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Real-time and accurate travel time information between bus stations is critical for passengers to make suitable travel plans to
reduce waiting time at the stops. By mining and analyzing bus operational data, it can be obtained that factors such as the
variation of vehicle speed in adjacent sections and the proportion of bus lanes between stations have affected the travel time
between bus stations. Therefore, considering the temporal feature, spatial feature, and weather feature as the prediction model’s
input, travel time between bus stations prediction model based on eXtreme Gradient Boosting (XGBoost) was trained and
established. The 28-day bus operation data of a certain bus line in Guangzhou was used for training and verification, and they
were compared with the prediction models based on K-Nearest Neighbors (KNN), BP neural network, and Light Gradient
Boosting Machine (LightGBM). In comparison with other models, the lowest MAPE of 11.96% was found for the XGBoost
prediction model, which is 9.30% lower than other models on average. The sensitivity analysis of the proposed prediction
model was further conducted: temporally, the accuracy of the prediction model was best during the flat peak hours; spatially,
the MAPE of the model gradually decreased as the number of line units increased, and when the number of line units
exceeded 18, the accuracy of the prediction model stabilized and was lower than 7%. The results confirm that the XGBoost
model outperforms the KNN, BP, and LightGBM in terms of fitting, accuracy, and stability.

1. Introduction

For passengers, knowing arrival times of public vehicles in
advance can reduce waiting times which is one of the most
concerned questions. Compared with urban rail transit, the
unreliability of conventional bus is mainly reflected in the
uncertainty of arrival time, that is, the uncertainty of travel
time between stations. Passengers may spend too much time
waiting for the bus. A survey shows that more than 94% of
passengers shave encountered a situation of waiting for a
bus for too long. Zhang et al. found that the tolerable waiting
time for passengers is actually 4.62 minutes. However, the
2020 Traffic Analysis Report of China’s Major Cities jointly
issued by AutoNavi Maps and other authoritative organiza-
tions shows that the average waiting time during peak hours
in many cities such as Beijing, Shanghai, Guangzhou, and
Shenzhen is no less than 9.8 minutes. Such overly long wait-
ing time has greatly affected the travel experience, reduced

the quality of bus service, and caused a certain waste of
resources. With the continuous development of intelligent
public transportation systems, people can now obtain real-
time operating status information of buses through multiple
channels such as electronic stop signs and smart phones.
However, there are many negative comments emerging from
the evaluation of relevant tools. For example, Chelaile and
MyBus are two real-time bus query software with high
downloads in the IOS system, and their negative comments
takes 18.8% and 21.5%, respectively, of the total comments
each. Among that, about 70% of these negative comments
refer to the unpunctuality of bus arriving. Therefore, it can
be shown that accurate prediction of travel time between
bus stations remains a challenging issue. Accurately predict-
ing the travel time between conventional bus stations can
not only support bus operators to formulate scheduling
plans, optimize operating routes, and allocate operating
vehicles but also reduce unnecessary waiting time for
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passengers, increase bus travel sharing ratio, thereby ease
urban congestion and road traffic pollution, and promote
green traffic development.

To address the problem of travel time prediction
between bus stations, on the basis of existing research, this
article proposes the key considerations from two aspects of
time and space and uses parameters such as the maximum
information coefficient (MIC) to deeply explore the correla-
tion between influencing factors and travel time between
stations, then further establishes a XGBoost-based travel
time prediction model. Finally, using one-month bus opera-
tion data of a certain bus line in Guangzhou, China, for
training and verification, the results show that the prediction
model proposed in this paper outperforms the existing travel
time prediction model between major bus stations in terms
of prediction accuracy.

The main contributions of this paper are as follows:
Firstly, using examples of bus operation, the impact

factors such as the state of the bus of the previous shift, the
proportion of bus lanes between stations and other factors
on the travel time between bus stations are analyzed in depth
from the perspective of qualitative and quantitative.
Secondly, combined with the above analysis, the feature con-
struction for the influencing factors was carried out; the
XGBoost-based bus station travel time prediction model
was constructed and tested on the real data sets.

The rest of this paper is organized as follows: Section 2
discusses literature reviews, Section 3 explains the related
concepts of maximum information coefficient and XGBoost,
Section 4 describes data information and the analysis of
influencing factors, and the experimental results are summa-
rized in Sections 5 and 6.

2. Literature Review

2.1. Research on Bus Travel Time Prediction. With the rapid
development of advanced bus systems, scholars from
home and abroad have done a lot of researches on the
prediction of travel time. The existing research methods
can be divided into two categories: one is the prediction
method based on statistics, and the other is based on
machine learning. A review and the comparison of exist-
ing studies are provided below.

