Hindawi

Wireless Communications and Mobile Computing
Volume 2022, Article ID 3539919, 16 pages
https://doi.org/10.1155/2022/3539919

Research Article

WILEY | Q@) Hindawi

Lightweight Traffic Classification Model Based on Deep Learning

Chongxin Sun ,"? Bo Chen (,"? Youjun Bu(,"? Surong Zhang©,"* Desheng Zhang©,

2

and Bingbing Jiang

1,2

"Information Technology Institute, PLA Strategic Support Force Information Engineering University, Zhengzhou 450000, China
Endogenous Safety and Security Research Center, Purple Mountain Laboratory, Nanjing 211100, China

Correspondence should be addressed to Youjun Bu; buyoujun@pmlabs.com.cn

Received 27 May 2022; Revised 16 August 2022; Accepted 10 September 2022; Published 10 October 2022

Academic Editor: Jehad Ali

Copyright © 2022 Chongxin Sun et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The development of mobile computing and the Internet of Things (IoT) has led to a surge in traffic volume, which creates a heavy
burden for efficient network management. The network management requires high computational overheads to make traffic
classification, which is even worse when in edge networks; existing approaches sacrifice the efficiency to obtain high-precision
classification results, which are no longer suitable for limited resources edge network scenario. Given the problem, existing
traffic classification generally has huge parameters and especially computational complexity. We propose a lightweight traffic
classification model based on the Mobilenetv3 and improve it for an ingenious balance between performance and lightweight.
Firstly, we adjust the model scale, width, and resolution to substantially reduce the number of model parameters and
computations. Secondly, we embed precise spatial information on the attention mechanism to enhance the traffic flow-level
feature extraction capability. Thirdly, we use the lightweight multiscale feature fusion to obtain the multiscale flow-level
features of traffic. Experiments show that our model has excellent classification accuracy and operational efficiency. The
accuracy of the traffic classification model designed in our work has reached more than 99.82%, and the parameter and
computation amount are significantly reduced to 0.26 M and 5.26 M. In addition, the simulation experiments on Raspberry Pi

prove the proposed model can realize real-time classification capability in the edge network.

1. Introduction

As an important task in the field of network management
and network security, traffic classification is an important
technical support for network control, network planning,
intrusion detection, and traffic trend analysis [1-6]. With
the rapid development and application surge of mobile com-
puting and the Internet of Things, the data generated at the
edge network is increasing significantly. The demand for
processing and analysis of traffic at the edge network nodes
is rising sharply, which brings severe challenges [7, 8]. How-
ever, most existing models lack the consideration of model
efficiency, where they neither take into account the time
and space complexity nor fully evaluate the efficiency. In
particular, for deep learning methods, the huge overhead of
memory and runtime in the complex neural network leads
to high energy consumption, which is not feasible for edge
devices with limited resources [9-11].

In this paper, we propose a lightweight traffic classifica-
tion model based on deep learning to raise the efficiency
(especially computational efficiency) and performance of
traffic classification at the limited resources edge network.
And the main contributions of this paper can be summa-
rized as follows:

(1) We use a novel and outstanding lightweight model
Mobilenetv3 as the basic model of our model to
reduce the time and space complexity. In addition,
we compress the scale, width, and resolution of
Mobilenetv3 to minimize parameters and computa-
tion effectively of our model, which makes it high-
speed traffic classify in edge networks

(2) We fuse the spatial attention mechanism containing
precise location information on the original channel
attention mechanism of Mobilenetv3 to enhance the
spatial feature (high-order flow-level traffic feature)

https://orcid.org/0000-0003-1809-2524
https://orcid.org/0000-0002-0612-9257
https://orcid.org/0000-0002-1132-0937
https://orcid.org/0000-0002-5999-2310
https://orcid.org/0000-0003-3005-9305
https://orcid.org/0000-0003-2426-2390
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/3539919

extraction ability of the traffic classification model at
a small cost

(3) We embed multiscale feature extraction structures to
replace the original feature extraction module of
Mobilenetv3 for more high-level semantic informa-
tion and detailed information of traffic. At the same
time, we referred the idea of Mobilenetv3 to further
lightweight the multiscale feature fusion module

The rest of this paper is structured as follows: Section 2
introduces the related work of traffic classification. The sys-
tematic work is presented in Section 3, Section 4 elaborates
the experimental setup, and Section 5 launches the analysis
of experimental results. Finally, Section 6 concludes this

paper.

2. Related Work

Despite several years of development, there are still consid-
erable deficiencies in traffic classification methods based on
machine learning. Most existing methods based on machine
learning deeply rely on traffic statistical features such as
average packet length, flow duration, and average arrival
time of packets [10, 11]. The extraction of statistical features
needs to observe the whole or most of the flow, so machine
learning is mainly used in offline classification scenarios
[12]. In addition, feature selection, as the core of the
machine learning method, heavily relies on expert experi-
ence. For example, Moore et al. designed 250 features based
on prior knowledge [13]. Then most subsequent traffic clas-
sification works of machine learning mainly were based on
these 250 features [14, 15], which led to the performance
of traffic classification depending on the rationality of fea-
ture selection.

Compared with machine learning, deep learning can
automatically extract different types of network traffic fea-
tures by using neural networks, which solves the problem
of heavily relying on expert experience in machine learn-
ing methods [16]. The traffic classification model based
on deep learning can directly learn and output the corre-
sponding classification results by inputting the original
traffic data. Wang et al. [16] first proposed an end-to-
end traffic classification method based on a convolutional
neural network (CNN), which integrates feature extraction,
feature selection, and classifier into a unified framework to
learn the nonlinear relationship between original input
and expected output automatically, bringing a new direc-
tion to traffic classification. Then, traffic classification
methods based on deep learning emerge in endlessly. Sha-
pira and Shavitt [17] proposed a new traffic classification
and application recognition method, which converts the
traffic data into intuitive images and then uses CNN for
classification. Wang et al. [18] used CNN with deviation
standardization to classify network traffic on the Moore data-
set, which achieved good classification performance. Lopez-
Martin et al. [19] combined CNN and recurrent neural net-
work (RNN) to classify traffic. Zou et al. [20] used bidirec-
tional long short-term memory (BLSTM) to extract the

Wireless Communications and Mobile Computing

forward and backward features of byte sequences in a ses-
sion to extract traffic features more comprehensively.
Although the above work has achieved good results, it
brings new problems: most existing deep learning models
lack thinking about efficiency [16, 21]. The performance
improvement is often accompanied by the increasing
depth and complexity of the model, which brings practical
application problems: complex neural networks with up to
gigabytes of memory usage and high computation costs
[22, 23] making it difficult to be applied to edge terminal
devices with limited hardware resources, which seriously
limits the application of traffic classification technology
based on deep learning.

