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An embedded microprocessor is the core part of the integrated circuit system, and it represents one of the highest levels of a digital
integrated circuit design. Therefore, the design of low-power embedded microprocessors has become an important research
direction in the integrated circuit design. Volleyball has always been a very important sport in our country, and it is a sport
that the masses of people like to see. The basic techniques of volleyball include ready posture and movement, serving, hot ball,
passing, smashing, and netting. The research content of this article is a simulation study of volleyball players’ arm trajectory
optimization recognition. In response to the above problems, this paper proposes an optimized recognition method based on
the volleyball player’s arm motion trajectory. The simulation results show that the method has high recognition accuracy and
provides a strong scientific basis for improving the volleyball players’ spike skills. Without interference from the right arm, the
controller input and position tracking error will not fluctuate in 1 ≤ T ≤ 3, the controller input is stable, and the output error is
zero. Based on the above simulation analysis, it can be seen that the control method does not require the robot kinematics and
dynamics model to generate any regression matrix when designing the controller. The controller is suitable for the
performance tracking of humanoid robot arms.

1. Introduction

The anthropomorphic double-arm robot has its unique
advantages in industrial fields such as precision grinding,
precision assembly, and heavy load handling. It is the direc-
tion of the intelligent development of the next generation of
industrial robot arms. At the same time, volleyball, as the
only collective sports event to win the Olympic champion-
ship in China’s three major balls, occupies a very important
position in the hearts of Chinese people. The Chinese
women’s volleyball team won the 2019 Women’s Volleyball
World Cup and successfully defended the title. This is the
tenth World Championship won by the Chinese women’s
volleyball team, and it is also a special birthday gift they sent
to the 70th birthday of the People’s Republic of China. Gen-
eral Secretary Xi Jinping called to congratulate everyone and
encouraged everyone to continue to maintain high fighting
spirit, not be arrogant or impetuous, and achieve better

results. The spirit of women’s volleyball encourages all walks
of life to struggle forward. As the development of the world
volleyball team enters the new century, volleyball has also
developed rapidly. In recent years, international competi-
tions have continued to increase. Various countries are also
actively participating in preparations, whether in the overall
team tactics or player physical fitness. Quickly, in addition, it
has attracted a large number of commercial resources, and
the commercial development of volleyball has also become
colorful, so this has increased the healthy competition
between sports teams in various countries, thereby greatly
promotes the popularity of volleyball worldwide, and also
makes volleyball more professional and commercial.

From the evolution of apes to humans, human use of
various tools is becoming more flexible and even making
complex arm movements, which is more challenging for
the analysis of athlete arm trajectories. More and more
arm movement makes human upper limbs, especially the
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arms and fingers, not only developed but also very flexible,
as if they were skillful [1, 2]. The flexibility of the joints tends
to be perfect, the structural characteristics are very reason-
able, the movement can be optimized and the most flexible,
and the ability to adapt to the environment is extremely
strong, which makes the human survival ability easier than
other organisms [3, 4]. From ancient times to the present
day, human beings have been learning and exploring the
world from the rich world. Many of the inspirations for
human technologies and inventions come from the colorful
natural world [5, 6]. Therefore, the natural world is the
source of human progress and development and an inex-
haustible treasure trove of ideas and inventions [7, 8]. Learn-
ing from nature, imitating various movements of creatures
to serve humanity has developed into a discipline, i.e., bion-
ics [8, 9]. As the most important branch of research in bion-
ics, the research of humanoid itself is also one of the most
popular research fields at present [10, 11]. In recent years,
there have been many studies at home and abroad where
two single-arm robots coordinate and cooperate with each
other to accomplish a certain task and have achieved many
research results [12, 13]. However, it is difficult to deal with
emergency accidents by a simple combination of two one-
handed robots to complete complex and flexible actions like
humans [14, 15]. Therefore, it is very meaningful to study
and implement the dual-arm robot to flexibly and steadily
perform various actions like humans in a complex environ-
ment [16, 17]. The traditional robot trajectory construction
method relies on manual programming by the operator,
and the efficiency is relatively low [18, 19]. In recent years,
a method based on imitation-based automatic generation
of robot trajectories has received increasing attention from
researchers [5, 20]. This method has higher efficiency than
traditional methods and has the advantages of strong adapt-
ability for different execution tasks [21, 22]. It enables robots
to learn new skills and knowledge by interacting with other
individuals in the environment, such as humans or other
robots, just like humans [8]. The automatic generation
method of movement track based on imitation makes the
robot more adaptable. By observing the movement of the
teacher with marked points, the movement information of
the teacher can be quickly and accurately obtained, and the
computer passes the obtained data through. A certain algo-
rithm is processed to generate a reasonable robot trajectory
and store it and then controls the robot to repeat the same
actions as the teacher, so that the robot learns useful actions
and enables it to quickly adapt to new tasks and environ-
ments [23, 24].

