, dataj, λj, θj
� �	 


:

ð15Þ

The paper takes the maximum value λmax among the j
cosine values in dataset j, and the corresponding data value
is denoted as datamax. If λmax > λ0 and θi < θ0, return θi
and λmax corresponding datai as the approximate match of
the input data data0; otherwise, return Null, the query fails.
As shown in Figure 2, it describes a cache management
mechanism based on approximate matching.

4.3. Problem Transformation. According to the Dijkstra the-
oretical method [41], the problem of finding appropriate
edge cache nodes can be transformed into the problem of
shortest path planning. This paper assumes that the trans-
mission rate between connected MEC servers, denoted as v
, are all equal. Let vm1

m2 be the transmission rate of the shortest
route between the m1 and m2. If the server m2 is connected
with another sever m3, there is a relationship among v, vm1

m3 ,
and vm1

m2 :

1
vm1
m3

= 1
vm1
m2

+ 1
v
: ð16Þ

It can be deduced from (16):

vm1
m3

= vm1
m2 ⋅ v

vm1
m2 + v

: ð17Þ

According to (16) and (17), it is obvious that the value of
vm1
m3 and vm1

m2 proved that the shortest path means the least
number of channels.

4.4. Offloading Location Confirmation. Some researchers
have proposed different cost estimation methods of task exe-
cution. The most common methods are based on task time

5Wireless Communications and Mobile Computing



sensitivity [42]. However, they did not consider the comput-
ing resource usage of the MEC server. Therefore, this paper
proposes a new method for estimating the cost of task execu-
tion; the formula is as follows:

Cm = 1
Q
〠
m

i=1
xm − Xð Þ: ð18Þ

It can obtain the congestion degree of the communica-
tion link of servers through (18), where Q is the number of
divided areas, xm is the number of nodes in the area m,
and X is the average of the number of nodes in all areas.
Combined with formula (8), the execution cost function of
task is:

Vi,m = αTi + βCm: ð19Þ

α and β are the weights given to the two objectives,
respectively, with α + β = 1. After the estimated execution
time of the edge server and the congestion level of the com-
munication link are returned to the terminal, the terminal
device decides whether to perform a computation offloading
and the computation offloading location. This article uses
the following steps to confirm offloading position. It is
described in Algorithm 1.

Avoiding resource conflicts: after the MEC server exe-
cutes the search algorithm, it will find a server that meets
the user’s needs. Before assigning to users, because each user
has different task requests and server processing time is also
different, it will lead to some resource conflicts: when the
server is idle, multiple users compete for cache and comput-
ing resources at the same time. This article considers that the
server receives the user’s resource request and sets

the dynamic priority according to the execution time and
order of the user request. Among them, the dynamic priority
refers to obtaining the initial priority when the user applies
for resources. The users constantly modify the priority level
when using resources. In this way, conflicts in resource usage
are avoided.

4.5. Offloading Path Identification. In respective areas, there
are complex routes between edge cache nodes, and the least
costly path needs to be found on the premise of determining
the appropriate target server. This paper designs a path plan-
ning algorithm based on the cost of task. By using problem
information to guide the search, the cost of the system
search is reduced and the throughput is improved. It is
shown in Algorithm 2.

5. Efficiency Evaluation

Figure 3 describes the performance comparison between the
impoved distance search algorithm (IDSA) proposed in this
paper and the distance search algorithm (DSA). By increas-
ing the number of edge nodes, the total delay changes of two
algorithms are compared. It can be seen that when the num-
ber of edge node is less than 4, the performance of two algo-
rithms is close. Due to increase in the number of requested
users, waiting, transmission, and calculation delay will all
increase, resulting in the different degrees of increase in the
delay of the two algorithms. However, it can be seen from
the figure that when the number of servers is greater than
6, the performance gap between IDSA and DSA gradually
increases, mainly because the algorithm proposed in this
paper can quickly plan the offloading path and reduce the
total delay of users. Therefore, the algorithm proposed in
this paper is significantly better than DSA in terms of delay
performance.

6. Simulation Experiment

In this section, we will evaluate the performance of the pro-
posed scheme through simulation. The cache scheme is
compared with the following four schemes: (1) random
cache (RC) [43]: randomly caches popular content; (2)
greedy cache (GC) [44]: only cache popular content in this
area; (3) fair cache (FC) [45]: each collaboration area pro-
portionally caches popular content; (4) collaborative edge
cache offloading (CECO) [46]: only collaborative caching
between edge servers; (5) heuristic cache-assisted method
(HCAM): cache-assisted offloading method based on
approximate matching proposed in this paper.

