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An integer-forcing linear receiver has significantly better performance than conditional receivers for slow-fading channels because
it directly recovers an integer linear combination of signals instead of decoding all signals. The performance in terms of achievable
rate, outage probability, and error rate can be improved with a unitary matrix precoder imposed at each channel realization. In
this paper, a new special unitary matrix precoding approach is proposed to reduce the computational complexity. Different
from the parameterization technique with many parameters, the new method constructs a unitary Vandermonde matrix with
only a single parameter. The optimal Vandermonde matrix is determined on the basis of the shortest vector of a lattice
generated by the precoding matrix in which the single parameter is searched. Therefore, its complexity is reduced to a
polynomial time, whereas the traditional unitary precoder has exponential complexity. Simulation results show that the
proposed scheme can achieve the performance similar to the benchmark schemes but with much lower complexity. The
scheme offers a good trade-off between performance and complexity.

1. Introduction

Compute-and-forward (CF) is a promising new technique of
physical-layer network coding for wireless relay networks
[1–3]. CF exploits nested lattices and enables relays to
decode the integer linear combination of transmitted mes-
sages by using the noisy linear combinations provided by
the channel. The integer linear combination transforms into
a linear combination of the information messages by mod-
ulo operation over the same finite field. In this regard, CF
strategy makes use of interferences to obtain significantly
higher rates between users in a network. The CF technique
can be utilized in the massive MIMO system and is envi-
sioned to support the demands of fifth-generation (5G)
and beyond mobile system [4, 5].

Inspired by the idea of the CF strategy, a new linear
integer-forcing (IF) receiver technique was subsequently
proposed to harness the intrapair interference for multiple-
in multiple-out (MIMO) architectures [6]. As any integer

linear combination of lattice codewords is itself a lattice
codeword, the IF technique may recover linear integer com-
binations of messages for further original message detection.
The IF strategy can achieve higher sum rate with low com-
plexity by using well-structured codes and a good approxi-
mation of the channel’s real coefficients by utilizing
rational numbers. The practical approach for the IF receiver
and the application in the MIMO multiuser system is dis-
cussed in [7–9]. Beyond that, MIMO relay multiuser systems
equipped with IF precoding technique can achieve an out-
standing performance [10].

When the knowledge of channel state information is avail-
able at the transmitter, the transmitter uses a precoding
scheme to encode information symbols prior to transmission
to increase reliability and overcome channel fluctuations. In
[11], Sakzad and Viterbo proposed unitary precoded integer-
forcing (UPIF) scheme in which the precoding matrices are
designed as unitary matrices. The full diversity gain could be
obtained along with full rate transmission. The performance
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was also not dependent on the minimum distance of received
constellations. In high-order modulation schemes, the UPIF
also performs excellently.

Motivated by UPIF, an orthogonal precoding scheme for
IF linear receivers was proposed by [12]. The orthogonal
precoding could outperform its unitary counterpart. Then,
a steepest gradient algorithm was proposed to find the
“good” orthogonal precoder matrices. However, the optimal
precoder matrix of a unitary or orthogonal was difficult to
identify with the unitary or orthogonal constraint and lattice
distance minimization problem. Furthermore, multiple
parameters with respect to unitary matrix or orthogonal
matrix are required to determine in a high-order MIMO sys-
tem, leading to high computational complexity.

In this paper, we propose a low-complexity suboptimal
precoding scheme for IF linear receivers. The unitary precoder
matrix is designed as a Vandermonde matrix that only con-
tains a single parameter associated with an angle based on a
complex cyclotomic number field. Remarkably, owing to the
orthogonal structure stipulated for the Vandermonde matrix,
finding the optimal Vandermonde matrix can be transformed
when searching the optimal parameter. Moreover, the prob-
lem can be solved in polynomial time; it is faster than the
one in [11] whose computational complexity is exponential
in the number of MIMO dimension. More importantly, the
proposed method is suitable for any MIMO dimension. Com-
pared with the unitary matrix precoder, the performance of
the proposed scheme is near to parameterization technique
in high-order MIMO, as validated by simulation results.

This paper is organized as follows. Section 2 describes
the system model and the unitary precoded IF scheme. Sec-
tion 3 presents a novel precoding strategy. Section 4 per-
forms some numerical simulations to validate the
usefulness of the proposed method. Finally, some conclud-
ing remarks are presented in Section 5.

1.1. Notations. The set ℤ, ℝ, and ℂ denote the ring of inte-
gers, the field of real number, and the field of complex num-
ber, respectively. ℤ½i� =ℤ + iℤ denotes the ring of Gaussian
integers. The superscripts ð⋅ÞT and ð⋅ÞH represent the matrix
transpose and Hermitian transpose operations, respectively.
mod stands for the modulo operation imposed on a matrix
or a vector over a lattice. The notation k⋅k denotes the
Euclidean norm of a vector. I is an identity matrix.