Learning the spatiotemporal representation of motion
information is essential for human action recognition. How-
ever, most existing features or descriptors cannot effectively
capture motion information, especially for long-term
motion. To solve this problem, Shi et al. proposed a long-
term motion descriptor called a sequential depth trajectory
descriptor (sDTD). Specifically, Shi et al. project dense tra-
jectories into a two-dimensional plane and then uses
CNN-RNN networks to learn effective representations of
long-term motion. Unlike the popular two-stream Con-
vNets, the sDTD stream is introduced into a three-stream

framework in order to recognize actions from video
sequences. Therefore, this three-stream framework can
simultaneously capture the static spatial features, short-
term motion and long-term motion in the video. Extensive
experiments were performed on three challenging data sets:
KTH, HMDB51, and UCF101. Experimental results show
that Shi et al.’s method has the most advanced performance
on the KTH and UCF101 datasets and is comparable to the
latest method on the HMDB51 dataset [25]. Fahn et al.
introduced a gesture recognition method for human-
machine interface. This recognition method is based on a
learning ranking model. Experimental results show that the
AdaRank model is effective for improving recognition accu-
racy. Combining the learning ranking model with the hand
movement trajectory has made a breakthrough in modeling
a complex combination of 8 recognized gestures. The con-
struction of the gesture recognition system can effectively
detect the gestures of one hand or two hands in basic direc-
tions (such as moving up, moving down, moving left, and
moving right). In order to make users more friendly to the
proposed system, Fahn et al. can combine basic directions
and expand into more gestures for applications. Experimen-
tal results show that Fahn et al.’s method has high perfor-
mance and can run in real time. For practical applications,
the accuracy of this method is also very high [26]. The
energy expenditure of the human arm is important for seek-
ing the optimal human arm trajectory. Zhou et al. proposed
a new method to calculate the metabolic energy expenditure
of the human arm movement, aimed at revealing the rela-
tionship between the energy expenditure and the arm move-
ment trajectory and the contribution of acceleration and arm
direction. Zhou et al. studied the horizontal motion of the
human arm with the Qualisys motion capture system, and
motion data were postprocessed by biomechanical models
to obtain metabolic consumption, including results on arm
motor kinematics, kinetics, and metabolic energy expendi-
ture [27].

This study starts from the whole and observes the char-
acteristics of shoulder dysfunction, such as morphology,
muscle strength, mobility, proprioception, etc., using the
shoulder joint as a ring, and putting it into the whole whip
chain from the torso to the arm. For analysis, the simulation
test system was applied to volleyball for the first time to test
the strength, speed, power, etc. of spiking, and combined
with EMG, infrared high-speed camera and other tests, a
comprehensive analysis of the dynamic mechanism of shoul-
der dysfunction. The function of proprioception is to receive
external stimuli and structural deformations produced by
joint muscle movements and transmit this information to
the center to adjust limb position and muscle activity, so as
to protect and maintain joint stability and avoid sports inju-
ries caused by excessive movements. This article observes
the morphological characteristics of people with shoulder
dysfunction; tests their activity, muscle strength, and propri-
oception; and observes the changes in proprioception after
static strength exercise fatigue; through simulation tests, sur-
face electromyography, and biomechanical tests, the analysis
caused dysfunction dynamic mechanism. In this paper, the
automatic generation method of robot trajectory based on
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imitation is to record and process the motion data of the
teacher and then map it into the corresponding trajectory
of the robot and optimize it to make the robot reproduce
the motion of the teacher.