Therefore, the lightweight deep learning model has grad-
ually become the research focus. Roy et al. [24] improved on
CNN-LSTM and proposed a traffic classification method
based on OdeNet-LSTM, which achieved faster reasoning
speed. Fauvel et al. [25] introduced a new residual structure
design into the CNN-based traffic classification method and
proposed LexNet, significantly reducing the parameter. Liu
et al. [26] lightened the model by replacing the LSTM in
work [20] with a gated recurrent unit (GRU) [27] and used
the attention mechanism to allocate weights according to
the contribution of features to classification, which is called
BGRUA. Similar lightweight traffic detection methods are
also available in works [28, 29]. Although the above studies
have achieved good results, they all focus on the reducing
model parameter, ignore the weak computing capabilities
of most edge devices, resulting in difficulties in the actual
operation of the above models in edge networks and weak
real-time traffic classification.

3. System Model Design

We select the Mobilenetv3-Small [30] as the backbone and
improve it through scale, width factor, resolution ratio
adjustment, coordinate attention mechanism (CA), and
multiscale feature fusion to build a low-cost and high-
precision traffic classification model. The improved network
structure is shown in Figure 1, where Bottleneck-CA is the
bottleneck with the coordinate attention mechanism,
Bottleneck-Multi is the bottleneck with multiscale feature
fusion structure, S is the step size of convolution, and DW
and PW are depthwise convolution and pointwise convolu-
tion, respectively. The coordinate attention mechanism is
embedded when the stride is 1, and the bottleneck is
replaced with a multiscale feature fusion structure when
the stride is 2.

3.1. Mobilenetv3. Compared with other lightweight models,
the biggest advantage of Mobilenetv3 is that computational
complexity is extremely small and can be flexibly deployed
in various devices, which is suitable for edge devices.
Hence, we use a lightweight convolutional neural network
Mobilenetv3-Small as the basic model to solve the problem
that mobile devices are challenging to run complex deep
learning models due to the limited hardware resources.

The excellent performance of Mobilenetv3 benefits from
the following: (1) use depthwise separable convolution

Wireless Communications and Mobile Computing

Bottleneck-CA S =1

Bottleneck-multi S = 2 Residual
Xaverage Y average
pooling pooling
o~
PW | | Concat + Conv2D |
v
Batch normalization +
| Ix3 | | 3x1 | | 3x3 | nonlinear layer
v v
| PW || 1x3 | | 3x1 | [Comv2D [[Comv2D |
v v
| Sigmoid | | Sigmoid |
A
1122 x 16 562 x 16 28% % 24 28% x 24 142 x 40
Bottleneck Bottleneck Bottleneck Bottleneck Bottleneck
224 x 3 |:> |:> -multi -multi -CA I:> -multi |:> -CA
S=2 S=2 S=1 S=2 S=1
Input Convolution 2
14“ x 40
142 x 48 147 x 40
Bottleneck Bottleneck Bottleneck Bottleneck Bottleneck
-CA -multi ca | (T | -l <:| CA
S=1 S=2 S=1 =72 S=1
Number of
12 %576 categories: 10
Classification
|:> PW E> confidence
Pooling Fully connection

FIGURE 1: Overall network framework of the proposed model.

instead of conventional convolution operation to reduce
the number of parameters and computations, (2) use lin-
ear bottleneck structure to reduce the loss of low dimen-
sional feature information and the reverse residual
structure to deepen the network and enhance the ability
of feature expression for better classification performance,
(3) provide different model scales (large and small),
widths, and resolutions for flexible parameter and compu-
tation adjustment.

Depthwise separable convolution shown in Figure 2
divides conventional convolution operations into depthwise
convolution (DW) and pointwise convolution (PW). This
operation of decomposing conventional convolution into
two steps not only makes its performance equivalent to the
conventional convolution but also can effectively reduce
the number of computations and model parameters. The
specific principles are as follows:

Assume that the dimension of the input feature is Dy X
Dy x M, the size of the convolution kernel is Dy x D, the
dimension of the output feature is Dy x Dy x N, and M and

N are the numbers of input and output channels.
The computation amount of using standard convolu-
tion is

MAClszXDkXMXNXDfXDf. (1)

The computation amount of using depthwise separable
convolution is

MAC2 = aDy x Dy, x M x BD; x Dy

) (2)
+a"M x N x Dy x BD;.

Depthwise
convolution

Wireless Communications and Mobile Computing

|
|

[
1

[
1T

AT
CETTTT
v

[HEEEE

.

Input features

Dy x Dy y M
Dyx Dy M k2 Hkeox

P01ntlw1§e Output features
convolution Df % Df N
I1x1xMxN

FIGURE 2: Principle of deep separable convolution.

The computation ratio of depthwise separable convolu-
tion and standard convolution is

MAC2 aDy x Dy x M x Dy x BD; + &M x N x 8Dy x Dy
MAC, Dy x Dy x Mx N x Dy x Dy

B 05[32 . 062[32

"N o

(3)

where « is the width factor, and common configurations
are 0.25, 0.5, 0.75, and 1. 3 is the resolution factor; com-
monly used configurations are 4/7, 5/7, 6/7, and 1. It can
be seen from formula (3) that a single depthwise separable
convolution can save the amount of computation com-
pared with the standard convolution ((af*)/(N))+ ((o?
B)I(DY).

The linear bottleneck structure shown in Figure 3 firstly
uses PW to increase the dimension, then uses DW to extract
features, then uses the channel attention mechanism to
accurately model the relationship between each channel of
the convolution feature, and then uses PW to reduce the
dimension. Finally, it uses a linear activation function and
the reverse residual structure to reduce the feature loss.
The inverse residual structure hardly increases the parame-
ter and computation amount and comprehensively improves
the searchability, thereby effectively improving the perfor-
mance. It is worth noting that the linear bottleneck structure
uses the reverse residual structure only when the convolu-
tion step is one.

3.2. Data Preprocessing. We draw on the data preprocessing
method in work [17], which adopts the following five steps
to convert the original traffic data stored in Pacp format into
an image format to facilitate the processing of the model, as
shown in Figure 4.

