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Improper wearing of personal protective equipment may lead to safety incidents; this paper proposes a combined detection
algorithm for personal protective equipment based on the lightweight YOLOv4 model for mobile terminals. To ensure high
detection accuracy, a channel and layer pruning method (CLSlim) to lightweight algorithm is used to reduce computing power
consumption and improve the detection speed on the basis of the YOLOv4 network. This method applies L1 regularization
and gradient sparse training on the scaling factor of the BN layer in the convolutional module: global pruning threshold and
local safety threshold are used to eliminate redundant channels, the layer pruning threshold is used to prune the structure of
the shortcuts in the Cross Stage Partial (CSP) module for inference speed improvement, and finally, a lightweight network
model is obtained. The experiment improves the YOLOv4 and YOLOv4-Tiny models for CLSlim lightweight separately in
GTX2080ti environment. Results show that (1) CLSlim-YOLOv4 compresses the YOLOv4 model parameters by 98.2% and
increases the inference speed by 1.8 times with mAP loss of only 2.1% and (2) CLSlim-YOLOv4-Tiny compresses the original
model parameters by 74.3% and increases the inference speed by 1.1 times with mAP increase of 0.8%, which certificates that
this improved lightweight algorithm serves better for the real-time ability and accuracy of combined detection on PPE with
mobile terminals.

1. Introduction

Personal protective equipment (PPE) is equipment for
workers avoiding or lightening accident injury at work.
Common PPEs include safety hard hats, reflective clothing,
and protective clothing in construction scenes [1]. OSHA
(occupational safety and health administration) stipulates
that workers must wear safety hard hats when entering the
construction site, and special types of work shall wear appro-
priate personal protective equipment. Workers working at
heights must wear safety hard hats and safety belts [2]. Out-
door workers shall wear safety hard hats and reflective
clothes, etc. [3]. The traditional image-based PPE detection
algorithm needs to extract the key region features first and
then use the edge information or classification algorithm to
recognize the PPE. Reference [4] uses the template matching
method to judge personnel wear safety belts. Reference [5]
uses edge contour information to identify hard hats. In Ref-
erence [6], it demonstrates the application of Artificial Intel-

ligence (AI) and machine vision for the identification of
personal protective equipment (PPE), particularly safety
glasses in zones of the learning factory, where safety risks
exist. Traditional PPE detection methods have the disadvan-
tages of low precision and slow speed. However, with the
rapid development of convolutional neural networks in the
field of machine vision, many scholars use end-to-end target
detection algorithms to detect PPE and achieve good results.
Reference [7] uses the SSD target detection algorithm to
detect the hard hat in real time and recognize its color infor-
mation. In Reference [8], a convolutional neural network is
used to identify workers and hard hats, and the normaliza-
tion of wearing hard hats according to the overlap value of
workers’ heads and hard hats is verified.

Due to the complexity of the construction environment,
workers wearing a single PPE could not fully protect their
own safety, while the combined detection algorithm of mul-
tiple types of PPEs needs to verify the standardization of use
at the same time. The verification method proposed in
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Reference [8] will increase exponentially with the increase of
PPE components, which will affect the recognition speed.
Based on the YOLOv3 algorithm, Reference [9] detects mul-
tiple types of PPEs and verifies the standardization of wear-
ing, which has high real-time performance but poor
recognition accuracy for small targets or low resolution pic-
ture. At present, there are many ideas worthy of reference in
academic circles to improve the detection accuracy of the
algorithm, such as data enhancement methods that only
increase the training cost without affecting the inference
speed or inserting attention mechanism modules that only
increase a small amount of reasoning cost in the training
process [10, 11]. In 2020, Bochkovskiy et al. proposed their
YOLOv4 algorithm [12]. Combining the popular convolu-
tional network optimization techniques and using more
complex network structures, this algorithm was able to pro-
ceed with fast and accurate training and detection on lower
configuration servers and was identified as an excellent tar-
get detection algorithm. But the huge model and parameter
calculation volumes make it not suitable for mobile ends in
industrial scenarios with limited resources. Therefore, under
the premise of ensuring high detection accuracy, reducing
floating point operations, improving the inference speed,
and making it deployable to mobile terminals with limited
resources are an urgent problem that needs to be solved.
By using the channel pruning method, the parameter quan-
tity of YOLOv3 is compressed by 92%. Reference [13] main-
tains the detection accuracy of the original model and
improves the inference speed by twice. By channel pruning
of the improved YOLOv4 model, the algorithm in Reference
[14] lost 2.43% of the detection accuracy, increased the pre-
diction speed by 2.9 times, and compressed the model by
96%. By designing a lightweight convolutional neural net-
work (CNN) which is named as Shuffle CNN, a Shuffle
CNN-based AMC (Shuffle AMC) method is proposed for
the ubiquitous IoT cyberphysical systems with orthogonal
frequency division multiplexing (OFDM) in Reference
[15]. For facial landmark detection, Reference [16] presents
a novel loss function to train a lightweight student network
(e.g., MobileNetV2).