2. Proposed Method

2.1. Volleyball Player Movement Analysis. In volleyball spik-
ing, upper limb movements are all coordinated by shoulder
straps, shoulder joints, elbow joints, radial ulnar joints, wrist
joints, and finger joints. The movement of the shoulder strap
always follows the movement of the shoulder joint to
increase the amplitude of the upper arm movement. The
swinging action of the swing arm is to lift the shoulder joint
as the axis directly to the back of the shoulder and accelerate
forward and upward. Therefore, during jumping and air
strikes, the movement of the upper limb can be decomposed
into a shoulder strap: shoulder blade bony rotation-rotation-
down maneuver-forward extension and lowering; shoulder
joint motion: upper arm flexes-inner rotation extension
when shoulder joint abducts; and elbow joint motion: when
swinging the upper arm, the triceps contract explosively to
straighten the elbow joint. The flexor muscles of the wrist
and fingers contract, and although the force generated by
the action is not large, the effective transmission of momen-
tum, the determination of the final position of the end ring,
and the decisive influence on the final state. During the
whiplash of the upper limbs, the muscles that complete the
exercise usually first passively elongate and then contract
to apply force. Muscles, a form of work that is forced to rap-
idly centrifugal contract and then turn into centripetal con-
traction, is called “stretch-shorten cycle.”

2.2. Arm Trajectory Model. The typical joint morphology is
mainly on the kinematic joint surface (the articular surface
is the contact surface of each related bone that constitutes
the joint. Each joint includes at least two articular surfaces,
generally one convex and one concave. The convex one is
called the joint head, and the concave one is called the joint
socket), when it is described in joint kinematics. The shape
of the articular surface is mostly a curved surface or a slightly
curved surface. This forms a concave-convex relationship at
the joint. The concave-convex relationship of the joints
allows them to adapt to each other, increase the surface area
to dissipate the contact force, and help guide the movement
between bones. Almost half of the humeral bone of the
shoulder joint is a solid sphere. It forms the convex surface
of the glenohumeral joint. In this concave-convex relation-
ship, there are three basic forms of motion: rolling, sliding,
and rotating. When the human arm is in motion, three types
of motion will move on the convex and concave surfaces.
The definitions for scrolling, sliding, and rotating are shown
in Table 1.

Since rotation is more important for the humanoid dual-
arm robot in the later period, the following introduction and
examples are given here. The humanoid dual-arm robot is
capable of having a stronger grip and a longer arm span than
humans, which mimics the human arm structure to com-
plete a similar movement to the human arm. One of the

main ways of bone rotation is through the rotation of its
joint surface to counter the articular surface of another bone.
Generally, it mainly occurs in the rotation of the forearm
and the glenohumeral joint and the flexion and extension
of the hip joint.

In the process of arm movement, the shoulder joint,
elbow joint, and wrist joint complex mainly rely on the rota-
tion method. In order to better evaluate the movement of the
arm, this section uses the triangle rule to study the shoulder
joint as an example, as shown in Figure 1. In the triangle, the
value of the trigonometric function can be calculated
through the relationship between the angle and the edge.
The sides of the triangle can represent physical quantities
such as distance, force, and speed. Here, we first define the
representation of right-angle trigonometric functions in bio-
mechanical relations, sine sin ðαÞ, cosine CosðαÞ, tangent
Tan ðαÞ, and cotangent Cot ðαÞ, where each trigonometric
function represents a specific given angle value. If the vector
representing two sides is known in a right triangle, the third
side is the hypotenuse, which can be determined by the
Pythagorean theorem. If, in addition to a right angle, a side
and an angle are known in a right triangle, then the remain-
ing sides of the triangle can be represented by one of four
trigonometric functions. The angle can be obtained by
knowing any two sides using an inverse trigonometric func-
tion. The angle of insertion of the deltoid muscle in the
shoulder joint is 45 degrees from the bone. Based on the
selected work coordinate reference system, the rectangular
part muscle force M is synthesized by Mx parallel to the
arm and perpendicular to the arm My.

When the elbow joint is subjected to external resistance,
the muscle provides power for the arm to resist the resis-
tance. It belongs to the internal force category of the elbow
joint. This muscle strength can be decomposed intoMx par-
allel to the forearm (radial) and vertical My by the right tri-
angle method. These forces affect the stability of the joint.
When the muscle component My parallel to the forearm
passes through the axis of rotation at the elbow joint, there
is no torque, so there is no rotation. When the component
force, my perpendicular to the forearm passes through the
rotation axis, a torque is generated, and therefore, rotation
occurs. This vertical component also produces a tangential
force on the humeral radius joint. The direction is along
the positive direction of the Y axis.

Arm movements include plate support, pull-up, push-
ups, and back push-ups. Embedded processor is the core of
the embedded system, which is the hardware unit of control
and auxiliary system operation. As the core of the embedded
system, the embedded processor undertakes the important
tasks of control and system work, making the host equip-
ment function intelligent, flexible design, and simple
operation.