2. System Model

We consider a quasistatic flat-fading MIMO system com-
prising M transmit antennas and M receive antennas,
i.e., an M ×M point-to-point MIMO link. Let H ∈ℂM×M

denote the complex valued channel matrix, the elements
of which are independent and identically distributed
(i.i.d.) with a zero-mean unit-variance complex Gaussian
distribution. We assume that the transmissions are orga-
nized into bursts of L symbol slots (L≫ 1), where H is
constant during the burst but changes randomly from
one burst to the next (quasistatic channel). By using singu-
lar value decomposition (SVD), the channel matrix H can
be decomposed into H =UDVH , where U and V are uni-

tary matrices, such that UHU =VHV = I, and D is a diag-
onal matrix with the entries d1, d2,⋯, dM ∈ℝ arranged in
descending order on the diagonal.

Let wi denote the information vectors to be transmitted
at the i-th antenna of the transmitter. wi is drawn indepen-
dently and uniformly over a prime-size finite field FLp , where
p is prime. A fine lattice, also called a coding lattice, is
denoted by Λ =GℤL, where G ∈ℝM×L is a full-rank genera-
tor matrix. Specifically, if we take G = I, then we recover Λ to
a ℤL lattice. A coarse lattice, also called a shaping lattice, is
denoted by Λc = pΛ. The corresponding nested lattice can
be represented as C =Λ ∩V Λc

. The encoder at the i-th
antenna uses a bijective map ϕ to map the message wi over
the finite field to the nested lattice code si = ϕðwiÞ = ½Gwi�
mod Λ. Each codeword is subject to the power constraint,
i.e., ð1/LÞEksik2 = ρ. We also assume that S = ½s1,⋯,sM�T ∈
ℂM×L. With the precoding matrix U and the precoding uni-
tary matrix P, the matrix X =VPS is the matrix of transmit-
ted vectors to be sent through the channel. The received
signal at the receiver can be expressed as

Y =HX + Z, ð1Þ

where Z is an additive Gaussian noise in which each term is
modeled as an i.i.d. zero-mean Gaussian random variable
with a unit variance. Let X = ½x1,⋯,xM�T .

Then, the unitary matrix UH is imposed on the received
signal Y, thus yielding

Y′ =DPX + Z′, ð2Þ

where Z′ =UHZ and the entries of Z′ also follow the i.i.d.
Gaussian random distribution with zero mean and unit
variance.

Subsequently, the receiver projects Y′ with an equaliza-
tion matrix B ∈ℝM×M and then feeds it into the modulo
function with lattice Λc. The effective received vector can
then be expressed as

Yeff = BY′
h i

mod Λc = BDPX + BZ′
h i

mod Λc

= AX + BDP −Að ÞX + BZ′
h i

mod Λc

= W + Zeff½ � mod Λc,

ð3Þ

where A ∈ℤ½i�M×M is a full-rank target Gaussian-integer-
valued matrix.

W = AX½ � mod Λc ð4Þ

is a matrix with each row being a codeword in C owing to
the linearity of the code.

Zeff = BDP −Að ÞX + BZ′
h i

mod Λc ð5Þ

is an additive noise statistically independent of W, and B is
chosen to approximate the resulting MIMO channel DP
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with the invertible Gaussian integer matrix A. The full rank
of matrices G and A provides sufficient conditions for recov-
ering the original messages via the quantization of Yeff , i.e.,

~w1, ~w2,⋯,~wM½ �T =G−1A−1QΛ Yeffð Þ, ð6Þ

where ~wi, i = 1,⋯,M is the estimate of wi, i = 1,⋯,M. If we
take G = I, then an integer lattice is involved and can con-
struct a regular constellation (e.g., PAM and QAM). Finding
the optimal integer matrix A is a successive shortest vector
problem in the IF architecture [13]. The traditional search
framework, including the Lenstra, Lenstra, and Lovász
(LLL) algorithm [14], the greedy algorithm [15], and the
sphere decoding algorithm [16], can be employed in our
works. Besides, an optimal algorithm recently proposed in
[13] can be used specially for IF systems.

Let yTeff ,m, aTm, and bTm be the m-th rows of Yeff , A, and B,
respectively. According to Eq. (5), the variance of zTeff ,m can
be written as

σ2eff ,m = ρ bTmDP − aTm
��� ���2 + bTm

��� ���2: ð7Þ

bTm can be optimized as bTm = PsaTmðDPT

ðI + PsDPðDPÞTÞ−1Þ by minimizing of the effective noise
variance σ2eff ,m [17], thus yielding

σ2eff ,m = ρaTmPT I + ρDTD
� �−1Pam: ð8Þ

Finding the optimal unitary precoder matrix is a hard
problem due to the unitary constraint, multiple variances,
and lattice minimum distance problem. These issues are
addressed in the sequel.