Experimental simulation parameters are shown in
Table 2.

Figure 4 shows the relationship between the number of
tasks and the total delay of under the same task processing
method and different cache schemes. When the number of
tasks is between 100 and 200, the system can process user
requests in time, and the performance of each scheme is very
close. When the number of tasks is greater than 200, the
local and edge nodes cannot process all tasks within the time
required by the user, and task access and waiting delays

Cache Space

approximate
matching

Report

Controller

Update

strategy

Forward
Request Server

Figure 2: Cache-assisted MEC offloading mechanism.

6 Wireless Communications and Mobile Computing



increase, which in turn causes the total delay to increase with
the increase of tasks. Compared with the greedy cache
scheme, fair cache scheme, and random cache scheme,
HCAM has a gap in the total delay of tasks as the number
of tasks increases. When the number of tasks is 400, the
gap is maximum. The task delay of HCAM scheme is
0.053 s, and the task delay of GC is 0.27 s. Although the per-
formance of HCAM and CECO is relatively close, as the
tasks increase, CECO has always been above HCAM. It
can be seen from the figure that HCAM finally controls
the task delay below 0.1 s; its performance is better than
the other four schemes. This is mainly because the scheme
adopts the principle of approximate matching to improve
the cache hit rate when processing user requests at the edge
and can reduce the transmission of the backhaul link,
thereby reducing the user’s waiting delay.

In Figure 5, when the number of user tasks is small, the
four methods all show better optimization effect. When the
number of tasks is about 100, because the user’s request
can be processed locally in time, it reduces task transmission
and calculation time, so the local method performs better
than offloading, CECO, and HCAM. It can be seen that
when the number of tasks is between 100 and 200, the per-
formance of HCAM and CECO is close to local, and three
methods are better than the offloading. However, due to lim-
ited resources, as the number of user tasks increases, the
total delay of the four schemes is increasing. When the num-
ber of tasks is greater than 200, the delay performance of
four methods begins to show a gap. Finally, when the num-
ber of tasks reaches 500, HCAM is significantly better than
the other three methods, and the performance gap is maxi-
mized. It can be seen that when there are many computing

Input: Tn; Cm; A =∅
Output: Optimal offloading location Em
1: fori = 1 to Ndo
2: form = 1 to M − 1do
3: Calculate the cost Vi,m of the server m matching task i by formula (1)–(9);
4: Vi,m ⟶ A;
5: Select minimum Vi,m corresponding m;
6: return Em

Algorithm 1: OLC Algorithm

Input: Request server Eo; cost function G1ðmÞ, G2ðmÞ; actual cost from starting point to candidate point g1ðmÞ, g2ðmÞ; estimated
cost from candidate point to target point h1ðmÞ, h2ðmÞ; search step step
Output: Optimal path set p
1: p =∅;
2: Obtain Em through Algorithm 1, Eo ⟶ p, Em ⟶ p;
3: If set p is empty then
4: Return false.
5: Else
6: Whilem is searched forward and backward and marked as Min and g1ðMinÞ + g2ðMinÞ is smallest do
7: IfðE0,mÞ is null then
8: Search for node m + 1;
9: Else
10: Calculate the cost of successor node m, G1ðmÞ = g1ðmÞ + g2ðmÞ;
11: Select minimum G1ðmÞ, E0 ⟵m, Em ⟶ p, Min =m, step = step + 1;
12: IfðMin,m + 1Þ is null then
13: Search for the node m + 2;
14: Else
15: Calculate the cost of successor node m + 1, G1ðm + 1Þ = g1ðm + 1Þ + g2ðm + 1Þ;
16: Select minimum G1ðm + 1Þ, Min⟵m + 1, Em+1 ⟶ p, Min =m + 1, step = step + 1;
17: IfðMin,m + 2Þ is null then
18: Search for the node m + 2;
19: Else
20: Calculate the cost of successor node m + 2, G1ðm + 2Þ = g1ðm + 2Þ + g2ðm + 2Þ;
21: Select minimum G1ðm + 2Þ, Min⟵m + 2, Em+2 ⟶ p, Min =m + 2, step = step + 1;
22: Search backward from node Es, search step is step;
23: Return 7;
24: Return p;

Algorithm 2: OPP Algorithm.