2.1.1. Statistical Prediction Method. The commonly used
methods in statistical forecasting mainly include time series
and regression analysis. The time series method analyzes
the input in chronological order, researches, and predicts
the output. Wang et al. used ARIMA to determine the influ-
ence weights of the travel time of the first few buses and
improve the accuracy of the forecast of the travel time of
the bus [1]. Tong et al. decomposed the nonstationary time
series into several linear combinations of stationary time
series and then used exponential smoothing model to pre-
dict the travel time between bus stations [2]. The regression
analysis method is to analyze the relationship between mul-
tiple variables and establish a mathematical function formed
by independent variables. According to the linear speed
change shown by the relationship between bus speed and

traffic density, Zhang et al. proposed a bus arrival time pre-
diction model considering upstream signalized intersection
and surrounding traffic flow [3]. Zhou et al. used the Kalman
Filter algorithm to establish a prediction model of bus travel
time [4]. By using the prediction model based on Kalman
Filter, Ma et al. considered using road attributes and POI
(Point of Interest) to divide similar sections to improve the
prediction accuracy [5].

2.1.2. Machine Learning Prediction Methods.With the devel-
opment of computer and communication technology, the
acquisition and transmission of bus real-time operating sta-
tus data have been basically achieved. Taking Shenzhen,
China, as an example, more than 100 million vehicle GPS
data and bus IC card swiping data are collected in one single
day, and the data storage capacity exceeds 16G. In the face of
these large and complex datasets, machine learning is an
example of a data-driven method which is aimed at increas-
ing efficiency and accuracy of the prediction.

Many scholars try to use different algorithms to
improve the performance of bus c time prediction model.
For example, Huo et al. established a prediction model of
bus arrival time based on the KNN algorithm [6]. Xie [7]
and Han et al. [8] used a BP neural network which has bet-
ter learning ability to construct bus travel time prediction
models. He et al. proposed a prediction model based on
LSTM (Long Short-Term Memory) that could solve the
problem of long-term data dependence [9]. Yu et al. pre-
dicted the arrival time of buses based on SVM (Support
Vector Machine) to avoid local optimal problems [10].
They also introduced a forgetting factor to assign different
weights to time-varying feature data and used Grubbs test
to filter out outliers in the data [11]. Jing et al. used a bus
arrival time prediction model based on GBDT (Gradient
Boosting Decision Tree), which has higher computational
speed [12].

From the analysis results of the above studies, we can
observe that time period, weather conditions, and distance
between stations are the three most frequently used factors
in the research of the factors affecting the travel time
between bus stations. Meanwhile, whether it is a working
day or a nonworking day, the number of signal lights and
the historical travel time between stations are also more
frequently used factors. Moreover, the travel time between
stations in the previous section, traffic flow, and the num-
ber of passengers getting on and off are also investigated
and discussed as impact factors that affect the travel time
between stations.

2.2. Research on XGBoost Model. Compared with other
prediction models, the XGBoost model has considerable
advantages in terms of both generating predictions with
higher accuracy and improving efficiency while reducing
the occurrence of over-fitting. Therefore, scholars all around
the world selected the XGBoost model in prediction
researches in different fields:

In the prediction research of commodity sales, Xie et al.
established the XGBoost prediction model for the applica-
tion of housing rent prediction [13]. In the field of security
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warning, Chen et al. used the XGBoost model to predict spe-
cific faults of power system [14]. In the field of medical treat-
ment, Jia et al. constructed the XGBoost model based on
clinical data to predict the prognosis quality score of fracture
surgery [15]. In the prediction research of air quality, Zhang
et al. established XGBoost model to predict haze concentra-
tion [16]. Such wide application of XGBoost model reflects
its own superiority in prediction. And its analysis method
can also be used for reference in the forecast research applied
in the application domain of transportation. For example,
Zhong et al. established the XGBoost prediction model to
predict short-term traffic flow [17]. The application of
XGBoost in traffic flow prediction opens up new ideas for
improving the accuracy of travel time prediction between
conventional bus stations. Zou et al. propose an ensemble
tree method XGBoost to predict passenger flow of bus
routes, taking the number of routes and the number of
buses during the predicted interval into the model to
improve the accuracy [18]. Dong et al. proposed a traffic
flow prediction model combining wavelet decomposition
and reconstruction with the eXtreme Gradient Boosting
(XGBoost) algorithm [19]. Du et al. used the combined
model of XGBoost and LSTM in the short-term traffic pre-
diction of the base station [20]. Yun et al. built a local opti-
mal fusion model based on LSTM, LightGBM, and dynamic
regression device [21]. Wang et al. took Multivariable Lin-
ear Regression (MLR), K-Nearest Neighbor (KNN),
XGBoost, and Gated Recurrent Unit (GRU) as four seed
models to establish a regression integration model to accu-
rately predict short-term passenger flows of urban public
transport [22].

By summarizing the existing literature, it is found that
scholars commonly take the travel time between bus stops
of the previous bus work shift as the reference value to
predict the current one; however, in-depth analysis on the
correlation between the running state of the bus of the pre-
vious and the current bus work shift is of lack. Therefore,
this paper makes a comparative analysis on the speed
changes of the previous and current bus work shifts. Besides,
bus lanes play a significant role in improving bus operation
efficiency during peak hours. However, few people analyze
the impact of bus lanes on bus travel time prediction which
is discussed in this paper. And the real-time weather condi-
tions frequently used as the input of the model have seldom
been studied for its relativity, and this paper also focuses on
its analysis.