(1) Flow Segmentation. Divide the original traffic Pacp files
into different bidirectional sessions according to the source

IP, destination IP, source port, destination port, and trans-
port layer protocol

(2) Data Cleaning. Delete duplicate and empty traffic
packets, iterate over all data packets of bidirectional sessions
and delete information unrelated to traffic classification,
such as MAC addresses

(3) Unified Length. Unify the session length is 784 bytes. If
the session length is more than 784 bytes, it will be trun-
cated; if less than 784 bytes, zeros bytes will be added at
the end of the session. In addition, padding zeros bytes at
the end of the header (8 bytes) of the UDP segment to equal
the length of the TCP header (20 bytes) makes the transport
layer segment uniform

(4) Data Visualization. Convert each session (784 bytes) of
uniform length into a two-dimensional grayscale image with
a resolution of 28+x28. Bytes 0x00 to 0xff in the session cor-
respond to pixel values in the grayscale chromaticity interval
from black to white

(5) Data Enhancement. The fact that some traffic categories
have a few samples may cause a phenomenon of data skew.
To avoid the overfitting problem caused by the over-reliance
on a small number of samples, we perform image enhance-
ment on traffic categories with a small number of samples,
including random flipping, mirroring, Gaussian noise, and
filtering to increase the number of samples

3.3. The Coordinate Attention Mechanism. The Squeeze-
and-excitation module (SE) of Mobilenetv3 introduces the
channel attention mechanism, improving the classification
accuracy by assigning weights to channels of different
importance. However, the channel features of the grayscale
traffic images are not prominent, and there is no strong cor-
relation between the adjacent channels. Therefore, the chan-
nel attention mechanism is not suitable for traffic image
classification.

The traffic characteristics determine that the fields in dif-
ferent locations of the traffic images represent different

Wireless Communications and Mobile Computing

—7-mechanism

NN
/ ~o
PW / S
FTTTT T 77 / 7N
| JY (BN
: I >\
/ /
4
H /
|

Attention

—7 mechanism

Attention

’ Without inverse residual structure (S = 2)

FiGure 3: Bottleneck structure under two strides.

= £
<
S
S 9 o)
. 3 Q —
= » = 8
s Data | _| Data |&]| Uniform g Convert to
o = . .
| partition | S |cleaning length [] image T
54 N |8 I\ N |8 I\ O
3 — £ o
Bl) |3) [|) |2 [) CETTTTITIIr g
173 L4 [| v = L4 Q L4 | A=
=1 =] | T
g g = = HH
= 2 < s T
= & ¥ = H—]
= |] - T
& B =
s o = 5
A S -2 A ;
2 B = | Grayscale image
3 a <
=
L] || a

F1GuRe 4: Data preprocessing.

information (flow-level feature), which have different
degrees of importance in traffic classification. For example,
the first 20 bytes in the TCP traffic header represent applica-
tion protocol information, which is helpful for traffic identi-
fication. According to work [17], the payload information
between traffic classes strongly correlates with the field posi-
tion, and the payload information of traffic categories has
different features in different situations. It can be said that
location information is crucial for the classification of traffic
images. And the SE module compresses the global spatial
information into the channel descriptor, leading to the loss
of position information.

Therefore, we referred the coordinate attention mecha-
nism (CA) [31] to embed the spatial scale based on the SE
module, which decomposes the global average pooling of
the SE module into one-dimensional pooling of the horizon-
tal and vertical directions to obtain the relevant information

on horizontal direction X and vertical direction Y, making
our model can precisely capture the location information
to improve the traffic classification ability. The comparison
between SE and CA is shown in Figure 5. The specific loca-
tion of the replacement (the reverse residual structure only
when the convolution step is one) is shown in Figure 1.

Firstly, we decompose the global average pooling of SE
module to generate a one-dimensional perceptual attention
feature on X and Y.

7 =
i=1j=1
7" % x.(h, i), (5)
0<isW
2= 2 Y x(iw) (6)
0<j<H

where C is the number of channels, H and W are the height
and width of the input feature, respectively, Z is the output,
x, is the two-dimensional feature set of the c-th channel, i
and j represent the coordinates on the output feature, and
w and h are the convolution kernel weight of the c-th
channel.

Secondly, we concatenate the one-dimensional features
of X and Y and send them to the transformation function
F1 to generate the intermediate feature f containing horizon-
tal and vertical spatial information.

T[S S

Input Cx Hx W

Residual

Squeeze

Average pooling | Cx1x1

Clrx1x1
Clrx1x1

Excitation

Cx1x1

Cx1x1

Output
(a) SE module

Wireless Communications and Mobile Computing

Input Cx Hx W

Residual
X average Y a?rerage
Cx1x1 pooling pooling
Clrx1x 1| Concat + Conv2D |
v
Cx1lx1 Batch normalization +
CxHx1 nonlinear layer
Cx1xW ¢ ¢
Conv2D | | Conv2D |
Cx1xW v v
| Sigmoid | | Sigmoid |

Output
(b) CA module

Ficure 5: Coordinate attention mechanism.

where [,] is the concatenation operation, f € R/™H+W) g i
the nonlinear activation function, and r is a hyperparameter
that controls the size of the module.

Thirdly, we decompose f into two separate tensors f”
€ RY™H and f* € R’™", and then use convolution transfor-
mation functions F, and F,, to transform f, and f, into
tensors with the same number of channels of input feature

g" and g¥.
o=o(m(f)g=0(m(") ®

9" =0(F,(f"))g" =0(F (f")). ©)

Among them, ¢ is the sigmoid function.

Finally, we multiply the input feature by the horizontal
weight (formula (8)) and the vertical weight (formula (9))
to obtain the feature of the coordinate attention output

yeli j) = x(ij) % g¢ (i) g2 (j)- (10)

3.4. The Multiscale Feature Fusion. From the traffic visuali-
zation results in Section 4.2, there are different scale charac-
teristics between traffic categories, such as the traffic texture
scale of DOS-UDP is more extensive than that of the
Service-scan. If the small visual receptive field is used for fea-
ture extraction, some higher-level semantic information will
be ignored. On the contrary, large-scale feature extraction
will get higher-level semantic information, which will lead
to the loss of spatial geometric feature details of traffic
images. The multiscale feature extraction module uses differ-
ent scales to process the traffic image, which enables the
model to understand the traffic image more comprehen-
sively and makes the spatial scale extracted by the feature
more abundant, which is conducive to the subsequent traffic
classification. As shown in Figure 6, the multiscale feature

fusion module uses 1 x 1, 3 x 3, 5% 5, and 7 x 7 convolution
kernel to parallel multibranch extract traffic image features
to enhance the spatial scale adaptability of the model in traf-
fic feature extraction, for enhancing the recognition ability of
the proposed model to traffic texture features and improve
the classification performance.

Therefore, based on work [32], we propose the multi-
scale feature fusion module that integrates multiple scales
and replaces the linear bottleneck structure without reverse
residual structure in the original model with the multiscale
feature fusion module shown in Figure 6. The replacement
position (the reverse residual structure only when the step
is two) is shown in Figure 1. At the same time, in order to
reduce the weight of the multiscale feature extraction mod-
ule as much as possible, we draw on the idea of depthwise
separable convolution to decompose the 5 x 5 and 7 x 7 con-
volution of the multiscale feature extraction module into
serial 3 x 3 convolutions and further decomposes the last 3
x 3 convolution to a parallel 1x3 and 3 x 1 convolution,
which fully reduces the computation and memory consump-
tion brought by this module.