To solve the problems of combined detection on the
workers’ multiple PPEs and improve the real-time perfor-
mance and detection accuracy of terminals with limited
resources in complex networks, this paper proposes a high
accuracy PPE real-time detection algorithm with a smaller
volume. Based on the popular YOLOv4 and YOLOv4-Tiny
networks for model lightweight, it compresses the model
efficiently by combining channel and layer pruning methods
and gets a combined detection algorithm on PPEs with small
volume and fast detection speed, which is suitable for mobile
ends in industrial scenarios.

2. Improved YOLOv4 for PPE Real-Time
Detection Algorithm

As the improved version on v3, YOLOv4 integrates the idea
of the convolutional neural network algorithm based on the
original YOLO frame and uses many strategies on the back-
bone network of feature extraction, neck network of feature

fusion and the detection head of classification, and regres-
sion for the improvement of the v3 algorithm.

The YOLOv4 network structure is shown in Figure 1,
and CSPDarknet53 is used as the backbone network. In the
structure, the CSP structure can be lightweight and simulta-
neously improve the learning ability of CNN, reduce com-
puting bottlenecks, and reduce memory costs [17]. CBM
and CBL are joined up with batch normalization (BN) oper-
ation after regular convolution (Conv), with commonly used
activation functions of Leaky ReLu, Mish, etc. Before feature
fusion, the SPP module is introduced, which can effectively
increase the network receptive field and obviously separate
the contextual features compared to max pooling operation.
The Path Aggregation Network (PANet) is the enhanced
feature pyramid network [18], which effectively improves
the problem of losing shallow feature information in the
deep network by combining the methods of bottom-up
and top-down paths [19].

To improve real-time performance, a lightweight algo-
rithm YOLOv4-Tiny is proposed on the basis of YOLOv4,
which is showed in Figure 2. In this YOLOv4-Tiny light-
weight network model, three residual modules are used in
the CSPDarknet53 backbone network, the Leaky ReLu func-
tion is used as the activation function, the FPN network is
used in the multiscale feature fusion module, and two detec-
tion heads are used in classification and regression of the
prediction module.

2.1. Activation Functions for the Modification of Class
Probability. In regular target detection tasks, one object
may belong to multiple categories as Figure 3(a). When
there are many overlapping categories in the data set, a sin-
gle detection box can be used to detect multiple classes
simultaneously (e.g., person and male and dog and pug).
Therefore, the single-label classification method has limita-
tions in real scenes; the original YOLOv4 algorithm sup-
poses that all classes are nonmutually exclusive. And the
activation function sigmoid is used for the calculation of
class probability as shown in

σsigmoid zið Þ = ezi

ezi + 1 : ð1Þ

The function processes each class i independently and
normalizes the prediction probability zi of each class
between ½0, 1�. If σsigmoidðziÞ is bigger than a certain threshold,
like 0.5, there is a class in the grid cell; that is to say, an object
can be predicted as multiple classes. And this paper focuses on
the combined detection of workers wearing different classes of
PPEs as shown in Figure 3(b). A worker can only belong to
one category. For instance, the semantic definition of the clas-
ses is given as W, WH, WV, and WHV. If one worker is
detected as a certain class (i.e., WHV), the other classes (i.e.,
W, WH, and WV) of the same target will be replaced. There-
fore, the activation function SoftMax is used to calculate the
class probabilities as shown in

σSoftMax zð Þi =
ezi

∑i=1e
z j
: ð2Þ
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The function supposes that all classes i are exclusive, and it
normalizes the prediction probability zi of each class and
makes the sum of them 1.