At present, many first-tier cities have achieved the
real-time acquisition function of public transport informa-
tion, which generates massive amount of public transport
data. Faced with huge and complex data, the XGBoost
model outperforms other models in regression prediction.
Therefore, this paper focuses on analyzing the respective
correlations between the changes in the speed of the bus
work shifts in the adjacent sections, the proportion of
the bus lanes in the sections, the real-time weather, and
the travel time between the bus stops. Based on this, fea-
ture engineering is constructed, and a XGBoost-based
travel time prediction model between conventional bus
stops is established.

3. Methodology

3.1. Maximum Information Coefficient. Maximum informa-
tion coefficient is a method improved by Reshef et al. based
on mutual information (MI) to measure the correlation
between attributes [23], and it is an effective way to analyze
the degree of correlation between variables. It can reflect the
complex relationships between variables, such as linear
relationships, nonlinear relationships, and nonfunctional
relationships [24].

MI has some problems in feature selection, such as
variables usually needed to be discretized, or cannot be nor-
malized, and its calculations are not convenient enough.
MIC overcomes these problems and can accurately calculate
the degree of correlation between two variables even when
the sample data is large. The universality of MIC shows that
the functional relationship between variables can be found,
whether it is linear or nonlinear; the fairness of MIC is
shown as its ability to obtain the same results for the same
level of noise existing in different forms of functions.

When using MIC analyzes the correlation between vari-
ables, first, grid the given scatter plot composed of variables
X and Y ; second, calculate the corresponding maximum
information value, and then normalize the obtained maxi-
mum information value with the range of [0,1]. Finally, the
grid resolution that maximizes normalized mutual informa-
tion is the MIC value. The greater the MIC value, the stron-
ger the correlation of the variables. When the MIC value is 1,
it indicates that the two variables have a strictly determined
relationship and are not limited to the functional form. The
smaller the MIC value, the weaker the correlation of vari-
ables. When MIC equals 0, it means that the two variables
are completely independent.

3.2. XGBoost. XGBoost (eXtreme Gradient Boosting) is an
improved learning algorithm based on the Gradient Boost-
ing algorithm and Decision Tree. Its principle is to trans-
form a large number of weak classifiers into strong
classifiers by using the idea of iterative operation, so as to
achieve accurate classification effect.

XGBoost is a highly efficient implementation of GBDT
[25]. There are three main differences between XGBoost
and GBDT. Firstly, GBDT only supports Decision Trees,
while XGBoost also supports many other weak learners,
such as gbtrees (General Balanced Trees), gblinear, and dart.
Secondly, compared with GBDT, the target loss function of
XGBoost increases the regular term. Third, GBDT’s loss
function only performs negative gradient (first-order Taylor)
expansion on the error part, while XGBoost’s loss function
performs second-order Taylor expansion on the error part,
which improves the accuracy of model prediction.

XGBoost is a classic method in Boosting. Boosting is
aimed at building a strong classifier by integrating many
weak classifiers, with XGBoost using CART (Classification
and Regression Trees) [26]. The idea of XGBoost algorithm
is to continuously add trees and continuously perform fea-
ture splitting to grow a tree. Through each addition, a new
function can be learned to fit the residual of previous predic-
tion. After training K tree, when it is necessary to predict the
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score of a sample, each tree will get the score of each child
node according to the characteristics of the sample, and
finally adding up the corresponding score of each tree is
the predicted value of the sample.

4. Data and Influencing Factors

4.1. The Source of Data

4.1.1. Bus Operation Data. The bus operation data includes
the information of all buses entering and leaving the station
of a certain bus line in Guangzhou from April 24 to May 21,
with a total of 7,532 bus work shifts and 291,800 entries and
exits. The bus line consists of 25 bus stations: the origin sta-
tions in Baiyun District and the terminal stations in Haizhu
District. The total length of the line is 18.3 kilometers.
According to the information of bus pulling in and leaving
the stations, the travel time of each bus in each work shift
between stations can be calculated. There are a total of 300
station combinations and 1,604,144 data. Figure 1 shows
the average travel speed distribution of the whole bus line.

It can be seen from the figure above that most of the
average speed value gather around about 4m/s, while some
data deviated from it a lot. The reason for this phenomenon
may be that the travel speed is significantly reduced as a con-
sequence of the excessively heavy congestion during peak
hours, or the volume of traffic flow and passenger flow on
the road shrunk in the early morning or late night, so the
travel speed between stations is accordingly higher.

4.1.2. Bus Lanes. The bus lane data is obtained from Baidu
Street View map observation, which is the ratio of the length
of the bus lane between two adjacent stations to the distance
between them. The selected route has about 3.2 kilometers in
total of special lanes, accounting for about 17.5% of the total
bus route length. After calculating the proportion of the
length of the bus lanes between two adjacent stations, the
distribution of the proportions is shown in Figure 2 (the
bus lanes of the selected line are distributed in the second
half of the line).