4. Experimental Setup

4.1. Experimental Environment. The specific experimental
environment and configuration in this paper are as follows:
CPU is Intel Core 17-9700, graphics card is NVIDIA RTX
2080Ti, memory is 16GB, the operating system is Ubuntu
18.04.3, programming language is Python 3.7 and Pytorch
1.8.1 implement a traffic classification model. And the edge
device used in Section 5.4 selects Raspberry Pi 4 Model B,
the configuration is as follows: CPU is BCM2711 (4-core
1.5GHz), memory is 4GB, the operating system is Raspberry
Pi OS 3.2, programming language and version is Python 3.7,
and deep learning framework is Pytorch 1.2.

Wireless Communications and Mobile Computing

Replaced with
multi-scale
feature fusion

—

g
=

Bottleneck structure
(no residual shortcut)

Multiscale feature fusion

L
Decomposing
convolution
kernel

—

Lightweight multiscale feature fusion

FiGURE 6: Multiscale feature extraction module.

TABLE 1: Bot-IoT dataset.

Traffic type Traffic class

Service scanning, OS
fingerprinting
TCP, UDP, HTTP
TCP, UDP, HTTP

Keylogging, data theft

Data collection

DDoS
Dos

Denial of service attack

Data theft

Through theoretical and experimental analysis, we set
the final model training learning rate to 0.001, the epoch to
50, each batch of training images to 128, divide the training
set and the test set according to the ratio of 9:1, selects
Adam as the model optimizer, and uses cross-entropy as
the loss function.

4.2. Dataset and Experimental Scenario

4.2.1. Dataset. We select the IoT traffic dataset Bot-IoT [33]
for experiments to prove our model is suitable for edge net-
work traffic classification, which contains ten different traffic
categories involving data collection and denial of service
attacks, information theft, and other scenarios, as shown in
Table 1.

Figure 7 shows the visualization results of all traffic cat-
egories of the Bot-IoT, with four images randomly selected
from each category. It can be seen that the traffic images
between different protocols are easy to distinguish. Although
the traffic images of the same protocol are generally similar,
such as DOS-UDP and DDOS-UDP, the texture details are
relatively different. In addition, the flow texture distribution
has a certain positional regularity. In summary, it can be
seen from the traffic visualization that using the CA atten-
tion mechanism and multiscale feature fusion can achieve
better results in theory.

We select the encrypted traffic dataset USTC-TFC2016
dataset [34] to prove our model can classify encrypted traf-
fic, including twenty encrypted traffic categories, as shown
in Table 2.

4.2.2. Experimental Scenario. We set up four experimental
scenarios to thoroughly verify the classification perfor-
mance, as shown in Table 3. Encrypted-2 experimental sce-
nario is the two-category problem between malicious and
normal encrypted traffic; Bot-IoT-3 scenario is the three-
category classification of IoT malicious traflic, including data
collection, denial of service attacks, and information stealing
traffic; Bot-IoT-10 scenario is the ten-category classification
of IoT traffic; Encrypted-20 scenario is the encrypted traffic
classification of 20-category.

4.3. Evaluation Metrics and Baselines

4.3.1. Evaluation Metrics. To evaluate the effectiveness of our
model, we adopt four generally recognized metrics, namely
accuracy, precision, recall, and F1-score, accuracy represents
the proportion of correctly classified flows. With respect to
the other three metrics, we obtain the true positive (TP),
false positive (FP), and false negative (FN) by comparing
the output classification results with labeled ground truth.
The information above can be used to calculate the accuracy,
precision, recall, and F1-score index.

A _ TP+ TN
Y = TPy TN+ FP+ EN’
. TP
Precision= ————,
TP + FP (11)
TP
Recall= ——— |
TP + FN
Precision x Recall
F1 — score =

- X2
Precision + Recall

Among them, for multiclassification problems, each
class, and remaining class samples are regarded as a binary
classification, and the precision and recall rate of each type
are directly calculated. True positive (TP), false positive
(FP), false negative (FN), and true negative (TN) are
obtained by comparing the output classification results with
the true labels.

8 Wireless Communications and Mobile Computing
DOSHTTP DOSTCP DOSUDP ServiceScan Keylogging
F1GURE 7: Traffic visualization.
TaBLE 2: USTC-TFC2016 dataset.
Traffic type Traffic class

Normal encrypted traffic
Malicious encrypted traffic

BitTorrent, facetime, FTP, Gmail, MySQL, outlook, skype, SMB, Weibo, WorldOfWarcraft
Cridex, Geodo, Htbot, Miuref, Neris, Nsis-ay, Shifu, Tinba, Virut, Zeus

TasLE 3: Experimental scene settings.

Experimental scene Content Class Experiment number Specific category
0 Malicious encrypted traffic
Encrypted-2 Encrypted traffic identification 2 P
1 Normal encrypted traffic
0 Data collection
Bot-IoT-3 IoT traffic type identification 3 1 Denial of service attack
2 Data theft
Bot-IoT-10 IoT traffic class classification 10 0-9 Bot-IoT all classes
Encrypted-20 Encrypted traffic class classification 20 0-19 USTC-TFC2016 all classes

TaBLE 4: Classification results for different resolution factors.

Floating-point

Parameter (M) operations (M)

Resolution size Accuracy (%)

1 99.50 1.98 58.82
6/7 99.32 1.98 43.62
517 99.01 1.98 30.75
4/7 98.73 1.98 20.23

TaBLE 5: Classification results for different width factors.

Floating-point

Model Accuracy (%) Parameter (M) operations (M)
Smalll.0 98.73 1.98 20.23
Small0.75 98.53 1.16 13.97
Small0.5 98.02 0.52 6.82
Small0.25 97.60 0.15 3.26

Additionally, to evaluate the efficiency of our model, we
measure the parameter and computation, in which the unit
of them is M. The parameter refers to how many parameters
the model contains, which reflects the space complexity of
the model and determines the storage space required by
the model. The computation is described by FLOPs (float-
ing-point of operations), which reflects the time complexity
of the model. It refers to the number of computations
required for model inference. When the hardware device is
determined, it determines the model inference speed.

4.3.2. Baselines. To confirm the effectiveness of our model,
we compare the model with the following baselines in terms
of accuracy, precision, recall, and F1 score. For the efficiency,
our model is compared with other models in terms of
parameters and computation.