2.3. Principle of Identification. In the process of identifying
the trajectory of the volleyball player’s arm, we first obtain
the joint points of the human arm movement, extract the
key feature point trajectory of the arm movement trajectory,
obtain the data of the arm trajectory feature point of each
frame of image, and obtain the dynamic volleyball player
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arm movement sequence diagram. We establish a volleyball
player arm movement trajectory recognition model to com-
plete the volleyball player arm movement trajectory recogni-
tion. a represents the distance between the wrist joint and
the shoulder joint, b represents the distance between the
wrist joint and the elbow joint, and c represents the distance
between the elbow joint and the shoulder joint. Then, using
Equation (1), we first obtain the coordinates of the human
arm joint.

α∂ Γð Þ = φ ∂ð Þ × X
c ×M αð Þ ⋅ b ∗ Zð Þ: ð1Þ

In the formula, M ðαÞ represents the distance between
the joints of the left arm and the shoulder joints in the space.
ϕð∂Þ represents the distance between the joints and the
shoulder joints. Vector Z represents the change range of
joint point of arm movement. Suppose that ηðId , IYÞ repre-
sents any pixel in the single-pixel picture of the volleyball
player’s arm movement in a certain frame, and Id and IY
represent the horizontal axis and ordinate ∂nðId , IYÞ of I,
respectively, and represent the subsequent n-frame single-
pixel athlete’s arm movement picture, Equation (2) gets the
data of the feature points of the arm’s motion trajectory
for each frame of the image:

η τð Þ = η Id , IYð Þ ⊗ ∂n Id , IYð Þ
Id ⊗ IY

× α∂ Γð Þ: ð2Þ

Assuming that I ′ðI′x, I′yÞ represents the corner point of
the right arm end and then uses Equation (3) to obtain the
data of the arm trajectory feature points of each frame
image:

I ′ I′x, I′y
� �

=
∂n Id , IYð Þ × η Id , IYð Þ

Id ⊗ λ Mð Þ : ð3Þ

In the formula, λ ðMÞ represents the offset of the depth
feature from the original position. Assuming that f iðI, YÞ
represents the segmentation position feature of the hand
region, Bðμ, vÞ represents the processed motion trajectory,
and θ represents the conversion data of the lower arm of
the arm, and then, we use Equation (4) to obtain the
dynamic volleyball player arm motion sequence diagram.

ωan
b ℓ, lð Þ = x′b

h i
⊗

E ⊗ f i I, Yð Þð
B μ, vð Þ × θ: ð4Þ

In the formula, xb′ represents the characteristic parame-
ter of the arm motion, and E represents the characteristic
value of the connected area to mark the initial frame image.
Based on the above, formula (5) is used to build a volleyball
player arm movement trajectory recognition model.

μ ℘ð Þ = f i I, Yð Þ½ � ⊕ α∂ Γð Þ ∗ Zð Þ
ωan
b ℓ, lð Þ ⊗ λ ξð Þ : ð5Þ

In the formula, λðξÞ represents the change range of joint
trajectory. The above can explain the principle of volleyball
player arm movement trajectory recognition, which can be
used to identify the volleyball player arm movement
trajectory.

In the process of recognizing the trajectory of the volley-
ball player’s arm movement, the fusion of the background
difference principle is first used to detect the athlete’s move-
ment trajectory, and the dynamic arm tracking is performed
by the particle filter of the color histogram. Suppose that ut
represents the corresponding pixel of the background image,
ut+1 represents the updated pixel of the volleyball player arm
motion background image, and it represents the pixel of the
current frame volleyball player arm motion image; then, we
use formula (6) to collect the detected volleyball player’s arm
motion sequence images.

μt+2 =
μt , It x, yð Þ,
αμt+1 + 1‐αð ÞIt ⊗ I f :

(
ð6Þ

In the formula, α represents the update rate of the back-
ground model, I f represents the mask value of the pixels of
the current frame image. In the RGB recognition of the vol-
leyball player’s arm movement trajectory, the skin color of
the arm is yellowish, and the brightness of the pixels of the

Table 1: Three kinds of motion definition in joint kinematics.