In addition, the line signal light data is obtained from
on-site observations, including the number of signal lights
between stations and the corresponding turning information
of the bus. The line has a total of 24 signal lights, containing
22 go straight, 2 right turns, and no left turns.

4.1.3. Weather. The weather data comes from the agricul-
tural meteorological big data system-WheatA, which can
provide time-by-time historical data of various meteorolog-
ical indicators in various meteorological observatories across
the country. The weather data specifically includes 672
pieces of information on the hourly temperature, rainfall,
and wind speed in Guangzhou from April 24 to May 15.

Figure 3(a) shows the average temperature distribution
in each hour of a month. As can be seen from the figure,
the temperature is mainly distributed between 22°C and
31°C, which is basically in line with the weather and climate
of Guangdong. In the morning and night, the temperature is
low, while in the middle of the day, the temperature gets
higher. Figure 3(b) shows the distribution probability of

rainfall intensity per hour in a month. When the rainfall rate
is less than 0.25mm/h, the rainfall intensity is evaluated as
sporadic light rain; when the rainfall rate is from 0.25mm/
h to 1.0mm/h, the intensity would be light rain; when the
rainfall rate is greater than 1.0mm/h, the intensity would
be moderate rain. The rainfall intensity in 28 days is only
sporadic light rain or light rain, and most of them are spo-
radic light rain. Figure 3(c) shows the distribution of hourly
wind speed in a month. When the wind speed is less than
0.2m/s, the wind force is 0 scale, which is regarded as no
wind. When the wind speed is greater than 0.3m/s and less
than 5.4m/s, the wind-force is 1~3 scale; when the wind
speed is more than 5.5m/s and less than 10.7m/s, the wind
is 4~5 scale. Therefore, within 28 days, the wind is not over 5
scale, basically 1~3 scale.

4.2. Analysis of Influencing Factors. The main reason why
existing prediction models could not achieve excellent accu-
racy is the fact that the travel times are impacted by various
factors such as the weather, road quality, traffic conditions,
signal control and other complex and changeable factors. In
this paper, any two bus stops on a bus line are selected as a
road segment for analysis, focusing, respectively, on the cor-
relations between the changes in the speed of the previous
and current bus work shift in the adjacent road segment,
the proportion of bus lanes, real-time weather, and the
travel time between bus stops. In order to reflect the influ-
ence of various factors on bus operation more directly, this
paper uses bus travel speed to analyze the impact factors.

4.2.1. Changes in Speed of Adjacent Shifts on Adjacent
Segment. Traffic volume has both temporal and spatial dis-
tribution characteristics. Many scholars have explored and
considered using factors the same as the predicted bus vehi-
cles in space and time are closest to them for prediction.
That is, the travel time between stations of the previous
bus work shift is used to predict the current travel time
between stations.

(1) Verify the Correlation of Travel Time of Previous and
Current Shifts. The operational data of a bus line in Guang-
zhou were selected to obtain the entire travel speed of vehi-
cles in different shifts. Divide the time c into orderly
intervals of 30 minutes to obtain the travel speed of the
bus in different time periods. The variation of travel speed
in each time period follows the pattern shown in Figure 4.

As can be seen from the figure, the variation of bus travel
speed in adjacent periods shows a certain degree of continu-
ity with little fluctuation. In the morning and evening rush
hours, the travel speed of buses is obviously lower than other
times, which is consistent with the real situation. The corre-
lation coefficient of travel speed in adjacent time periods was
calculated. The MIC value of travel speed in the former and
latter time period was 0.661; that is, there was a certain cor-
relation between the travel speed of vehicles in the former
and latter time period. According to the actual bus schedul-
ing, the vehicles in the time period can be approximately
regarded as the buses in the different work shifts. Under
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the condition that the road segments are the same and the
road length is known, the operational data of vehicles in pre-
vious work shifts can be considered for prediction.

There is still room for improvement in real-time data
of existing prediction research. Road traffic conditions
may change about every ten minutes. The operational data
of previous shifts of buses on the same road segment are
not exactly the latest data available. In fact, that should
be the travel time between stations of the current bus in
the previous segment.

(2) Correlation of Shift Speed Variations in Adjacent Road
Segments. There are differences between road conditions of
the same shift in the adjacent segments; therefore, the speed
of the adjacent segments cannot be directly used for correla-
tion analysis.

According to the correlation of vehicle travel speed in
the former and latter time periods, the speed changes of
the two shifts in the adjacent road segments are compared.
Ideally, the change in vehicle speed of different work shifts
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Figure 1: Average speed of the entire bus route.

0

0.1

Road section

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Pr
op

or
tio

n 
of

 b
us

 la
ne

s

Se
ct

io
n 

12

Se
ct

io
n 

13

Se
ct

io
n 

14

Se
ct

io
n 

15

Se
ct

io
n 

16

Se
ct

io
n 

17

Se
ct

io
n 

18

Se
ct

io
n 

19

Se
ct

io
n 

21

Se
ct

io
n 

22

Se
ct

io
n 

24

Se
ct

io
n 

23

Se
ct

io
n 

20

Se
ct

io
n 

11

Figure 2: Distribution of bus lanes.