3. Proposed Approach

The precoding matrix P imposed on the channel gain should
be designed to enable the Gaussian integer matrix A to fully
approximate the channel coefficient without having to
amplify the effective noise. The performance in terms of
achievable rate and error rate should be optimized. In this
section, we focus on the problem of choosing the unitary
matrix P to maximize the achievable sum rate while ensur-
ing low computational complexity.

Here, I + ρDTD is a positive definite matrix. Thus, its
Cholesky decomposition is a factorization of the form

ðI + ρDHDÞ−1 = LLH . Assuming LP = PHL, we rewrite σ2eff ,m as

σ2eff ,m = ρaHmLPLHP am = ρ LPaHm
�� ��2: ð9Þ

The performance in terms of SNR is decided by the worst
subchannel. Hence, P is chosen to minimize dMðΛðLPÞÞ,
which is the largest successive minimum of the lattice ΛðLPÞ.

Popt = arg minP∈UM
d2M Λ LPð Þð Þ, ð10Þ

whereUM is the unitary group of allM ×M unitary matrices.
This minimization problem can be transformed into a maxi-
mization of the minima of the lattice ΛðL−1P Þ [12], i.e.,

Popt = arg maxP∈UM
minv∈ℤ i½ �M\0 L−1Pv

�� ��2, ð11Þ

to simplify the solution for the maximization.
The optimal solution for problem in Eq. (11) seems dif-

ficult and combinatorial due to the unitary constraint and
the distance minimization of the lattice. A parameterization
technique was previously proposed in [11]. For example, for
the 2 × 2 MIMO system, P can be expressed with a parame-

ter angle α to satisfy the orthogonal condition, i.e., P =

cos α sin α

−sin α cos α

" #
. With this simple parameterization, the

exhaustive search can be conducted with only one parameter
α ∈ ½0, π/4� by using the fine steps via the Gauss reduction
algorithm. However, this approach is prohibitively hard to
implement for a higher-dimensional MIMO system because
the number of parameters can reach MðM − 1Þ/2. At each
iteration, the minimum distance of ΛðL−1P Þ is required to
be checked, leading to an exponential computational com-
plexity with respect to the number of parameters.

The unitary matrix constraint is a major obstacle in finding
the optimal P. To overcome this challenge, we propose a special
matrix as the precoding matrix of the lattice. The precoding
matrix can be parameterized using only a single angle α for
any dimension as follows:

P αð Þ = 1ffiffiffiffiffi
M

p

1 θ ⋅ θ1 ⋯ θ ⋅ θ1ð ÞM−1

1 θ ⋅ θ2 ⋯ θ ⋅ θ2ð ÞM−1

⋮ ⋮ ⋱ ⋮

1 θ ⋅ θM ⋯ θ ⋅ θMð ÞM−1

2
666664

3
777775, ð12Þ

where θ = exp ðiαÞ is the rotation variation, and θk = exp ð2k
πi/MÞ, k = 1, 2,⋯,M is assumed to be the complex roots of
the minimal polynomial xM − 1 according to the algebraic
number theory introduced in [18]. Here, the parameterized pre-
coding matrix is a Vandermonde matrix and unitary, i.e., Pðα
ÞPHðαÞ = I. We are interested in choosing the optimal α, such
that the minimum distance of lattice ΛðLPðαÞÞ can be maxi-
mized. Moreover, the Vandermonde structure of PðαÞ can help
to reduce the matrix-vector multiplication complexity to Oðn
log nÞ flops in a similar manner as the complexity reduction
of the fast Fourier transform.

The effect of the multiplication of the lattice points is peri-
odic in α with the period ½0, 2π/M�. Therefore, performing a
search algorithm over a period is desirable. The corresponding
function of minimum distance of the lattice ΛðLPðαÞÞ is
denoted by dðΛðLPðαÞÞÞ, and it has reflective symmetry in
period ½0, 2π/MÞ. The characteristic of the period and symme-
try originates from the structure of the roots of a unit circle.
Figure 1 shows the periodic and symmetrical behavior of the
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function curve of d2ðΛðLPðαÞÞÞ. Subsequently, the search
interval of θ is further halved into ½0, π/MÞ, which can also
save half of the computational complexity.