7Wireless Communications and Mobile Computing



tasks, both HCAM and CECO use cache resources to reduce
the transmission delay of the task; the performance is better
than local and offloading. But when the cache is not hit,
HCAM reduces the total delay by approximately 11.5% by
forwarding tasks to the appropriate MEC server for process-
ing in time which is compared with CECO.

Compared with GC, RC, FC, and CECO to verify the
effectiveness of the proposed method, Figure 6 describes
the comparison of the four methods on the cache hit ratio,
and the cache hit rate is used as one of the performance cri-
teria for evaluating the method proposed in this article. In
the case of limited cache space, the higher the cache hit ratio,
the lower the overall task processing delay. It can be seen
from the figure that when the task time is relatively small,
as the cache space increases, these four methods can all
increase the cache hit ratio. As the number of tasks increases,
the performance of the method proposed in this paper is
better than other methods. The main reason is that HCAM
optimizes the management and allocation of cache space

through a new cache management mechanism. Compared
with CECO, it adopts the cache approximate
matching principle on the basis of edge collaborative cache,
which improves the cache hit ratio.

Figure 7 shows the impact of cache size on the average
system delay variation. Since five schemes adopt different
cache management and allocation strategies, it can be seen
from the figure that as the cache increases, the performance
of the five methods differs in performance. As cache space
increases, the cache of hot content will also increase, which
increases the cache hit ratio. When the user generates a

2 4 6 8 10
Number of ENS 

0

100

200

300

400

500

600

To
ta

l d
el

ay
 (s

)

IDSA
DSA

Figure 3: Delay comparison.

Table 2: Simulation parameters.

Parameters Value

Number of users 100

Number of edge nodes 10

Number of BS 1

Computing capacity of users 1-2GHz

Computing capacity of MEC servers 6GHz

The input data size of tasks 500-800KB

Background noise power -100 dBm

Channel bandwidth 1.5MHZ

Cache size 150GBs

100 200 300 400 500 600
Number of tasks

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

To
ta

l d
el

ay
 (s

)

GC
FC
RC

CECO
HCAM

Figure 4: Delay comparison of different cache schemes.

100 200 300 400 500
Number of tasks

0

200

400

600

800

1000

To
ta

l d
el

ay
 (m

s)

Local
Offloading

CECO
HCAM

Figure 5: Delay comparison of different task processing schemes.

8 Wireless Communications and Mobile Computing



request, the edge server can directly send the cached content
to the user. Users no longer need to wait for tasks to be off-
loaded to the target server, reducing transmission and calcu-
lation delays. When this article adopts an optimized cache
management mechanism and cooperative cache model, even
if the content requested by the user is not cached, it can be
processed at the edge system as far as possible. Compared
with the four methods, the average processing delay of the
system is reduced to a certain extent. When the cache size
is set to 40GBs, the average delay of HCAM is the smallest.
As the cache space increases, the GC method only satisfies

the requests of a few users, and the system latency exhibits
the greatest. Although FC has a higher cache hit ratio and
better performance than GC, the average delay in the system
is very close. The RC method further improves the cache hit
ratio, which is better than the FC and GC methods.
Although both HCAM and CECO use cooperative caching
to reduce the average delay performance close to each other,
HCAM uses the principle of approximate matching to
increase the cache hit ratio, thereby reducing user access
latency. However, when the cache space is 200 GBs, the per-
formance of the HCAM method is optimal, which is about
1%, 24%, 36%, and 42% higher than the performance of
CECO, RC, FC, and GC.

7. Conclusion and Future Work

In this paper, we focus on a computation offloading strategy.
To reduce the processing delay, this paper design a new
cache management strategy based on dynamic data approx-
imate matching. Then, a new cache-assisted offloading
mechanism for edge server is proposed. To improve the effi-
ciency of offloading, this paper transforms the problem of
offloading location confirmation into an optimal path plan-
ning problem, a heuristic algorithm based on task cost has
been introduced to confirm the optimal server. The
simulation results show that our scheme can reduce the total
delay compared to GC, FC, RC, and CECO.