(1) ID-CNN [17]. This model integrates feature selec-
tion, feature extraction, and classifier with 1D-CNN into a
unified end-to-end framework, aiming to automatically
learn the nonlinear relationship between the original input

Wireless Communications and Mobile Computing

TABLE 6: Ablation study results in the Bot-IoT-10.

Model

Multiscale feature

Parameters (M)

Floating-point
operations (M)

Contrast model

Proposed model

Attention mechanism extraction structure Accuracy (%)
SE (basic model) 0 97.60
CA 0 98.48
SE 1 99.08
CA 1 99.82

0.15
0.17
0.20
0.26

3.26
3.82
4.07
5.26

Precision

Extension of precision-recall curve to multi-class

Ho —
0.8 4

f1=0.8
0.6 4

f1=0.6
0.4 4

f1=04
0.2

f1=0.2
0.0 T T T T

0.0 0.2 0.4 0.6 0.8 1.0
Recall

Micro-average precision-recall (AP = 1.00)
Precision-recall for class DDOSHTTP (AP = 1.00)
Precision-recall for class DDOSTCP (AP = 1.00)
Precision-recall for class DOSUDP (AP = 1.00)
Precision-recall for class DOSHTTP (AP = 1.00)
Precision-recall for class DOSTCP (AP = 1.00)
Precision-recall for class DOSUDP (AP = 1.00)
Precision-recall for class keylogging (AP = 1.00)
Precision-recall for class Osscan (AP = 1.00)
Precision-recall for class ServiceScan (AP = 1.00)
Precision-recall for class Theft (AP = 0.99)

(a) Proposed model

FiGure 8: Continued.

10

Wireless Communications and Mobile Computing

Extension of precision-recall curve to multi-class

1.0
0.8 -
0.6
=1
2
£
f1=0.6
0.4
f1=04
0.2
f1=0.2
0.0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0

Recall

Micro-average precision-recall (AP = 0.96)

—— Precision-recall for class DDOSHTTP (AP = 0.92)
Precision-recall for class DDOSTCP (AP = 1.00)
Precision-recall for class DOSUDP (AP = 1.00)
Precision-recall for class DOSHTTP (AP = 0.94)

—— Precision-recall for class DOSTCP (AP = 1.00)

—— Precision-recall for class DOSUDP (AP = 1.00)
Precision-recall for class keylogging (AP = 0.98)

Precision-recall for class Osscan (AP = 0.79)

Precision-recall for class ServiceScan (AP = 0.76)
—— Precision-recall for class Theft (AP = 0.97)

(b) Basic model

FiGure 8: The precision-recall curve of our model and the basic model in the Bot-IoT-10 scenario.

and the desired output. This is the first application of an
end-to-end approach in traffic classification

(2) CNN-LSTM [20]. This model combines CNN and
RNN. CNN is used to extract packet features, and the LSTM
network is utilized to extract traffic flow features to improve
traffic classification accuracy

(3) BLSTMA [16]. This approach embeds an attention
mechanism in a bidirectional LSTM to extract flow features
and assign feature weights through an attention mechanism

(4) BGRUA [28]. This model utilizes the gated recurrent
unit (GRU) to model the packet interactions, and the atten-
tion mechanism is adopted to assign weights to the features

according to the contribution of the traffic features to the
classification. In addition, the BGRUA model is the most
advanced in the lightweight traffic classification method
based on deep learning at present [13].

5. Results and Discussion

5.1. Selection and Analysis of Hyperparameter. To achieve
the best lightweight performance, we compress the resolu-
tion and width factor to reduce the parameters and FLOPs
according to the change of the accuracy rate based on the
Bot-IoT-10 experimental scene to determine the optimal

Wireless Communications and Mobile Computing

Accuracy (%)

Encrypted-2 BOT-IOT-3 BOT-IOT-10 Encrypted-20

Experimental-scene

I 1D-CNN I BGRUA
I CNN+LSTM I Proposed-model
I BLSTMA

(a) Accuracy

(%)

F1_score

Encrypted-2 BOT-10T-3 BOT-10T-10 Encrypted-20

Experimental-scene

I ID-CNN I BGRUA
I CNN+LSTM I Proposed-model
N BLSTMA

(b) F1-score

Figure 9: Continued.

11

12

Wireless Communications and Mobile Computing

Precision (%)

Encrypted-2

I 1D-CNN
I CNN+LSTM

I BLSTMA

BOT-1IOT-3

Experimental-scene

BOT-IOT-10 Encrypted-20

Im BGRUA
I Proposed-model

(c) Precision

Recall (%)

Encrypted-2

BOT-1IO0T-3

BOT-IOT-10 Encrypted-20

Experimental-scene

N ID-CNN
I CNN+LSTM
N BLSTMA

I BGRUA
I Proposed-model

(d) Recall

FiGure 9: Comparison of traffic classification models in four experimental scenarios.

hyperparameter so that our model can achieve the optimal
balance between lightweight and accuracy.

Based on the Mobilenetv3 Small-1.0 model, we firstly
change the resolutions to conduct comparative experiments
to determine the resolutions factor choice. Table 4 shows
the accuracy, parameters, and computation amount under
the different resolution factors.

As shown in Table 4, the performance is continuously
weakened with the resolution decreasing, and the amount
of computation is significantly attenuated. When the resolu-
tion factor is 4/7, the model classification accuracy is 98.73%.
Although the accuracy partially attenuates compared with
the default resolution, the computation amount is signifi-
cantly reduced by 65.6%. Especially, the number of

Wireless Communications and Mobile Computing

TasLE 7: Efficiency comparison of each traffic classification model
in Bot-IoT-10 scenario.

Model Parameter (M) Floating-point operations (M)
Proposed model 0.26 5.26

1D-CNN 5.83 1986.29
CNN-LSTM 2.39 7484.16

BLSTMA 0.19 18.66

BGRUA 0.14 14.08

parameters does not decrease with the resolution decreasing.
This is because the change of the feature map will not influ-
ence the parameter but only affect the addition and multipli-
cation computation [29]. Therefore, we select 4/7 as the
resolution factor to minimize the computation amount of
our model so that our model can perform real-time traffic clas-
sification on edge devices with limited computing resources.

Secondly, we fixed 4/7 resolution factors to carry out
comparative experiments for the choice of width factor.
Table 5 shows the accuracy, parameter quantity, and com-
putation quantity under the four width factors.

It can be seen that as the width factor decreases, the
computational complexity and parameter complexity both
abate to different degrees. When the accuracy of the Mobile-
netv3 Small-0.25 reaches 97.60%, the amount of computa-
tion and parameters is only 0.15M and 3.26 M, which is
far less than the default model, and only 7.57% of the
amount of computation and 16.60% of the number of
parameters of small 1.0 model. Therefore, we determine
the width factor as 0.5 to further reduce the memory usage
and computing resources of our model.