5Wireless Communications and Mobile Computing



0.00
0 105 2515 20 30 35 40

0.02

0.06

0.04

0.08

0.10

0.14

0.12

Fr
eq

ue
nc

y

Temperature (°C)

(a)

0
0.0 0.1 0.30.2 0.4 0.5

2

6

4

8

10

14

12

Fr
eq

ue
nc

y

Rainfall (mm/h)

(b)

Figure 3: Continued.
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on adjacent road segments should be the same. However,
being affected by various factors, they are not the same.
Here, SMAPE (Symmetric Mean Absolute Percentage Error)
is used to measure the change of shift speed in the adjacent
road segments. The expression of SMAPE is as follows:

SMAPE = 100%
n

〠
n

t=1

x − yj j
xj j + yj jð Þ/2 , ð1Þ

where x and y, respectively, represent the change of vehicle
speed in the previous segment and current segment. The
SMAPE of the change in the speed of bus work shift in the
adjacent road segments in the same time period on different
days basically does not exceed 25%; that is, the change of the
speed of bus work shift in the adjacent road segments is gen-
erally similar.

In this paper, there are 25 stops in the whole bus route.
The segment from the first stop to the 13th stop is selected as
the former section, and the segment from the 13th stop to the
last one is selected as the latter section. Based on that, Figure 5
shows the SMAPE distribution results of the changes in the
speed of two bus work shifts in the two sections within 28 days.

In the figure, the abscissa is the SMAPE interval of the
variation of the speed of the shift before and after in the
adjacent road segments, and the ordinate is the probability
of SMAPE in different intervals. It can be seen from the
figure that the SMAPE of the speed change is basically
between 10% and 20%, and the SMAPE of a certain time
period will exceed 20%; that is, the changes of speed of work
shift before and after in the adjacent segments are generally
similar. In other words, travel times between bus stops can
be predicted using variations in speed of shifts before and
after in adjacent road segments.
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4.2.2. Proportion of Bus Lanes. In order to implement the
development strategy of public transit priority, all provinces
and cities in China have accelerated the construction of bus
lanes in recent years. The length of bus lanes increased by
2101.5 kilometers in 2019 and 1599.9 kilometers in 2020.
After the completion of the construction of bus lanes, the
average speed of buses in Guangzhou during the morning
peak hours increased by 13.91%. As an essential measure
to ensure the priority of public transportation, using bus
lanes to predict the road travel time can improve the accu-
racy of prediction to a higher degree.

The bus lanes in Guangzhou runs during two identified
peak-hour periods: a morning peak from7 a.m. to 9 a.m.
and an evening peak from 5 p.m. to 7 p.m. Those two
periods are regarded as the traffic peak periods, and the rest
periods of the day are the traffic off-peak periods. After pro-
cessing the operational data of a selected bus lane, the aver-
age travel speed between stations can be clearly revealed. At
the same time, the proportion of bus lanes in each segment is

obtained from the map. Then, calculate the average travel
speed of bus vehicles on each road segment at off-peak
period and peak period, and get the ratio of average travel
speed on each road segment at off-peak period and peak
period with different proportion of bus lanes, which is
depicted in Figure 6.

In the figure, the abscissa is the proportion of bus lanes,
and the ordinate is the ratio of average travel speed of vehi-
cles between the flat peak and peak hours under the same
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Figure 8: Average bus travel speed under different rainfall intensities.
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Figure 9: Average bus travel speed under different wind scales.

Table 1: Calculate the MIC of main influencing factor.

Influencing factors Variables MIC

Proportion of bus lanes
Off-peak period 0.236

Peak period 0.612

Real-time weather

Temperature 0.407

Rainfall 0.330

Wind 0.245
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proportion. As the proportion of bus lanes increases, the
ratio gradually approaches 1; that is, the difference of vehicle
speed between flat peak and peak periods gradually
decreases. It can be seen that bus lanes play a positive role
in maintaining bus speed stability during peak hours, and
the larger the proportion of bus lanes is, the more obvious
the effect is. At the same time, the MIC between the ratio
of average bus travel speed during off-peak time to average
speed during peak hours and the proportion of bus lane
was 0.236, and the MIC between the average bus travel speed
in peak hours and the proportion of bus lane was 0.612.
Hence, we can see that the proportion of bus lanes in the
segment will affect the travel speed of bus vehicles. The
larger the proportion, the higher the average travel speed,
and also the shorter the travel time between stations. There-
fore, the proportion of bus lanes can be selected as an input

Input Model Output

Variations in speed of shifts
before and after

Travel time of the previous five
work shifts

Periods

Weekday or weekend

Historical mean travel time
between stops

Proportion of bus lanes

Number of signal lights and the
turning

Situation of bus

Length of the road segments

Number of signal lights and the
turning

Weather feature

Spatial
feature

Time
feature

The XGBoost-
based prediction

model

The travel time
between any

two stations on
a bus route

Figure 10: The structure plots of the XGBoost-based prediction model.

Table 2: Input of the predict model.