2.2. Detection Box Modification and Duplication Strategy. In
the prediction stage, the original YOLOv4 algorithm pro-
ceeds Nonmaximum Suppression (NMS) for one class each
time because the combined detection method in this paper
marks only the worker’s upper part of the body; the similar-
ity of classes is high. If a prediction box belongs to Class A
and Class B at the same time, it is redundancy. So, the regu-
lar NMS algorithm is used for the prediction box of a certain
class and afterwards all classes to eliminate the duplication

of the same worker detected as multiple classes as shown
in Figure 4.

3. Model Lightweight Based on CLSlim-
YOLOv4

3.1. BN Layer and Scaling Factor. BN [20] was a data nor-
malization method proposed, and it has been applied in
most CNNs. Traditional standardization methods distribute
the input of CNN between ½0, 1�, but most of the activation
functions in CNN, such as sigmoid and tanh, are linearly
distributed in the interval ½0, 1�, and standardization
methods can reduce the nonlinear capability of the network.
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Figure 1: YOLOv4 algorithm structure.
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In order to reduce the effects of standardization on activa-
tion functions, two parameters under learning: scaling factor
γ and shifting factor β are imported on the basis of stan-
dardization, and the values after standardization are zoomed
and panned, which can regain the nonlinear expression abil-
ity of the convolution network to a certain extent. The flow
of the BN algorithm is followed, in which Xminibatch and yi
are the input and output of the BN layer; μX and σ2X are
the mean and variance values of the input of the BN layer;
x̂i is the result after standardization.

In the YOLOv4 network, most convolution structures
are composed of the convolution layer, BN layer, and activa-
tion function as shown in the CBM and CBL modules in
Figure 1. If the scaling factor of the BN layer is very small,
the value input into the activation function is very small,
which represents the contribution of the corresponding
channel to the network is also very low. Therefore, γ of the
BN layer can be used as the scaling factor of channel pruning
to evaluate the importance of the channel to the network
without additional costs.

3.2. Sparse Training. In the process of network sparse train-
ing, γ in the CBM and CBL modules of the BN layer is con-

sidered the scaling factor of channel pruning and multiplied
by the corresponding channel. Then, a sparse model is
contained after combined training on network weights and
scaling factors. Most of the scaling factors of channels tend
to 0, and the corresponding loss function is shown in

Loss = 〠
x,yð Þ

l f x,Wð Þ, yð Þ + λ〠
γ∈τ

g γð Þ, ð3Þ

where ðx, yÞ are the training input sample and the corre-
sponding label; Loss is the loss function of CNN normal
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Figure 3: Classes in regular object detection vs. multiple PPE detection.
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Figure 4: Two-stage method of NMS.

Input: Xminibatch = fx1, x2,⋯, xmg ;
Parameter: γ, β;

Output: fyi = BNγ,βðxiÞg ;
μx ⟵ 1/m∑m

i=1xi //Mini-batch min
σ2X ⟵ 1/m∑m

i ðxi − μXÞ //Mini-batch variance

x̂i ⟵ xi − μX/
ffiffiffiffiffiffiffiffiffiffiffiffi

μ2X + ε
p

//Standardization
yi ⟵ γx̂i + β ≡ BNγ,βðxiÞ //Scale and shift

Algorithm 1

4 Wireless Communications and Mobile Computing



training; W is the weight of the network to be trained; gðγÞ
is the penalty function on scaling factor, adopting g = ∣s ∣ , i.
e., L1 regularization; and λ is the penalty coefficient balan-
cing two weights.

The essence of model channel pruning is cutting out the
connection between the input and output related to a chan-
nel. Due to the combined optimization of loss function
under normal training and scaling factor γ, a valuable chan-
nel can be chosen based on the scaling factor during the
sparse training process. In the training process, the scaling
factor γ of the BN layer shows approximately a normal dis-
tribution that expectation is 1 in the nonsparse YOLOv4
network as shown in Figure 5(a). When the penalty coeffi-
cient in equation (3) is set as 0.0005, after sparse training
on the model, most of the scaling factor γ all go close to 0
as shown in Figure 5(b).