Exercise
method

Definition
Performance of joints in

motion

Scroll
Multiple points of one rotating joint surface are in contact with multiple points of another

joint surface
Tyre movement on the road

Slide
A single point of one joint surface is in contact with multiple points of another joint

surface
Tires slip on smooth ice

Spin Rotation of a single point on one joint surface with a single point on another joint surface
The ball turns a little on the

ground

α

c

a

b

Figure 1: The triangle rule.
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skin color is greater. The pixel corresponding to the skin
color of the volleyball player’s arm corresponds to the
brightness χðpÞ representing the back projection image of
each frame of arm movement, and then, the binary image
of the arm movement trajectory is detected by using

v temp =
χ pð Þ ⊗ η βð Þ,
v × ∂ Yð Þ × r:

(
ð7Þ

In the formula, ∂ðYÞ represents the different channels of
the RGB image, ηðβÞ represents the proportional coefficient
of the skin color of the athlete’s arm movement, and r repre-
sents the pixels of the skin area of the moving arm. Suppose
that wi

kðx0:kÞ is the weight representing the time of the ith
particle k − 1, wi

k−1 is the likelihood probability observed by
the volleyball player’s arm motion trajectory system, and
the weight of the particle is obtained by calculating the Barr
coefficient of the color histogram.

In the formula, PðuÞ represents the color histogram of
the arm motion area where each particle is located, and qð
uÞ represents the sensitivity of the color space to light.

In summary, it can be explained that in the process of
volleyball player arm movement trajectory recognition, the
background difference principle is first used to detect the
athlete’s movement trajectory, and the color histogram par-
ticle filter is used for dynamic arm tracking, which provides
a volleyball player arm movement trajectory recognition.

2.4. The Processing Power of the Microprocessor. We know
that a program written in a high-level language needs to be
compiled, assembled, and linked with a compiler, assembler,
and linker, respectively, to generate object codes that can be
directly executed by the microprocessor. The object code
consists of a series of computer instructions. We define the
performance of a microprocessor as

PER = 1
EXET

: ð8Þ

In the above formula, EXET represents a period of pro-
gram execution time, and another commonly used perfor-
mance indicator is MIPS, that is, how many millions of
instructions are executed per second

MIPS =
EIC

ET sð Þ ∗ 106
: ð9Þ

The total service delay can be expressed as follows:

T TAð Þ = Task
c

+wm,
Task
c2

+wm,
Task
c3

+wm,⋯,
Task
cm

+wm
� �

+ ϕ:

ð10Þ

The solution of the task distribution coefficient can be
transformed into a vector solution, which is modeled as

the following optimization problem:

〠
k

i=1
TA ið Þ = Task,

I =
Y
i=1

Taskmin, Taskmax½ � =
Y
i=1

0, Task½ �:
ð11Þ

The total service response delay under the condition of
no failure can be expressed as follows:

t =max D
C

+Wl, Dc

Cc
+Wl

� �
: ð12Þ

The communication delay between computing nodes in
the CE-IIoT architecture can be expressed as follows:

W =
D
L
×
T 1 + Pð Þ
1 − P

: ð13Þ

Then, the time delay for a successful transmission of a
data packet is calculated as follows:

T = L
R
,

Wvi,vj =
D
r
×
1 − l
1 + l

:

ð14Þ

Similarly, the communication delay between the MEC
device and the cloud server C can be calculated as follows:

Wc = ϕ
D
r
×
1 − P
1 + P

: ð15Þ

The overall structure of the obtained controller is shown
in Figure 2. It searches according to the address output by
the MMU and returns the corresponding result if it hits; oth-
erwise, it sends a request to the outside to interface with the
BIU.

3. Experiments

3.1. Subjects and Data Sources. In order to prove the effec-
tiveness of the proposed volleyball player arm trajectory
optimization recognition method based on chaos theory,
this paper builds an experimental platform for volleyball
player arm trajectory recognition through related experi-
ments and MATLAB environment. The experimental data
comes from the record of the 2017~2019 Chinese Women’s
Volleyball League. The game uses a French-made camera
with an internal time scale of G · V16mm and shoots two
different swings of the swinging arm at position 2 from the
front side. The shooting frequency is 90 frames per second.
The upper edge of the reference body is 2.4m above the
ground, the height of the camera’s main optical axis from
the ground is 1.67m, and the take-off point of the athlete’s
spike is 20m. A total of 60 spiking moves of 5 main players
were shot, and a better image frame of each spiking action
was selected as experimental data.