In the future, we will optimize the cache strategy.
Besides, we will further study the computation offloading
method under the job-related situation. In addition, we will
explore algorithms suitable for task priority.

Data Availability

The (data type) data used to support the findings of this
study are available from the corresponding author upon
request.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This work is supported by the National Natural Science
Foundation of China grants 61771289 and 61832012, Major
Basic Research of Natural Science Foundation of Shandong
Province with grants ZR2019ZD10; Key Research and
Development Program of Shandong Province with grants
2019GGX101050.

References

[1] G. Zhang, S. Zhang, W. Zhang, Z. Shen, and L. Wang, “Joint
service caching, computation offloading and resource alloca-
tion in Mobile edge computing systems,” IEEE Transactions
on Wireless Communications, vol. 99, pp. 1–1, 2021.

[2] L. Guangshun, S. Jianrong, W. Junhua, and W. Jiping,
“Method of resource estimation based on QoS in edge

40 50 60 70 80 90 100 110 120 130 140 150
Cache size (GBs)

0

20

40

60

80

100

Ca
ch

e h
it 

ra
tio

 (%
)

GC
FC
RC

CECO
HCAM

Figure 6: Comparison of cache hit ratio.

40 80 120 160 200
Cache size (GBs)

0

20

40

60

80

100

Av
er

ag
e d

el
ay

 (m
s)

GC
FC
RC

CECO
HCAM

Figure 7: Comparison of average delay.

9Wireless Communications and Mobile Computing



computing,” Wireless Communications and Mobile Comput-
ing, vol. 2018, pp. 1–9, 2018.

[3] H. Cai, B. Xu, L. Jiang, and A. V. Vasilakos, “IoT-based big
data storage systems in cloud computing: perspectives and
challenges,” IEEE Internet of Things Journal, vol. 4, no. 1,
pp. 75–87, 2017.

[4] Z. Cai and T. Shi, “Distributed query processing in the edge
assisted IoT data monitoring system,” IEEE Internet of Things
Journal, vol. 99, pp. 1–1, 2020.

[5] A. Hekmati, P. Teymoori, T. D. Todd, D. Zhao, and
G. Karakostas, “Optimal mobile computation offloading with
hard deadline constraints,” IEEE Transactions on Mobile Com-
puting, vol. 99, pp. 1–1, 2019.

[6] T. Zhao, S. Zhou, L. Song, Z. Jiang, X. Guo, and Z. Niu,
“Energy-optimal and delay-bounded computation offloading
in mobile edge computing with heterogeneous clouds,” China
Communications, vol. 17, no. 5, pp. 191–210, 2020.

[7] S. K. Datta and C. B. Onnet, “An edge computing architecture
integrating virtual IoT devices,” Consumer Electronics, pp. 1–3,
2017.

[8] Z. Cai and X. Zheng, “A private and efficient mechanism for
data uploading in smart cyber-physical systems,” IEEE Trans-
actions on Network Science & Engineering, pp. 1–1, 2018.

[9] P. Corcoran and S. K. Datta, “Mobile-edge computing and the
internet of things for consumers: extending cloud computing
and services to the edge of the network,” IEEE Consumer Elec-
tronics Magazine, vol. 5, no. 4, pp. 73-74, 2016.

[10] F. Zhou and R. Q. Hu, “Computation efficiency maximization
in wireless-powered mobile edge computing networks,” IEEE
Transactions on Wireless Communications, vol. 19, no. 5,
pp. 3170–3184, 2020.

[11] T. X. Tran, A. Hajisami, P. Pandey, and D. Pompili, “Collabo-
rative mobile edge computing in 5G networks: new paradigms,
scenarios, and challenges,” IEEE Communications Magazine,
vol. 55, no. 4, pp. 54–61, 2017.

[12] H. Feng, S. Guo, L. Yang, and Y. Yang, “Collaborative data
caching and computation offloading for multi-service mobile
edge computing,” IEEE Transactions on Vehicular Technology,
vol. 99, pp. 1–1, 2021.

[13] G. Li, J. Wang, J. Wu, and J. Song, “Data processing delay opti-
mization in mobile edge computing,” Wireless Communica-
tions and Mobile Computing, vol. 2018, no. 1, pp. 1–9, 2018.

[14] W. Shi and S. Dustdar, “The promise of edge computing,”
Computer, vol. 49, no. 5, pp. 78–81, 2016.