3.3. Channel and Layer Pruning. After sparse training, the
scaling factor γ introduced in Section 3.1 is taken as the basis
evaluating the importance of the channel. This paper defines
a global threshold to control the pruning ratio and intro-
duces a local safety threshold to prevent overpruning on
the number of convolution layer channels and maintain
the integrity of network connectivity. Figure 6 shows the
model sparse training and channel pruning: each channel
of the kth convolution layer is given a scaling factor; after
sparse training, the scaling factor approaches 0; the absolute
value of the scaling factor smaller than the global threshold

is removed; if the scaling factors of the channels in the whole
layer are small than the global threshold, the channels with
scaling factors bigger than the local safety threshold are
reserved to prevent the whole layer pruned.

In the YOLOv4 network pruning process, some struc-
tures need to be handled, such as the CSPn module in the
backbone network CSPDarknet53; and the max pool and
unsample layers independent of the number of channels
can be ignored directly. In the channel pruning process,
the pruning ratio is settled firstly. And then, jγj of the BN
layer to be pruned is ascending sort. And the global thresh-
old ~γ and local safety threshold π are determined based on
the pruning ratio and channel ratio to be reserved for each
layer. Channels to be deleted in each layer are set to 0, and
others 1. Then, the pruning mask is obtained. The CFG
structure of CSP1 in the Darknet framework is shown in
Figure 7. As to the route layer, the characteristic chart of
the corresponding index is output when there is only one
parameter; concatenate operation is proceeded when there
are two parameters. Therefore, the pruning masks of the cor-
responding input layers are connected to and used as their
own pruning masks. The structure of the shortcut layer is sim-
ilar to the residual module of ResNet. Therefore, all layers for
shortcut connection need the same number of channels. The
final pruning masks are generated after traversing the pruning
masks of these layers and making logic or operation.

Channel pruning can greatly reduce the model and
parameter calculation volumes but has little impact on
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Figure 5: (a) Distribution of scaling factor without sparse process; (b) distribution of scaling factor with sparse process.
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improving the inference speed of the model. This paper pro-
poses a layer pruning method on the basis of channel prun-
ing, which works by sorting the scaling factor’s mean value
γmean for each convolution layer, pruning the layer with
the smallest γmean, and introducing layer pruning coefficient
S which is the number of shortcut structures to be pruned.
There are 23 shortcut structures in the backbone network
of YOLOv4. For the integrity of the network structure, each
shortcut with the corresponding two convolution layers in
its upper layer is pruned at the same time. If the layer prun-
ing coefficient S is 8, there will be 24 layers pruned. Layer
pruning can improve the inference speed of the model.
Channel pruning and layer pruning are used to compress
the width and depth of the model, respectively. The pruned
model has a great improvement in parameter calculation,
memory ratio, and inference speed.

3.4. Multiple Iterative Pruning and Fine-Tuning Model. Due
to the reduction of the number of model channels and
layers, there will be accuracy loss inevitably. Therefore, using
the original data set to fine-tune the pruned model to regain
accuracy of the model is necessary. In order to protect the
model’s complete network structure and high detection per-
formance after pruning, the threshold with less precision
loss can be used for pruning each time, and pruning and
fine-tuning can be proceeded many times until the best
pruning performance is achieved. The multiple pruning pro-
cess is shown in Figure 8.

The CLSlim method proposed in the paper combines
channel pruning and layer pruning to compress the model.
After the CLSlim method used in YOLOv4, the number of

the channel and layer can be reduced largely and the struc-
ture of the original model can be kept meanwhile, which will
provide the possibility for application on embedded devices.
Setting different layer pruning coefficients will cut off differ-
ent numbers of shortcut structures, so the structure diagram
of the pruning model is not fixed. When the layer pruning
coefficient is 20, 20 shortcuts of backbone network CSPDar-
knet53 in the YOLOv4 will be pruned. Then, the pruning
model network structure can be obtained as Figure 9, where
Slim-CSPn is the pruned CSPn structure. Compared with
the model before pruning, the CSPDarknet53 backbone net-
work has been reduced by 60 layers.

The YOLOv4-Tiny network can also be lightweight
improved using the CLSlim method. Since YOLOv4-Tiny’s
backbone CSPDarknet-Tiny network does not contain the
shortcut structure, it only needs to make channel pruning
in YOLOv4-Tiny to achieve the model compression effect.