In summary, we choose Mobilenetv3 Small-0.25 with the
resolution factor of 4/7 as the Basic model for traffic classifi-
cation in this paper, sacrificing some classification perfor-
mance to lighten the traffic classification model as much as
possible.

5.2. Ablation Experiment. In order to verify the contribution
of the coordinate attention mechanism and multiscale fea-
ture fusion structure to the improvement of model perfor-
mance under the premise of slightly increasing the amount
of computation and parameter, we conduct ablation experi-
ments based on the Bot-IoT-10, with the accuracy rate,
parameters, and FLOPs as evaluation metrics.

To verify the effectiveness of the coordinate attention
mechanism in improving accuracy, we, respectively, embed
SE and CA modules in the attention mechanism for compar-
ison. To verify the contribution of the multiscale feature
fusion structure to our model, the linear bottleneck layer
that does not contain the inverse residual shortcut is
replaced with the multiscale feature fusion structure for
comparison. The ablation experiment results are shown in
Table 6.

It can be seen that, compared with the basic model, the
CA module increases the accuracy to 98.48% at a slight
increase of 0.56M computation and 0.02M parameters,
and the multiscale feature fusion structure increases the
accuracy to 99.08%.

13

In order to more intuitively prove the merits of our
improvements, we compare our model with the basic model
based on the experimental scenario Bot-IoT-10. Figure 8
shows the precision-recall curve of our model and the basic
model, where average precision (AP) is the area under the
precision-recall curve.

It can be seen from the precision-recall curve in Figure 8
that our model performs better than the basic model in the
Bot-I0T-10 scenario. Due to the lack of valid bytes that can
be recognized by classification models, both models perform
poorly in Service-scan and Os-scan traffic, but our model
performances also significantly better on service-scan and
keylogging and the AP of our model are higher ,21% and
24%, respectively, than that of the basic model. A reasonable
explanation is that, as shown in Figure 7, the theft and OS-
scan traffic lack effective bytes that the classification model
can recognize. Compared with the channel attention mecha-
nism, the coordinate attention mechanism can make our
model focus and distribute weight more on effective fields
of short traffic to improve the performance of the model in
identifying traffic with fewer effective bytes, which is very
beneficial to the classification of traffic. And the multiscale
feature fusion module uses different convolution kernel to
parallel multibranch extract traffic image features to enhance
the recognition ability of the proposed model to traffic tex-
ture features and improve the classification performance in
the categories where samples are scarce.

Finally, the accuracy of our model reaches 99.82% at
the expense of 0.26 M parameters and 5.26 M FLOPs by
embedding the CA module and replacing the multiscale
feature fusion structure. Consequently, our model can clas-
sify traffic quickly and achieves both precise classification
and lightweight.

5.3. Effectiveness Analysis. In this section, to validate the
merits of our model, we compare our model with the follow-
ing classic models: (1) 1D-CNN, (2) CNN-LSTM, (3)
BLSTM, and (4) BGRUA model in all experimental scenar-
ios in Section 4.3. The comparison of traffic classification
models in four experimental scenarios are shown in Figure 9.

It can be seen that all five classification models can per-
fectly solve the classification problems in Encrypted-2 and
Bot-IoT-3. Among the four experimental scenarios, the clas-
sification performance of 1D-CNN is the weakest because
lacks the ability to extract interactive information, which
leads to the fact that pure CNN often combines with RNN
to extract the flow features. The experimental results of
Encrypted-2 and Encrypted-20 show that our model in the
encrypted traffic scenario has no difference from the conven-
tion and is also suitable for the encrypted traffic classification
task. The experimental results of Bot-IoT-10 show that our
model outperforms the baseline models on all metrics. The
accuracy, precision, recall, and Fl-score rates reached
99.82%, 99.6%, 99.5%, and 99.5%, respectively. Our model
can still maintain an accuracy rate of 99.02% in more com-
plex Encrypted-20 scenarios, which is 10.87%, 9.52%,
8.12% and 4.52% higher than that of the 1D-CNN model,
CNN-LSTM model, BLSTM model, and BGRUA model,
respectively.

14

Wireless Communications and Mobile Computing

Classification speed

83
80

70

60 ~

50 4

40 +

Time (s)

30 A

20 +

10 +

CNN-LSTM BLSTMA BGRUA-2

BGRUA

1D-CNN Proposed-
model

FIGURE 10: Actual deployment classification speed in Bot-IoT-10.

The performance of our model under the four scenarios
has certain advantages for the following reasons: (1) CNN
has unique advantages in packet-level features extraction
because of local weight sharing. As the best lightweight
CNN model, the reverse residual structure constructed by
Mobilenetv3 solves the problem of gradient disappearance
caused by network depth, making the shallow network can
be trained by gradient, which increases the feature expres-
sion ability of the model. The normalization of Mobilenetv3
after the convolution layer also alleviates the gradient disap-
pearance problem to a certain extent; (2) the improved
attention mechanism in our model focuses on the more crit-
ical traffic byte location(flow-level features) in traffic classifi-
cation and suppresses the characteristics of unimportant
traffic byte location; (3) the linear bottleneck structure with-
out reverse residual in the basic model is replaced by multi-
scale feature fusion structure, which takes into account the
extraction of traffic texture semantic features and geometric
details, enhancing the feature extraction ability of traffic.

5.4. Efficiency Analysis. First, we evaluate the efficiency of
our model in terms of the model parameters and computa-
tion complexity; we recorded each traffic classification
model parameters and Flops in Bot-IoT-10 scenario.

As shown in Table 7, our model benefits greatly from
our improvement above. The number of parameters of our
model is 4.45% of 1D-CNN, 10.87% of CNN-LSTM. Con-
cerning computation, our model is 0.26% of 1D-CNN,
0.07% of CNN-LSTM, and 28.18% of the BLSTM model.
Compared with the lightweight model BGRUA, although
our model parameters are slightly more, the computation
has been attenuated by 62.64%. This is because the depen-
dencies between units in BGRUA make it time-consuming
to wait for the output of the previous unit. Mobilenetv3 is
carefully designed to reduce the model parameters and com-
putation amount as much as possible from many aspects,

such as replacing the full connection layer with two PWs,
using a large number of linear bottleneck layers with deep
separable convolutions, and replacing the activating function
Relu with low-consumption h-swish. These designs effec-
tively reduce the parameters and computation and accelerate
the speed of traffic classification to a certain extent, making
this model competent for the deployment and application
of edge devices facing the shortage of hardware resources.