[15] Z. Cai and Z. He, “Trading private range counting over big IoT
data,” 2019 IEEE 39th International Conference on Distributed
Computing Systems (ICDCS), 2019.

[16] N. D. Pietro and E. C. Strinati, “Proactive computation caching
policies for 5G-and-beyond mobile edge cloud networks,”
2018 26th European Signal Processing Conference (EUSIPCO),
2018.

[17] Y. Liu, D. Zheng, X. Xia, and B. Zhang, “Data caching optimi-
zation in the edge computing environment,” Environment,
2020.

[18] Y. M. Saputra, D. T. Hoang, D. N. Nguyen, and E. Dutkiewicz,
“A novel mobile edge network architecture with joint caching-
delivering and horizontal cooperation,” IEEE Transactions on
Mobile Computing, vol. 20, no. 1, pp. 19–31, 2018.

[19] X. Wang, R. Li, C. Wang, X. Li, and V. C. M. Leung, “Atten-
tion-weighted federated deep reinforcement learning for
device-to-device assisted heterogeneous collaborative edge

caching,” IEEE Journal on Selected Areas in Communications,
vol. 39, no. 1, pp. 154–169, 2021.

[20] Y. Jiang, Y. Hu, M. Bennis, F. C. Zheng, and X. You, “A mean
field game-based distributed edge caching in fog radio access
networks,” IEEE Transactions on Communications, vol. 68,
no. 3, pp. 1567–1580, 2020.

[21] Y. Zeng, J. Xie, H. Jiang, G. Huang, and J. Li, “Smart caching
based on user behavior for mobile edge computing,” Informa-
tion Sciences, vol. 503, pp. 444–468, 2019.

[22] Y. Zhang, C. Li, T. H. Luan, C. Yuen, and W. Wu, “Towards
hit-interruption tradeoff in vehicular edge caching: algorithm
and analysis,” IEEE Transactions on Intelligent Transportation
Systems, vol. 99, pp. 1–13, 2021.

[23] H.Wei, H. Luo, Y. Sun, andM. S. Obaidat, “Cache-aware com-
putation offloading in IoT systems,” IEEE Systems Journal,
vol. 14, no. 1, pp. 61–72, 2020.

[24] S. Bi, L. Huang, and Y. Zhang, “Joint optimization of service
caching placement and computation offloading in mobile edge
computing systems,” IEEE Transactions on Wireless Commu-
nications, vol. 99, pp. 1–1, 2020.

[25] T. Zhu, T. Shi, J. Li, Z. Cai, and X. Zhou, “Task scheduling in
deadline-aware mobile edge computing systems,” IEEE Inter-
net of Things Journal, pp. 1–1, 2018.

[26] W. Fan, Y. Liu, B. Tang, F. Wu, and H. Zhang, “TerminalBoos-
ter: collaborative computation offloading and data caching via
smart base stations,” IEEE Wireless Communications Letters,
vol. 5, no. 6, pp. 612–615, 2016.

[27] G. Qiao, S. Leng, S. Maharjan, Y. Zhang, and N. Ansari, “Deep
reinforcement learning for cooperative content caching in
vehicular edge computing and networks,” IEEE Internet of
Things Journal, vol. 99, pp. 1–1, 2020.

[28] H. Tang, C. Li, Y. Zhang, and Y. Luo, “Optimal multilevel
media stream caching in cloud-edge environment,” The Jour-
nal of Supercomputing, vol. 10, pp. 1–20, 2021.

[29] Q. Li, Y. Zhang, Y. Li, Y. Xiao, and X. Ge, “Capacity-aware
edge caching in fog computing networks,” IEEE Transactions
on Vehicular Technology, vol. 69, no. 8, pp. 9244–9248, 2020.

[30] Y. Hao, Y. Miao, L. Hu, M. S. Hossain, G. Muhammad, and
S. U. Amin, “Smart-edge-CoCaCo: AI-enabled smart edge
with joint computation, caching, and communication in het-
erogeneous IoT,” Network, IEEE, vol. 33, no. 2, pp. 58–64,
2019.

[31] C. Tang, C. Zhu, X. Wei, Q. Li, and J. J. P. C. Rodrigues, “Task
caching in vehicular edge computing,” IEEE INFOCOM 2021 -
IEEE Conference on Computer Communications Workshops
(INFOCOM WKSHPS), 2021.