4. Experiment Analysis

4.1. Experiment Environment. The experiment environment
in this paper is under the Windows 10 professional operat-
ing system. Pytorch and Darknet Deep Learning Frame-
works are applied for the realization of the combined
detection algorithm on PPE. The configuration of the server
is the graphics card of NVIDIA GTX2080ti and processor of
Intel Core i7; RK3399pro is adopted as the performance ver-
ification embedded platform.

4.2. Experiment Data Set. Construction scenes generally sep-
arate into aerial work and ground work. As the most com-
mon and basic PPE for workers, a safety hard hat needs to
be worn regularly at any time entering the construction site.
Ground workers are mostly exposed to and in the shade of
the sun. Due to the heavy dust on the construction site, it
is difficult to accurately identify the positions of workers in
this kind of bad environment. Therefore, ground workers
should wear reflective clothing throughout the whole work-
ing period to avoid collision accidents; aerial workers should
wear safety belts to avoid falling accidents. It takes the two
kinds of works as an example, and the construction data
set for PPE combined detection is shown in Table 1.

Experiment data mainly comes from the surveillance
video of a building construction site in Xi’an. The camera
takes pictures of workers standing, squatting, walking, and
in other positions from multiple angles. But there is not
enough data against rules. With these unbalanced sample
categories, it might cause inaccurate experimental results.
Therefore, to expand the data set, pictures of some certain
categories against rules are taken independently at the con-
struction site. The labeling boxes and sample pictures of
each category are listed in Table 2. Label image is used to
label the pictures, and data set in VOC format is set up,
and samples are divided into the training set and test set
by 8 : 2 for model training and performance verification,
respectively.

4.3. Model Training and Pruning. The multiple iterative
pruning and fine-tuning process in Section 3.4 is applied

Input 416 x 416 x 3

CBM 416 x 416 x 32

CBM 208 x 208 x 64

Route 208 x 208 x 64

Route 208 x 208 x 128

CBM 208 x 208 x 64

CBM 208 x 208 x 64

Shortcut 208 x 208 x 64

CBM 208 x 208 x 64 CBM 208 x 208 x 64

CBM 208 x 208 x 64

CBM 208 x 208 x 32

Figure 7: CFG structure of the CSP1 module.
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for channel pruning and layer pruning on the YOLOv4 net-
work, and then, the CLSlim-YOLOv4 model is obtained. The
performance of the model is verified by using the self-built
PPE real-time detection data set. The model training needs
to be trained on computers with high configuration hard-
ware and high-performance GPU graphics cards, and the
experimental environment should be set up, and various

dependency libraries should be installed on the server. For
the comparison of the performances of the pruning model
and nonpruning model, the self-built PPE real-time detec-
tion data set is imported to train the YOLOv4 model firstly;
then, the trained model is used to prune. The model pruning
experiment is also based on the self-built data set. And the
pruning process is as follows:

YOLOv4 L1 sparse training Channels with small
pruning scaling factor

 Layers with small mean
pruning scaling factor

Pruning modelFine-tuning the pruning
network

 Network performance
evaluationCLSlim-YOLOv4

 Iterative pruning

Figure 8: Multiple pruning process.
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Figure 9: CLSlim-YOLOv4 structure (S = 20).

Table 1: The data set of combined detection on personal protective equipment.

Scene Unsafe behavior Label Description

Ground work
Without safety hard hat

Without reflective clothing

W Worker

WH Worker with safety hard hat

WV Worker with reflective clothing

WHV Worker with safety hard hat and reflective clothing

Aerial work
Without safety hard hat
Without safety belt

W Worker

WH Worker with safety hard hat

WB Worker with safety rope

WHB Worker with safety hard hat and safety rope
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(1) Sparse Training. It is a game process between accu-
racy and sparsity of the model referring to the loss
function during the model sparse training process
in Section 3.2. If the penalty coefficient of the scaling
factor is too high, the network is with fast sparsity
but the accuracy drops fast too; else, the model’s
accuracy loss is low but with very slow sparsity.
Therefore, choosing a suitable penalty coefficient is
of great importance. Taking the experiment cases
in previous studies, about 100 rounds of sparse train-
ing can reach maximum performance. The parame-
ters applied in the sparse training experiments in
this paper are shown in Table 3. A total of 400
rounds of training is proceeded to ensure sufficient
time left after sparse training for further adjusting
the model.