Second, to verify the capability of fast traffic classification
for edge devices with limited resources, we deploy our
model, BGRUA, BLSTMA, and CNN-LSTM on the classic
edge device Raspberry Pi 4. At the same time, to fully simu-
late the device with limited resources, we lock three cores of
the Raspberry CPU, only use a single core to test. In order to
make a fair comparison, we randomly select 100 traffic flows
of Bot-IoT and use each model to continuously identify the
selected traffic flows in Raspberry Pi 4 in Bot-IoT-10 sce-
nario. At the same time, we record the time taken to classify
100 flows, and the average classification speed is shown in
Figure 10.

From Figure 10, it can be seen that our model only aver-
age takes 8 ms for a single flow classification on a single-core
Raspberry Pi 4 Model B, much faster than other traffic clas-
sification models, which reflects our model has the best real-
time effect in the limited resource. It is worth noting that
1D-CNN with high computational complexity is signifi-
cantly faster than BGRUA and LSTM unexpectedly, this is
because both of them use serial calculation in the operation
process. The computation of the hidden state at the current
time not only depends on the input at the current time, but
also depends on the output at the previous time. The calcu-
lation at the current time can only be carried out after the
calculation at the previous time is completed.

This dependency between various dimensions in the
front and back time steps makes both LSTM and GRU much
slower than other models in actual deployment. In

Wireless Communications and Mobile Computing

summary, our model is a lightweight deep learning model
for efficient classification traffic of edge devices.

5.5. Remarks. In this section, we compare our model with the
other four baseline models in terms of effectiveness and
efficiency.

For effectiveness, the performance of our model under
the four scenarios has certain advantages. According to the
effectiveness analysis in the Encrypted-20 scenarios,
10.87%, 9.52%, 8.12%, and 4.52% higher than that of the
1D-CNN model, CNN-LSTM model, BLSTM model, and
BGRUA model, respectively, which demonstrate that our
model performs well for traffic classification.

For efficiency, our model achieves the optimal in terms
of the number of parameters, the computation, and testing
speed. More specifically, the number of parameters of our
model is 4.45% of 1D-CNN, 10.87% of CNN with LSTM,
136.84% of the BLSTM, and 185.71% BGRUA model, and
the computation of our model is 0.26% of 1D-CNN, 0.26%
of CNN-LSTM, 28.18% of BLSTM, and 62.64% of BGRUA
model. At last, the deployment test on Raspberry Pi checks
the superiority of our model in the edge device with limited
resources. In short, our model is excellent in terms of effec-
tiveness and efficiency.

6. Conclusions

Burning requirements on the edge traffic classification are put
forward due to the widespread adoption of wireless communi-
cations and mobile computing. This paper proposes a light-
weight model based on Mobilenetv3, which compresses the
scale, width, and resolution to reduce the model weight and
computation consumption, embeds the coordinate attention
mechanism and the multiscale feature fusion to ensure the
perfect balance between classification performance and light-
weight. The experimental results show our model has the
smallest number of parameters and the highest computing
efficiency while ensuring high classification accuracy. Com-
pared with the lightweight BGRUA traffic classification model,
although the number of parameters is similar, the accuracy is
increased partly, and the computation amount is greatly
reduced by 62.64%. In addition, the actual deployment test
on Raspberry Pi proves that the model in this paper can
achieve high-accuracy traffic classification at a low cost and
is suitable for traffic classification in edge devices with limited
computing resources. Future research will focus on deploying
traffic classification models in a wide range of edge networks
using federal semisupervised learning.

Data Availability

The experimental data used to support the findings of this
study are available from the corresponding author upon
request.

Conflicts of Interest

The authors declared that they have no conflicts of interest
regarding this work.

15

Acknowledgments

This work was supported by the National Natural Science
Foundation of China (No. 62176264).

References

[1] A. Headquarters, “WAN and Application Optimization Solu-
tion Guide Cisco Validated Design,” in 2008.

[2] M. Shafig, Z. Tian, A. K. Bashir, A. Jolfaei, and X. Yu, “Data
mining and machine learning methods for sustainable smart
cities traffic classification: a survey,” Sustainable Cities and
Society, vol. 60, article 102177, 2020.

[3] T.T.T.Nguyen and G. Armitage, “A survey of techniques for
internet traffic classification using machine learning,” IEEE
Communication Surveys and Tutorials, vol. 10, no. 4, pp. 56—
76, 2008.

[4] “Snort—the de facto standard for intrusion detection/preven-
tion,” 2007, http://www.snort.org.

[5] V. Paxson, “Bro: a system for detecting network intruders in
real-time,” Computer Networks, vol. 31, no. 23-24, pp. 2435-
2463, 1999.

[6] M. S. Sheikh and Y. Peng, “Procedures, criteria, and machine
learning techniques for network traffic classification: a survey,”
IEEE Access, vol. 10, pp. 61135-61158, 2022.

[7] N.Ivanov, “Unleashing the Internet of things with in-memory
computing—IoT now—how to run an IoT enabled business,”
2019, https://www.IoT-now.com/2019/01/17/92200-
unleashing-internet-things-memory-computing.

[8] A. Hameed, J. Violos, and A. Leivadeas, “A deep learning
approach for IoT traffic multi-classification in a smart-city sce-
nario,” IEEE Access, vol. 10, pp. 21193-21210, 2022.

[9] M. Z. F. Audah, T. S. Chin, Y. Zulfadzli, C. K. Lee, and
K. Rizaluddinl, Towards Efficient and Scalable Machine
Learning-Based QoS Traffic Classification in Software-Defined
Network, Springer International Publishing, 2019.

[10] W. Niu, Z. Zhuo, X. Zhang, X. Du, G. Yang, and M. Guizani,
“A heuristic statistical testing based approach for encrypted
network traffic identification,” IEEE Transactions on Vehicular
Technology, vol. 68, no. 4, pp. 3843-3853, 2019.

[11] A. Pektas and T. Acarman, Identification of Application in
Encrypted Traffic by Using Machine Learning, Springer Inter-
national Publishing, 2017.

[12] J. Cheng, Y. Wu, E. Yuepeng et al., “MATEC: a lightweight
neural network for online encrypted traffic classification,”
Computer Networks, vol. 199, p. 108472, 2021.

[13] A. Moore, D. Zuev, and M. Crogan, Discriminators for Use in
Flow-Based Classification, Queen Mary University of London,
London, 2013, https://www.cl.cam.ac.uk/~awm22/
publications/moore2005discriminators.pdf.

[14] C. Liu, Z. Cao, G. Xiong, G. Gou, S. M. Yiu, and L. He,
“MaMPF: encrypted traffic classification based on multi-
attribute Markov probability fingerprints,” in 2018 IEEE/
ACM 26th International Symposium on Quality of Service
(IWQoS), pp. 1-10, Banff, AB, Canada, 2018.