[32] J. Zhang, X. Hu, Z. Ning et al., “Joint resource allocation for
latency-sensitive services over mobile edge computing net-
works with caching,” IEEE Internet of Things Journal, pp. 1–
1, 2018.

[33] X. Zheng and Z. Cai, “Privacy-preserved data sharing towards
multiple parties in industrial IoTs,” IEEE Journal on Selected
Areas in Communications, vol. 99, pp. 1–1, 2020.

[34] J. Gao, S. Zhang, L. Zhao, and X. Shen, “The design of dynamic
probabilistic caching with time-varying content popularity,”
IEEE Transactions on Mobile Computing, vol. 99, pp. 1–1,
2020.

[35] X. Meng, W. Wang, Y. Wang, V. Lau, and Z. Zhang, “Delay-
optimal computation offloading for computation-constrained
mobile edge networks,” 2018 IEEE Global Communications
Conference (GLOBECOM), 2019.

10 Wireless Communications and Mobile Computing



[36] N. Yousefian, J. Hansen, and P. C. Loizou, “A hybrid coher-
ence model for noise reduction in reverberant environments,”
IEEE Signal Processing Letters, vol. 22, no. 3, pp. 279–282,
2015.

[37] S. L. Woodward, W. Zhang, B. G. Bathula et al., “Asymmetric
optical connections for improved network efficiency,” J Opt
Commun Netw, vol. 5, no. 11, pp. 1195–1201, 2013.

[38] S. Surati, D. C. Jinwala, and S. Garg, “A survey of simulators
for P2P overlay networks with a case study of the P2P tree
overlay using an event-driven simulator,” Engineering Science
and Technology, an International Journal, vol. 20, no. 2,
pp. 705–720, 2017.

[39] P. Dani and A. Thomas, “Bowditch's JSJ tree and the quasi-
isometry classification of certain Coxeter groups,” Journal of
Topology, vol. 10, no. 4, pp. 1066–1106, 2017.

[40] Y. Li and B. Cheng, An Improved K-Nearest Neighbor Algo-
rithm and Its Application to High Resolution Remote Sensing
Image Classification, IEEE, 2009.

[41] O. A. Gbadamosi and D. R. Aremu, “Design of a modified
Dijkstra's algorithm for finding alternate routes for shortest-
path problems with huge costs,” 2020 International Conference
in Mathematics, Computer Engineering and Computer Science
(ICMCECS), 2020.

[42] X. Q. Pham, T. D. Nguyen, V. D. Nguyen, and E. N. Huh,
“Joint service caching and task offloading in multi-access edge
computing: a QoE-based utility optimization approach,” IEEE
Communications Letters, vol. 99, pp. 1–1, 2020.

[43] W. B. Chu, L. F. Wang, Z. J. Jiang, and C. C. Chang, “Protect-
ing user privacy in a multi-path information-centric network
using multiple random-caches,” Journal of Computer Science
and Technology, vol. 32, no. 3, pp. 585–598, 2017.

[44] S. Ghandeharizadeh and S. Shayandeh, “Greedy cache man-
agement techniques for mobile devices,” IEEE International
Conference on Data Engineering Workshop, 2007.

[45] M. Kunjir, B. Fain, K. Munagala, and S. Babu, ROBUS: Fair
Cache Allocation for Multi-Tenant Data-Parallel Workloads,
Computer Science, 2015.

[46] Z. Qin, S. Leng, J. Zhou, and S. Mao, “Collaborative edge com-
puting and caching in vehicular networks,” 2020 IEEEWireless
Communications and Networking Conference (WCNC), 2020.

11Wireless Communications and Mobile Computing


	A New Heuristic Computation Offloading Method Based on Cache-Assisted Model
	1. Introduction
	2. Related�Works
	3. Network�Model
	3.1. System Architecture
	3.2. Problem Formulation

	4. Optimal Offloading Solution
	4.1. Content Update Method
	4.2. Optimal Cache Management Strategy
	4.2.1. Matching Method Based on the Distance Threshold of Cache�Data

	4.3. Problem Transformation
	4.4. Offloading Location Confirmation
	4.5. Offloading Path Identification

	5. Efficiency Evaluation
	6. Simulation Experiment
	7. Conclusion and Future�Work
	Data Availability
	Conflicts of Interest
	Acknowledgments