The sparse training process is shown in Figure 10(a).
Large compression of the model is completed in about the
first 100 rounds, and the accuracy is fine-tuned and restored
in the following 300 rounds. The loss and mAP curves of the
model are shown in Figures 10(b) and 10(c), in which while
the scaling factor of the BN layer is in the period of substan-
tial compression (20-100 epochs), the loss value of the model

increases continuously and then goes to the adjustment
period. The loss value decreases rapidly in the 280 rounds,
and the mAP of the model rebounds significantly; the learn-
ing rate is reduced in the last 120 rounds, and the model
accuracy is repaired.

The performances of the model before and after sparse
training are compared in Table 4. The model accuracy after
sparse training is 2% less than the original YOLOv4 model.

(2) Channel Pruning and Layer Pruning. The pruning
ratios of the experiments in this paper are set to
0.8, 0.9, and 0.95; the ratio of channels to be reserved
on each layer is 0.01, corresponding to the global
threshold ~γ and local safety threshold π in Section
3.3. To get the best pruning parameters, three groups
of comparative experiments are designed for channel
pruning of the model: YOLOv4-0.8, YOLOv4-0.9,
and YOLOV4-0.9, and the performance of the prun-
ing model is evaluated based on five kinds of indices:
model size (model_size), mean accuracy (mAP),
floating point of operations (FLOPs), parameters
(params), and inference speed (inference). The
model detection performances with different prun-
ing ratios are shown in Table 5, in which, with low
precision loss, the YOLOv4-0.9 model compresses
its volume smaller and reduces the volume of float-
ing point operations. So, the YOLOv4-0.9 model is
chosen as the benchmark model for the layer prun-
ing experiment.

Channel pruning can reduce the volume of model
parameter calculation and improves nothing on inference
speed. Therefore, layer pruning on shortcut structures of
the backbone network is required after channel pruning. In
this paper, layer pruning on the best model YOLOv4-0.9
chosen from channel pruning experiments is proceeded.

Table 2: Numbers of categories and sample pictures.

(a)

Label W WH WV

Number of labeling boxes 1756 5327 2227

Sample picture

(b)

Label WHV WB WHB

Number of labeling boxes 7284 3797 5442

Sample picture

Table 3: Experimental parameters.

Parameter Value

Learning rate (learning rate) 0.002324

Number of iterations (epoch) 400

Batch size (batch_size) 8

Momentum (momentum) 0.97

Weight decay (weight_decay) 0.0004569

Learning rate decay factor (Ir_factor) 0.1

Penalty coefficient (λ) 0.0005
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Layer pruning coefficient S is set as 8, 16, 20, 22, and 24, sep-
arately, and the five kinds of indices for model performance
evaluation in channel pruning experiments are also applied
in channel pruning. The model performances with different
layer pruning ratios are shown in Table 6.

After the layer pruning on the YOLOv4-0.9 model, the
model accuracy always decreases to a low level, so the origi-

nal data set needs to be used and fine-tuned to rebound the
lost accuracy. YOLOv4-0.9-20 is finally chosen for fine-
tuning the training. The mean detection accuracy rebounds
from 84.2% to 92.8%. And after the fine-tuning, the final
pruning model CLSlim-YOLOv4 is obtained.

4.4. Evaluation of Pruning Model. To verify the effectiveness
of the pruning method, YOLOv4 and YOLOv4-Tiny are
both improved with lightweight CLSlim in this paper. The
corresponding results are shown in Table 7.

Table 7 compares the model size, mean accuracy, and
other indices of YOLOv4, YOLOv4-Tiny, and pruning
model CLSlim-YOLOv4 and CLSlim-YOLOv4-Tiny. The
size of CLSlim-YOLOv4 is compressed to 4.15M, 1.76% of
YOLOv4’s, with inference speed increasing 1.8 times and
1.9 times in GTX2080ti and RK3399pro, respectively, FLOPs
decreasing 12.1% and model accuracy decreasing 2.1%.
Applying the model pruning method in YOLOv4-Tiny,
the model size is compressed to 25.6%, parameter volume
compressed to 25.5%, FLOPs decreasing 57%, inference
speed increasing 1.1 times of the two type devices, and
model accuracy increasing 0.8%. Parts of the CLSlim-
YOLOv4-Tiny detection results in RK3399pro are shown
in Figure 11.