5Wireless Communications and Mobile Computing



3.2. Experimental Software System Platform. In order to
facilitate the user’s operation, a software application plat-
form with a simple graphical interface was written. The
experimental platform mainly includes the following mod-
ules: data acquisition and processing module, trajectory gen-
eration module, 3D simulation module, and robot
communication module, as shown in Figure 3.

This platform is modular, portable, and extensible, and
at the same time, supports TCP/UDP network communica-
tion and the storage of related data and control instructions.
The process flow for the robot control software to plan the
robot’s dynamic motion is shown in Figure 4.

The programming languages of the software platform
are mainly MATLAB and C #. In order to take advantage
of MATLAB’s excellent numerical computing power, the
processing of arm motion data, the generation of trajecto-
ries, and the three-dimensional simulation are carried out
in MATLAB. The three-dimensional simulation interface
establishes a three-dimensional model of the robot.

4. Discussion

4.1. Centrifugal/Centripetal Ratio Analysis. The relationship
between the eccentric and centripetal ratio of the shoulder
joint flexor and extensor is the relationship between the
active muscle and the antagonist muscle. On the contrary,
when the extensors of the shoulders perform centripetal
movements, the flexors of the shoulders adjust the move-
ment of the shoulder joints by eccentric movements. The
ratio of shoulder joint antagonistic eccentric/active muscle
centripetal contraction is shown in Table 2.

It is generally believed that isotonic eccentric contraction
is when the tension on the tendon reaches a certain level and
may damage the muscle. The Golgi tendon in the skeletal
muscle tendon sends out a return impulse to the central ner-

vous system, which has an inhibitory effect on the motor
nerve. Inhibition of muscle activity can prevent muscle
strain. We analyze the number of technical actions assisted
by running, the distance of each step, and the distance of
approach, as shown in Table 3:

The purpose of the run-up is to increase the take-off
height on the one hand, and on the other hand, to obtain a
certain forward momentum after the take-off, and to choose
a suitable hitting point.

Combining the data in Table 2, an analysis of the shoul-
der joint antagonistic muscle centrifugation/active muscle
centripetal ratio can be obtained, as shown in Figure 5.

During the volleyball swing arm spiking process, the
flexor, abductor, and external rotation muscle groups mainly
increase the angle of the shoulder joint to generate potential
energy, and the extensor, internal rotation, and horizontal
adduction muscle groups during the arm swing stage con-
tract to produce strength and accelerate the movement of
the upper limbs, and the flexor, external rotation, and hori-
zontal abduction muscle groups do eccentric contraction.
On the one hand, they must resist the force generated by
the concentric contraction of the internal rotation muscle
group. On the other hand, they must also cushion the inertia
of the upper limbs to prevent the shoulder joint from con-
centric contraction of the internal rotator from the extreme
movement beyond the physiological range in a certain direc-
tion. By regularly performing constant-speed strength test
on the shoulder joint, the balance of the antagonistic eccen-
tric eccentric force of the two shoulder joints and the cen-
tripetal force of the original motor muscle is compared to
prevent the occurrence of sports injuries. The ratio of the
external rotation centrifugal/internal rotation centripetal
and horizontal adduction centrifugation/horizontal abduc-
tion centripetal right hand is smaller than the left hand. This
discovery should attract enough attention, because the

Bus interface control module

Receive
FIFO

Clock
module

Transmit
FIFO

SPI interface unit

Figure 2: SPI overall structure diagram.
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horizontal adduction muscles and external rotation muscles
play an important buffering role in the completion of the
pull arm and batting movements. During the deceleration
of the batting action, the centrifugal contraction of the exter-
nal rotation muscle generates greater tension to control the
degree of centripetal contraction of the internal rotation
muscle. After frequent practice of the above movements,

the overloaded work due to eccentric contraction increases
the risk of muscle injury or worsening strain. Therefore,
the external rotation centrifugal force and horizontal adduc-
tion centrifugal force should be strengthened to maintain the
balance of shoulder joint muscle strength.

4.2. Comparative Analysis of Volleyball Players’ Upper Limb
Rapid Strength Kinematics Index. The shoulder rotation
angle refers to the angle formed by the line between the
shoulders of the athlete and the horizontal plane and repre-
sents the rotation angle of the upper body. When the tested
athletes completed the entire batting action in the air, the
angle change of the shoulder rotation angle at the maximum
of the arm and the moment of the shot can reflect the rota-
tion amplitude.