Feature attributes Influencing factors

Time

Variations in speed of shifts before and after

Travel time of the previous five work shifts

Periods

Weekday or weekend

Historical mean travel time between stops

Spatial

Proportion of bus lanes

Number of signal lights and the turning situation of bus

Length of the road segments

Starting and ending bus station number

Weather Weather information including temperature, rainfall intensity and the scale of wind force

Table 3: The best value of each parameter of XGBoost.

Parameters Value

learning_rate 0.01

n_estimators 350

max_depth 15

min_child_weight 4

subsample 0.5

subsample_bytree 0.8

gamma 0.1

reg_alpha 1

reg_lambda 1
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feature to establish a conventional prediction model of bus
station travel time.

4.2.3. Real-Time Weather. Buses, as an important role in
public transportation which is an activity has to be exposed
outdoor, are susceptible to many factors, among which
weather conditions is significant for predicting the travel
time between bus stations. For example, when the road gets
wet and slippery in rainy or snowy days, the drivers will slow
down accordingly to ensure driving safety. Therefore, this
paper analyzes the influence of temperature, rainfall inten-
sity, and the level of wind force on vehicle speed.

For the element of temperature, calculate the average
travel speed of buses at different temperatures, as shown in
Figure 7. In the figure, the abscissa is the temperature, and
the ordinate is the mean travel speed under the correspond-
ing air temperature. As can be seen from the figure, when
the temperature gets higher or lower, the vehicle speeds fas-
ter. The reason for this phenomenon is that the temperature
is still low in the early morning and late night, when people
stay at home and the travel demand is yet small, while the
temperature reaches higher at noon, people show less moti-
vation to travel, so the traffic flow reduces significantly,
which is in line with the actual situation. The MIC of the
temperature and average travel speed is 0.407.

For the element of rainfall, calculate the average travel
speed of buses under different rainfall intensity, as shown
in Figure 8. In the figure, the abscissa is rainfall intensity,
and the ordinate is the mean travel speed under the corre-
sponding rainfall intensity. It can be seen that the element
of rainfall has a certain impact on the driving state of buses,
which is presented as when the intensity of rainfall increases,
the average travel speed of public transport vehicles will
decrease. The correlation between rainfall intensity and
average bus speed was calculated, and the MIC was 0.33.

For the element of scale of wind force, calculate the aver-
age travel speed of buses in different scales of wind force, as
shown in Figure 9. In the figure, the abscissa is the level of
wind force, and the ordinate is the mean of speed under
the corresponding scales of wind force. It can be seen from
the figure that in a certain range, the average travel speed
of buses decreases with the increase of scale. The higher
the scale of wind force, the greater the wind resistance of
the vehicle and the lower the speed. The MIC value of the
scale of wind force and average travel speed within 28 days
was calculated too, and it was 0.245.

Therefore, temperature, rainfall rate, and the scale of
wind force are selected as the input features of the travel
time prediction model in this paper. In summary, the varia-
tion of speed between shifts before and after in the adjacent
road segments, the proportion of bus lanes, and real-time
weather are three discussed factors affecting the travel time
between bus stations, which can be used as the input of the
prediction model.

According to the previous analysis of influencing factors,
the correlation coefficients of each influencing factor are
shown in Table 1. Changes in speed of adjacent shifts on
adjacent segment were assessed using SMAPE, and the
changes are generally similar.

5. Result

5.1. Model Construction and Optimization. According to the
analysis of influencing factors in the previous section, com-
bined with the characteristics used high-frequently in exist-
ing studies, the prediction model is constructed and the
model parameters are tuned. The structure plots of the
XGBoost-based prediction model constructed in this paper
are shown in Figure 10.

The process of model optimization is as follows:

(i) Input: it is time feature that contains the speed varia-
tion, spatial feature that contains the proportion of
bus lanes, and weather feature in Table 2.

(ii) Output: output is the travel time between any two
stations on a bus route.

(iii) Parameter tuning process: use the network search
cross-validation method to adjust the parameters.
The network search cross-validation method is the
“GridSearchCV” in the “Scikit-Learn” library. It
returns the evaluation index score under all param-
eter combinations by means of cross-validation by
traversing all permutations and combinations of
incoming parameters. First, initialize the lift param-
eters and then adjust them. Taking parameter n_
estimators as an example, the process is as follows:
the candidate values of parameter n_estimators were
determined to be 200, 300, 400, 500, and 600, and
the value of parameter n_estimators was changed
while the other parameters remained unchanged.
Cross-validation and evaluation index RMSE were
used to measure the performance of the model.
Candidate values can be further divided on the basis
of candidate values themselves. For example, the
best candidate value is 350. According to the above
steps, choose below in turn. The best values for col-
umn parameters are as follows: learning_rate, max_
depth, min_child_weight, subsample, subsample_
bytree, gamma, reg_alpha, and reg_lambda; the best
values are shown in Table 3. When all the parame-
ters finish determining the optimal parameter
values, the construction of the prediction model of
travel time between bus stations based on XGBoost
is completed.

Table 4: The best value of each parameter of LightGBM model.