The exhaustive search operation is performed by discretiz-
ing the space of ½0, π/M� into n samples with a fine step size. At
each step, the minimum distance of the resulting lattice Λð
LPðαÞÞ is evaluated while the unitarymatrix PðαÞ is constructed
with each sample of α. We choose the complex LLL reduction
algorithm [19] to find the successive minima of a lattice with a
complexity ofOðM4 logMÞ. Therefore, the overall complexity
of the proposed technique is OðnM4 log MÞ. In comparison,
the parameterization approach introduced in [11] used at least
MðM − 1Þ/2 parameters to construct the unitary matrix. Each
parameter has a separate search space of ½0, 2π�. As a result,
the overall complexity of the parameterization approach is O
ðnMðM−1Þ/2M4 logMÞ with the same LLL algorithm. Thus,
the proposed algorithm outperforms the parameterization
technique in terms of computational complexity.

4. Results and Discussion

In this section, we present numerical results as a way of ver-
ifying the performance of our proposed Vandermonde
matrix precoding scheme in terms of achievable sum rate
and symbol error rate. The channel matrix is generated ran-
domly from one burst to the next with i.i.d elements Hi,j ~
CN ð0, 1Þ, in which the real and imaginary parts are inde-
pendent and have zero mean and equal variance. The trans-
mitted symbols are modulated with 4 −QAM, and the
corresponding finite ring is ℤ2 = f0, 1g. The finite constella-
tion S represents the set of coset representatives of ℤ½i�/pℤ½i
�. Here, the symbols of S should be transformed into scaled
and shifted versions with a reduced average transmit power.

The theoretical exhaustive search based on the design criterion
given in Eq. (11) is included to construct the Vandermonde
matrix with single parameter. The step size for our brute force
search for the cases is 0.001 radians. For the purpose of ensur-
ing low complexity, the LLL algorithm is equipped with the
capability of finding the minima of the lattice ΛðL−1P Þ and
the suboptimal matrixA. For the sake of comparison, the uni-
tary matrix scheme proposed in [11] and the orthogonal
matrix scheme proposed in [12] are shown.

First, we compare the minimum distance of the resulting
dual lattices of the Vandermonde matrix precoder and unitary
matrix precoder. Figure 2 shows the average of dðΛðL−1P ÞÞ in
2 × 2MIMO. Findings indicate that the Vandermonde preco-
der is always better than the orthogonal matrix precoder and is
nearer to the unitary matrix precoder. This finding can be
attributed to the unitary precoder that searches over all groups
of the unitary matrix while the Vandermonde matrix precoder
searches the part of the unitary matrix group. Figure 3 shows
the performance in terms of average sum rate. For the sake
of comparison, the curve of the conditional SVD precoding
method is also shown. As can be clearly seen from Figure 3,
the unitary matrix precoder and Vandermonde matrix preco-
der have nearly the same curve, but the orthogonal matrix pre-
coder has a lower performance. In contrast, the SVD precoder
does not outperform the above three precoders.

Then, we compare the performance in terms of symbol
error rate (SER) for the 2 × 2 and 4 × 4 MIMO channels over
4-QAM constellations. The SVD scheme clearly cannot achieve
the desired SER performance when SNR is large. Subsequently,
we focus on the precoder schemes. As shown in Figures 4 and 5,
among the three precoders, the orthogonal precoder always
exhibits the best SER performance, and the Vandermonde
matrix precoder scheme yields a performance that is inferior
to unitary precoder. However, the performance distinction
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Figure 1: Periodic and symmetrical behavior of d2ðΛðLPðαÞÞÞ based on the variation of θ in a 2 × 2 complex MIMO.
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Figure 2: Comparison of average minimum distances of ΛðL−1P Þ of three schemes in a 2 × 2 complex MIMO.
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among the three precoders is only slight. In the 2 × 2 scenario,
in this study, the orthogonal precoder only needs to deal with
a single parameter, but in the 4 × 4 scenario, six parameters
need to be determined. The unitary precoder needs three
parameters in the 2 × 2 scenario and 12 parameters in the 4 ×
4 scenario. The exponentially increasing complexity is intolera-
ble. Meanwhile, the Vandermonde precoder can reach a good
trade-off between performance and complexity.

5. Conclusions

In this study, we propose the Vandermonde matrix precoder
with a low polynomial complexity to suboptimally alternate
the unitary matrix precoding in MIMO IF systems. An SVD
decomposition approach is employed to transform the chan-
nel into a diagonal matrix. It is of paramount importance to
design precoder matrices to adapt to each channel realiza-
tion. However, the optimal precoder matrix from the unitary
group is a hard problem requiring an exhaustive search of
multiple parameters. To overcome this shortcoming, we
choose the Vandermonde matrix requiring only a single
parameter. The corresponding complexity is reduced to a
polynomial time, and the loss of SER performance is only
slight. The simulation results verify the good trade-off
between performance and complexity yielded by using our
proposed scheme.
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