By analyzing the data in Table 4, it can be seen that when
the male athlete has the largest arm before and after the
experiment, the shoulder rotation angle differs by about 5

Data collection

Motion capture
system

Data processing Trajectory generation 3D simulation

Robot control command
generation and
communication

Robot

Figure 3: Software platform structure.

Determine the starting
point and ending point of
the motion based on the

results of the static
configuration planning

Call the positive solution
of the robot to find the

coordinates of the starting
point and the ending point

in a rectangular space

Set the accuracy required
for robot operation

Calculate robot
movement time according

to Fitts law

Plan the robot trajectory
according to human-like

motion model

Call the robot inverse
solution to convert the
trajectory in the right-

angle space to the joint 
space

The robot moves in the
joint space according to
the planned trajectory

Figure 4: Robot control software to plan the processing flow of robot dynamic motion.

Table 2: Shoulder joint antagonist eccentric/active muscle centripetal contraction ratio.

Researcher Object Speed Result

Yu He Men’s volleyball 60°/s Flexion/centrifugation

Noffal Men’s baseball 60°/s External spin centrifuge/internal spin centrifuge

Sirota Men’s tennis 60°/s External spin centrifuge/internal spin centrifuge

Mikesky Man athlete 60°/s External spin centrifuge/internal spin centrifuge

Table 3: Step distances of different technologies.

Jump serve Back smash Front row smash
L jump 1 L jump 2 L after 1 L after 2 L front 1 L front 2

1 0.75 1.01 0.74 1.04 0.64 1.30

2 0.84 1.29 0.88 1.22 1.01 0.88

3 0.78 1.05 0.91 1.14 0.86 1.11

4 0.96 1.06 1.04 1.14 1.26 0.82

5 0.72 1.03 0.88 1.18 0.76 1.17
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degrees, P < 0:05, showing a significant difference, which can
be seen after the experiment. The body width has been sig-
nificantly improved. Combining the data in Table 3, a com-
parative analysis of the volleyball players’ upper limb fast
strength kinematics indicators can be obtained, as shown
in Figure 6.

The angle of the shoulder spin angle of the male athlete
at the moment of hitting the ball did not change much, P
> 0:05, and there was no significant difference, so the athlete
did not change significantly after the experiment. The angle
change value differs by about 5 degrees before and after the
experiment, P < 0:05, showing a significant difference. It
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Figure 5: Analysis of the ratio of antagonistic eccentric/active muscle centripetal of the shoulder joint.

Table 4: The angle of shoulder rotation angle before and after the experiment.

Before the experiment After the experiment

Gender Batting action Average value Standard deviation Average value Standard deviation T value P value

Male

When the arm is maximum 42.13 2.16 47.27 2.33 0.288 <0.05
Hitting moment 13.48 1.43 14.76 1.53 0.167 >0.05

Angle change value 28.65 1.66 32.48 1.75 0.604 <0.05

Female

When the arm is maximum 37.62 1.87 40.12 2.06 0.316 <0.05
Hitting moment 17.93 1.52 18.05 1.23 0.342 >0.05

Angle change value 19.65 1.79 22.08 1.55 0.931 <0.05
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Figure 6: Comparative analysis of volleyball players’ upper limb rapid strength kinematics index.
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can be seen that the amplitude of the male athlete’s rotation
after the experiment has increased greatly, which also shows
that the athlete’s spiking strength has also been compared. A
large increase, the difference between the angle change value
before and after the experiment is about 3 degrees, P < 0:05,
showing a significant difference. It can be seen that the
amplitude of the athlete’s rotation after the experiment has

increased greatly, which also shows that the athlete’s spiking
strength has also been greatly improved. The experimental
results provide theoretical help for the optimal recognition
of the volleyball player’s arm movement trajectory.

4.3. Analysis of Sliding Mode Adaptive Inversion Control
Based on Nonlinear Disturbance Observation. Simulation of
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Figure 7: Actual and observed values of nonlinear disturbance observers with sliding mode adaptive inversion control.

Table 5: Take-off level analysis.