Parameters Value

max_depth 5

num_leaves 10

learning_rate 0.01

random seed Fixed value

n_estimators 1000
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(a) KNN regression model

0
0

1,000

2,000

3,000

4,000

5,000

6,000

1,000 2,000 3,000 4,000 5,000 6,000

Pr
ed

ic
tiv

e v
al

ue

True value

(b) BP neural network model
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(c) LightGBM model

Figure 11: Continued.
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5.2. Comparison with Traditional Model. In this paper, the
KNN regression model, BP neural network model, and
LightGBM model are selected to be compared with XGBoost
prediction model. In order to better understand and exam-
ine the effectiveness and accuracy of the bus travel time pre-
diction model based on XGBoost established in this paper,
the KNN regression prediction model, BP neural network
model, LightGBM prediction model, and XGBoost predic-
tion model are also established for comparison.

5.2.1. KNN Regression Model. The KNeighborsRegressor
function in the Python module sklearn.neighbors is used to
build a KNN-based regression prediction model. The key
parameters are n_neighbor and weight, which represent the
number of nearest neighbor data points and the weight of
each neighbor data point, respectively. The optimal value
of the parameter n_neighbor is determined to be 14 and
the optimal value of the parameter weight is determined to
be uniform by training the tuning parameters through the
enumeration method.

5.2.2. BP Neural Network Model. In this paper, we use the
Python module Keras to build the prediction model based
on BP neural network. After repeated experiments, the num-
ber of nodes in the input layer, hidden layer, and output
layer of the BP neural network model is determined, and
the model structure is 24-14-1. The relu function is selected
for the excitation function of the hidden layer and the output
layer, and the number of iterations of the BP neural network
is set to 200, and the learning rate is 0.01.

5.2.3. LightGBM Model. In this paper, we use the python
module LightGBM to build a prediction model based on
LightGBM. The parameters of the LightGBM model are
determined by Grid Search. The best values of its parameters
are shown in Table 4.

The selected influencing factors are used for feature engi-
neering and as model input. And the KNN regression model,
BP neural network model, LightGBM model, and XGBoost
model are used for prediction. The comparison results
between the predicted values of different prediction models
and the real values are shown in Figure 11.

From the above figure, it can be seen that the XGBoost
model has the best prediction. The evaluation index values
of each prediction model are shown in Table 5. The values
of the three-evaluation metrics of the XGBoost prediction
model are lower than those of the other three models.
Among them, the MAPE value of the XGBoost prediction
model is 11.96%, which is 4.03%, 18.79%, and 5.07% lower
than the KNN regression prediction model, BP neural
network prediction model, and LightGBM prediction model,
respectively, and its mean value is 9.30%. It is concluded that
the accuracy of the XGBoost-based prediction model
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(d) XGBoost model

Figure 11: Comparison of the predicted value of each model with the true value.

Table 5: Comparison of the average value of the evaluation
indicators.

Parameters MAE RMSE MAPE (%)

XGBoost model 137.01 247.92 11.96

KNN regression model 162.51 278.11 15.99

BP neural network model 459.27 673.26 30.75

LightGBM model 151.57 255.45 17.03

Table 6: Average evaluation value of XGBoost model in different
time periods.

Time period MAE RMSE MAPE

Morning peak 179.51 263.78 13.63%

Evening peak 160.40 235.19 12.78%

Flat peak 136.60 279.71 11.95%
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Figure 12: Comparison of the predicted value and the true value of the XGBoost model in different periods.
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proposed in this paper is better when performing conven-
tional bus stop-to-stop travel time prediction.

5.3. Robustness of the Model. To evaluate the robustness, we
compare the performance of the proposed model.

5.3.1. Analysis by Time Period. This paper compares the per-
formance of XGBoost model in different time periods
(morning, evening peak and peak), and the results are shown
in Table 6.

It can be seen that the MAPE of the XGBoost model in
the morning peak period is significantly lower than that in
the evening peak period and flat peak period, which indi-
cates the prediction accuracy of the model in the morning
peak period is higher, followed by the evening peak and flat
peak period, and the flat peak period has the worst perfor-
mance. The comparison between the predicted value and
the real value of XGBoost model in different periods is
shown in Figure 12.

The prediction result performs the best in the morning
peak period, and the dots in the figure fall within the limit
boundaries; the second is the evening peak period; only a
few dots in the figure fall outside the 20% limit boundaries;
and the flat peak period has the worst performance. The
potential reason behind this could be that the overall road
traffic flow volume during the morning rush hour is greater
than that during the evening rush hour, and the residents’
travel purposes during the morning rush hour are more uni-
fied, the travel time between stations is less volatile, and the
various other factors show less significant impacts. There-
fore, the prediction accuracy during the morning peak hours
is higher, and the error is smaller. People travel for various
purposes during peak hours, so the travel time between sta-
tions fluctuates greatly. Moreover, the bus company will
increase the frequency of bus departures during peak hours.
The more research samples, the higher the accuracy. All the
above reasons contribute to prediction in peak hours which
gets higher accuracy than it gets in nonpeak hours.