369
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Epoch
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0 50 100 150 200 250 300 350 400

Epoch
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(b)
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(c)

Figure 10: (a) Distribution of scaling factor in sparse training process; (b) loss curve in sparse training process; (c) mAP curve in sparse
training process.

Table 4: Comparison of model performances before and after
sparse training.

Model Model_size (MB) mAP (%)

YOLOv4 244MB 93.4%

YOLOv4 after sparse training 244MB 91.7%

Table 5: Comparison of the channel pruning experiments.

Experiment
Model_size

(MB)
mAP
(%)

FLOPs
(G)

Params
(M)

Inference
(ms)

YOLOv4 235 94.9 59.80 63.96 33.9

YOLOv4-0.8 14.00 91.64 18.12 3.67 33.6

YOLOv4-0.9 4.46 91.40 7.64 1.16 33.8

YOLOv4-0.95 1.73 1.41 3.48 0.45 33.5
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5. Conclusions

A combined detection algorithm on personal protective
equipment for mobile terminals is proposed to check
whether it is worn properly. The algorithm is realized based
on the YOLOv4 network. Firstly, this algorithm applies L1
regularization and gradient sparse training on the scaling
factor of the BN layer in the convolutional module of
YOLOv4, and a global pruning threshold is settled to elimi-
nate channel redundant parameters; at the same time, layer
pruning thresholds are set to maintain the network structure
integrity. After channel pruning, model size and parameter
calculation volume decrease significantly. Then, the mean
values of the scaling factors of each layer of the backbone

network are sorted. Combining the layer pruning coefficient,
several layers with small mean values of scaling factors are
pruned, and the inference speed is improved. Afterwards,
the pruning model CLSlim-YOLOv4 is obtained after 2-3
rounds of fine-tuning. To verify the effectiveness of the
pruning method in this paper, with the same data set and
test environment, the lightweight CLSlim method is
imported into YOLOv4 and YOLOv4-Tiny. The test results
show that with the premise of greatly reducing the parame-
ter calculation volume and improving the inference speed,
the accuracy losses of CLSlim-YOLOv4 are only 1%-2%;
compared to YOLOv4-Tiny, CLSlim-YOLOv4-Tiny per-
forms better in detection accuracy, parameter calculation,
and inference speed. There might be false and missed

Table 7: Comparison of the model pruning experiments.

Model Model_size (MB) mAP (%) FLOPs (G) Params (M)
Inference (ms)

GTX2080ti RK3399pro

YOLOv4 235 94.9 59.80 63.96 33.9 620

YOLOv4-Tiny 23.1 93.8 6.92 6.07 7.1 39

CLSlim-YOLOv4 4.15 92.8 7.26 1.08 18.7 320

CLSlim-YOLOv4-Tiny 5.92 94.6 4.00 1.55 6.5 33

Figure 11: Recognition results of CLSlim-YOLOv4-Tiny in RK3399pro.

Table 6: Comparison of the layer pruning experiments.

Experiment Model_size (MB) mAP (%) FLOPs (G) Params (M) Inference (ms)

YOLOv4-0.9 4.46 91.40 7.64 1.16 33.8

YOLOv4-0.9-8 4.44 91.4 7.64 1.16 29.0

YOLOv4-0.9-16 4.34 89.4 7.52 1.13 23.0

YOLOv4-0.9-20 4.15 84.2 7.26 1.08 20.4

YOLOv4-0.9-22 4.06 65.1 6.78 1.05 19.5

YOLOv4-0.9-24 4.04 32.2 6.20 1.05 18.7
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detection in the real-life test of this research. Data sets can be
expanded and enriched to improve the fitting ability of the
model in afterwards research.

The combined detection algorithm on PPE in this paper
can detect several kinds of PPEs at the same time, and ensur-
ing the strong feature extraction ability of complex models,
the model lightweight improvement is made to maintain
high accuracy even with substantial parameter compression.
This method satisfies the real-time ability and accuracy
requirements of the combined detection of PPE in the real
construction environment. The follow-up research will con-
tinue to combine the ones with other model lightweight
strategies to improve the model inference speed and find
model lightweight methods more suitable for source-
limited mobile terminals.

Data Availability

The (PPE combined detection) data used to support the
findings of this study are available from the corresponding
author upon request.
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