Jump serve Back smash Front row smash

V and 3:02 ± 0:49 3:58 ± 0:17 3:42 ± 0:21

V double 1 (m/s) 2:08 ± 0:28 2:06 ± 0:22 1:68 ± 0:35

V double 2 (m/s) 2:53 ± 0:24 2:82 ± 0:23 2:72 ± 0:33

Horizontal speed damage rate 0:29 ± 0:07 0:38 ± 0:07 0:48 ± 0:09

Horizontal speed conversion rate 2:52 ± 0:22 2:03 ± 0:47 1:61 ± 0:47

Jump height (m) 0:71 ± 0:09 0:84 ± 0:09 0:82 ± 0:11

Jump distance (m) 1:72 ± 0:29 2:16 ± 0:17 1:55 ± 0:29
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Figure 8: Comparison results of two different methods for recognizing the effect of athlete’s arm trajectory.
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sliding mode adaptive inversion control based on nonlinear
disturbance observation is used. Nonlinear disturbance
observation is used to estimate matching interference. The
purpose of the sliding mode observation period is to reduce
the total interference of the system. The simulation is based
on a humanoid robot and DC motor driver. The actual and
observed values of the nonlinear disturbance observer for
sliding mode adaptive inversion control are shown in
Figure 7.

As shown in the figure, the output error of the left arm’s
position tracking under disturbance. It can be clearly seen
that the left arm’s input and position tracking error have
obvious fluctuations under the interference condition. In
the case of no interference, there is no fluctuation between
the controller input and position tracking error between 1
and 3, the controller input is smooth and stable, and the out-
put error is zero. Based on the above simulation analysis, it
can be seen that this control method does not require the
robot kinematics and dynamic model to generate any regres-
sion matrix when designing the controller. In addition, it
proves that using this controller ensures that all signals of
the closed-loop system converge exponentially. The tracking
error consistency is ultimately bounded. The controller is
suitable for performance tracking of humanoid robot arms.

The conversion rate of the horizontal speed of the back-
row smash and the jump-initiated jump is much lower than
that of the front-row smash. Jump serve has certain charac-
teristics of rushing jump. The analysis of take-off level speed
conversion rate is shown in Table 5:

4.4. Contrast Analysis on the Recognition Effect of Arm
Motion Trajectory by Different Methods. The method of this
article and other methods are used to carry out the experi-
ment of volleyball player’s arm movement trajectory recog-
nition. Two different methods are used to compare the
effect of the athlete’s arm movement trajectory recognition.
The comparison results are shown in Figure 8.

It can be analyzed that the effect of using this method to
identify the trajectory of the arm is significantly higher than
the effect of using other methods to identify the trajectory of
the arm of the volleyball player. This is mainly because when
using this method for arm movement trajectory recognition,
it is first combined with the background difference principle
to detect the athlete’s movement trajectory, using color his-
togram particle filtering for dynamic arm tracking, and fused
with chaos theory to obtain sports space. We reconstruct the
athlete’s arm trajectory to ensure the effectiveness of the
method in this paper to identify the arm’s trajectory. In the
method of this paper, when the recognition of the volleyball
player’s arm trajectory is optimized, the phase space of the
player’s arm trajectory is reconstructed using chaos theory.
From the reconstructed phase space, the chaotic invariant
representing the trajectory of the athlete’s arm is extracted,
and it has three-dimensional space characteristics. The arm
movement trajectory is converted into a one-dimensional
arm movement trajectory. On this basis, the optimized rec-
ognition of the volleyball player’s arm movement trajectory
is completed, thereby ensuring the comprehensive effective-

ness of the volleyball player’s arm movement trajectory iden-
tification method.

5. Conclusions

In this paper, when the current method is used to identify
the movement trajectory, the characteristics of the athlete’s
arm movement trajectory cannot be accurately extracted,
and the volleyball player’s arm movement trajectory cannot
be accurately identified. A new method for volleyball player’s
arm trajectory optimization recognition based on chaos the-
ory is proposed. The simulation results show that the pro-
posed method has high recognition accuracy and provides
a strong scientific basis for improving the volleyball player’s
spiking technique.

This article focuses on the research of the volleyball
player’s arm movement mechanism. The goal is to repro-
duce the human’s coordinated movement of the human
arm on the humanoid two-armed robot. Systematic and
in-depth research has been carried out on aspects such as
rotational motion evaluation, human trajectory capture
and inverse kinematics, model matching between human
trajectory and dual-arm robot, and coordinated control
method of dual-arm.

There are still some deficiencies in this paper. Although
this paper has made some research progress, it still needs
to further optimize the algorithm in human motion capture,
and the experimental design needs to increase the sample
value. In terms of control algorithm, the control space of
the dual-arm robot is still very large, and there are still many
problems that need further research.
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