In the end, the calculated MAPE of the XGBoost model
during peak hours is 10.10%, and the MAPE during normal
peak hours is 10.63%. Therefore, the constructed forecasting
model has good prediction result during peak hours and bet-
ter performance during morning peak hours.

5.3.2. Analysis by the Number of Driving Sections. This paper
regards the road segment between adjacent stations as a
driving section. Compare the error between the model pre-
diction result and the true value under different number of
driving sections, as shown in Figure 13. The abscissa is the
number of driving sections in the predicted road segment,
and the ordinate represents the average absolute percentage
error between the predicted value and the true value.

Obviously, with the increase of the number of driving
sections, the average value of MAPE of XGBoost prediction
model gradually decreases; that is, the prediction accuracy of
XGBoost model gradually improves. The comparison
between the predicted value and the real value of XGBoost
model under different number of driving sections is shown
in Figure 14. The number of driving sections corresponding
to ðaÞ ~ ðxÞ ranges from 1 to 24, respectively.

When the number of driving sections is small, more dots
will fall outside the 20% limit. However, as the number of
driving sections increases, the number of dots outside the
limit boundaries decreases, which further verifies that as
the number of driving sections increases, the prediction
accuracy of the model improves. This may be because there
are certain restrictions on the travel speed of public trans-
port vehicles on urban roads. The greater the number of
driving sections, the longer the length of the road section,
the smaller the effect of various factors on driving vehicles
will share, the more stably the average vehicle speed fluctu-
ates, and the travel time between stations is gradually less
affected by various factors, so the accuracy of the forecasting
model is also improved.

5.4. Influence Degree of Variables. In this paper, a prediction
model based on XGBoost is established to predict the travel
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Figure 13: Average value of MAPE of XGBoost model under different numbers of driving section.
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Figure 14: Continued.
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Figure 14: Continued.
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Figure 14: Continued.
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Figure 14: Continued.
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Figure 14: Continued.
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Figure 14: Comparison of the predicted value and the true value under different driving sections.
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time between bus stations by comprehensively considering
the influence of temporal and spatialfeatures. To compare
the different features of the building model prediction accu-
racy of contribution, the XGBoost prediction model, which
does not include the two characteristics of the change of
the shift speed before and after the adjacent road section
and the road conditions, is used as the basic model. The road
conditions include three influencing factors: the proportion
of bus lanes, the number of traffic lights, and the turning
situation of bus. Add these two features, respectively, or in
combination into the feature project to predict, and get the
performance of the model under different conditions, as
shown in Figure 15. The MAPE of the benchmark model
was 10.61%.

On the basis of the benchmark model, if any of the fea-
tures including the change of shift speed before and after
adjacent sections and road conditions are added, the model
prediction will have a positive impact, that is, to improve
the prediction accuracy of the model. The positive improve-
ment of the model is the largest if the change of shift speed
before and after the adjacent road section and the road
condition are included simultaneously. This shows that the
conventional prediction model of bus station travel time
based on the proposed influencing factors is feasible.

6. Conclusion

This paper presents an algorithm for travel time between bus
stations prediction based on XGBoost model, which utilizes
variations of the flight speed in adjacent sections before and
after, bus lane proportion, real-time weather influence on
bus travel speed, etc. as characteristics. Compared with other

prediction models, the XGBoost prediction model has the
lowest MAPE value of 11.96%, which is 9.30% lower than
the other prediction models on average. It is proved to have
higher accuracy and stronger reliability. In addition, com-
paring the prediction results of the model in different time
periods and different number of driving sections, extensive
experiments demonstrate that the prediction accuracy of
the model is high in the nonpeak hours, and the more the
number of driving sections, the more stable and reliable
the performance of the model, when the number of line
units exceeds a certain value, the accuracy of the prediction
model tends to stabilize and the prediction error is basically
below 7%. Furthermore, the improvement effect of the pro-
posed factors on the model is analyzed.

This paper has achieved the expected goal to a certain
extent, but there are still some deficiencies. This paper only
selects the bus operation data of one single line in Guang-
zhou for analysis and prediction, without considering other
bus lines to firmly bridge the gaps between the theoretical
research and the application of the developed model. The
variation of the stopping time and boarding passenger flow
of bus vehicles in the process of running is also an impor-
tant factor affecting the travel time between conventional
bus stations. Further research is needed to improve the
prediction accuracy.

Data Availability

Bus-related data used during the study were provided by a
third party (Guangzhou Yangchengtong Company). Road
and signal data during the study are available in a repository
or online in accordance with funder data retention policies

Basi
c m

odel

Basi
c m

odel w
ith

 sp
eed

 ch
an

ge

Model p
roposed

 in
 th

is p
aper

Model

Basi
c m

odel w
ith

 ro
ad

 co
nditio

ns
10.4

10.45

10.5

10.55

10.6

10.65

M
ap

e (
%

)

Figure 15: Contribution of proposed features.

24 Wireless Communications and Mobile Computing



(Baidu Map). Weather data used during the study are avail-
able in a repository or online in accordance with funder data
retention policies (the agricultural meteorological big data
system-WheatA).
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