[15] Y. Okada, S. Ata, N. Nakamura, Y. Nakahira, and I. Oka,
“Comparisons of machine learning algorithms for application
identification of encrypted traffic,” in 2011 10th International
Conference on Machine Learning and Applications and Work-
shops, pp. 358-361, Honolulu, HI, USA, 2011.

http://www.snort.org
https://www.IoT-now.com/2019/01/17/92200-unleashing-internet-things-memory-computing
https://www.IoT-now.com/2019/01/17/92200-unleashing-internet-things-memory-computing
https://www.cl.cam.ac.uk/~awm22/publications/moore2005discriminators.pdf
https://www.cl.cam.ac.uk/~awm22/publications/moore2005discriminators.pdf

16

(16]

(17]

(18]

(19]

[20]

(21]

(22]

(23]

[24]

(28]

(29]

W. Wang, M. Zhu, J. Wang, X. Zeng, and Z. Yang, “End-to-
end encrypted traffic classification with one-dimensional con-
volution neural networks,” in 2017 IEEE International Confer-
ence on Intelligence and Security Informatics (ISI), pp. 43-48,
Beijing, China, 2017.

T. Shapira and Y. Shavitt, “FlowPic: a generic representation
for encrypted traffic classification and applications identifica-
tion,” IEEE Transactions on Network and Service Management,
vol. 18, no. 2, pp. 1218-1232, 2021.

Y. Wang, H. Zhou, and H. Feng, “Network traffic classification
method basing on CNN,” Journal on Communications, vol. 39,
no. 1, pp. 14-23, 2018.

M. Lopez-Martin, B. Carro, A. Sanchez-Esguevillas, and
J. Lloret, “Network traffic classifier with convolutional and
recurrent neural networks for internet of things,” IEEE Access,
vol. 5, pp. 18042-18050, 2017.

Z. Zou, J. Ge, H. Zheng, Y. Wu, C. Han, and Z. Yao,
“Encrypted traffic classification with a convolutional long
short-term memory neural network,” in 2018 IEEE 20th Inter-
national Conference on High Performance Computing and
Communications; IEEE 16th International Conference on
Smart City; IEEE 4th International Conference on Data Science
and Systems (HPCC/SmartCity/DSS), pp. 329-334, Exeter, UK,
2018.

G. Aceto, D. Ciuonzo, A. Montieri, and A. Pescape,
“MIMETIC: mobile encrypted traffic classification using mul-
timodal deep learning,” Computer Networks, vol. 165, article
106944, 2019.

S. Rezaei and X. Liu, “Deep learning for encrypted traffic clas-
sification: an overview,” IEEE Communications Magazine,
vol. 57, no. 5, pp. 76-81, 2019.

F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J.
Dally, and K. Keutzer, “SqueezeNet: AlexNet-level accuracy
with 50x fewer parameter and <0.5MB model size,” 2016,
http://arxiv.org/abs/1602.07360.

S. Roy, T. Shapira, and Y. Shavitt, “Fast and lean encrypted
Internet traffic classification,” Computer Communications,
vol. 186, pp. 166-173, 2022.

K. Fauvel, A. Finamore, L. Yang, F. Chen, and D. Rossi, “A
lightweight, efficient and explainable-by-design convolutional
neural network for internet traffic classification,” 2022, http://
arxiv.org/abs/2202.05535.

X. Liu, J. You, Y. Wu et al.,, “Attention-based bidirectional
GRU networks for efficient HTTPS traffic classification,”
Information Sciences, vol. 541, pp. 297-315, 2020.

K. Cho, B. Van Merriénboer, C. Gulcehre et al., “Learning
phrase representations using RNN encoder-decoder for statis-
tical machine translation,” 2014, http://arxiv.org/abs/1406
.1078.

S. Zhang, Y. Bu, B. Chen, C. Sun, H. Wang, and X. Hu,
“Encrypted traffic classification based on multi-layer bidirec-
tional sru and attention model,” Computer Engineering,
vol. 38, no. 1, pp. 1-15, 2022.

K. Kim, J. H. Lee, H. K. Lim, S. W. Oh, and Y. H. Han, “Deep
RNN-based network traffic classification scheme in edge com-

puting system,” Computer Science and Information Systems,
vol. 19, no. 1, pp. 165-184, 2022.

(30]

(31]

(32]

(33]

(34]

Wireless Communications and Mobile Computing

A. Howard, M. Sandler, G. Chu et al., “Searching for Mobile-
netv3,” in IEEE/CVF International Conference on Computer
Vision (ICCV), 2020.

Q. Hou, D. Zhou, and J. Feng, “Coordinate attention for effi-
cient mobile network design,” in IEEE Conference on Com-
puter Vision and Pattern Recognition, pp. 13713-13722, 2021.

C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna,
“Rethinking the inception architecture for computer vision,”
in 2016 IEEE Conference on Computer Vision and Pattern Rec-
ognition (CVPR), pp. 2818-2826, 2016.

N. Koroniotis, N. Moustafa, E. Sitnikova, and B. Turnbull,
“Towards the development of realistic botnet dataset in the
Internet of things for network forensic analytics: Bot-IoT data-
set,” Future Generation Computer Systems, vol. 100, pp. 779-
796, 2019.

W. Wang, M. Zhu, X. Zeng, X. Ye, and Y. Sheng, “Malware
traffic classification using convolutional neural network for
representation learning,” in 2017 International conference on
information networking (ICOIN), pp. 712-717, Da Nang, Viet-
nam, 2017.

http://arxiv.org/abs/1602.07360
http://arxiv.org/abs/2202.05535
http://arxiv.org/abs/2202.05535
http://arxiv.org/abs/1406.1078
http://arxiv.org/abs/1406.1078

	Lightweight Traffic Classification Model Based on Deep Learning
	1. Introduction
	2. Related Work
	3. System Model Design
	3.1. Mobilenetv3
	3.2. Data Preprocessing
	3.3. The Coordinate Attention Mechanism
	3.4. The Multiscale Feature Fusion

	4. Experimental Setup
	4.1. Experimental Environment
	4.2. Dataset and Experimental Scenario
	4.2.1. Dataset
	4.2.2. Experimental Scenario

	4.3. Evaluation Metrics and Baselines
	4.3.1. Evaluation Metrics
	4.3.2. Baselines

	5. Results and Discussion
	5.1. Selection and Analysis of Hyperparameter
	5.2. Ablation Experiment
	5.3. Effectiveness Analysis
	5.4. Efficiency Analysis
	5.5. Remarks

	6. Conclusions
	Data Availability
	Conflicts of Interest
	Acknowledgments

