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The identification of region of interests (ROIs) in wireless networks holds the potential to resolve the challenging problems of
resource allocation and network traffic prediction for large scale traffic data generated by mobile applications. The rationale is
that ROIs are capable of gathering single regions that share similar network characteristics, which promotes better network
traffic prediction performance. Previous studies show that spatiotemporal information in network traffic data, such as user
behaviors and network status, is nontrivial to ROI identification. However, the modeling between these clues regarding
spatiotemporal information is not yet fully explored. To this end, we propose a random matrix theory-based ROI identification
(RRI) approach. By observing the intensification or diminution of network characteristic differences, i.e., divergence, between
adjacent single regions, the ROIs can be identified. Firstly, we leverage the spatiotemporal information of area network traffic
data with a spike model which can be described as a zero mean random matrix with a deterministic perturbation matrix.
Then, we put forward an average divergence capacity model for ROI identification by estimating the divergent degree of
adjacent regions. Case studies on three real-world network traffic datasets demonstrate the effectiveness of our proposed RRI
method. The ROI identification greatly improves the network traffic prediction performance, yielding a decrease of root mean
square error and mean absolute error by 36:87% and 52:26%, respectively.

1. Introduction

In the upcoming 2030s+, wireless network services and
scenarios will become more diversified, and user needs will
be more personalized than ever [1]. Meanwhile, data gen-
erated by the use of extremely heterogeneous networks,
diverse communication scenarios, and large numbers of
devices have undergone an exponential expansion to an
unprecedented scale [2]. In particular, due to the increas-
ingly diversified and complex networks, we have ushered
in an era of big data with 77.5 exabytes of wireless net-
work traffic data produced per month by 2022 [3]. 6G net-
works are expected to enable on-demand services for
better user satisfactions [4].

A more accurate network traffic prediction of diverse
region of interests (ROIs) with similar network traffic char-
acteristics can help network operators understand the diver-

sified network status, optimize the resource allocation,
improve users’ quality of experience (QoE), and reduce the
capital expenditure (CAPEX) and operating expenditure
(OPEX) [5–7]. Yet the pervasive and exponentially increas-
ing multidimensional and highly correlated data impose
imminent challenges on area network traffic characteristic
modeling and prediction in diverse regions [8, 9].

The area network traffic data have become increasingly
correlated in time and space [10, 11]. Big data modeling
and analysis of the multidimensional and highly correlated
wireless network data plays a pivotal role in predicting the
network traffic and understanding the network characteris-
tics of ROIs [12–14]. Data-driven network traffic under-
standing and prediction have attracted great attention and
produced fruitful results [15–17]. For example, a data-
driven framework for network behavior analysis in cellular
networks for Industry 4:0 is proposed in [18]. Human
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mobility patterns using spatiotemporal correlated urban big
data are provided for vehicular social networks in [15, 19].

Great progress in network traffic prediction has been
achieved by neural network-based methods. For example,
Long Short-Term Memory (LSTM) [17], Gated Recurrent
Units (GRU) [20], and Stacked Autoencoders (SAEs) [9] have
reported better performance in predicting time series data
than statistically based methods. While these methods study
traffic time series for each individual location, recent studies
further utilize spatial information. An attention-based neural
network is proposed in [6] for traffic prediction, and a deep
learning method for wireless network traffic prediction is put
forward in [13] with temporal and spatial characteristics of
wireless network traffic data modeled for prediction.

However, these neural network-based researches mainly
focus on prediction in isolated single regions, which over-
looks the spatiotemporal information of adjacent regions,
which thus may lead to inaccurate prediction results.

Intuitively, with more data obtained from adjacent
regions with similar network traffic characteristics, a higher
prediction accuracy can be achieved. The main challenges
to this hypothesis are as follows: (1) how to shape the net-
work traffic characteristics with a comprehensive data
model, (2) how to evaluate the network traffic characteristic
differences of adjacent regions, and (3) how to aggregate the
adjacent regions with similar network traffic characteristics
as an identified ROI.

Network traffic data can be considered time series for
prediction [21, 22]. AutoRegressive Integrated Moving
Average (ARIMA) [23] and Support Vector Regression
(SVR) [24] are the representative approaches to time series
modeling. The ARIMA model tends to focus on the mean
value of the past data regardless of the nonlinear variations
underlying the traffic flow [25]. The limitation of SVR lies
in the difficulty to determine the key parameters [25]. Nota-
bly, the excessive dependence on historical data with spatial
information ignored, in particular that of adjacent regions,
may lead to unsatisfying prediction performance [26].

To this end, we propose a spike model to describe the spa-
tiotemporal information of adjacent regions with random
matrix theory (RMT) spectral verifications. By revealing the
differences of data structure among multidimensional datasets
with the spectral analysis, RMT is able to analyze the divergent
degree of different datasets [27–29]. This paper is an extension
of our previous work which utilizes RMT for anomaly detec-
tion in wireless networks [30]. In [30], we apply RMT to dis-
tinguish anomalous data from normal data by observing the
eigenvalue distribution, but a deeper investigation of the spec-
tral distribution is lacking. In this paper, we propose a data
model and derive its spectral distribution for area network
traffic characterization and a new capacity model for diver-
gence degree evaluation in ROI identification. The correctly
identified ROI can promote better network traffic prediction
performance and higher resource allocation efficiency in the
upcoming 6G networks. To summarize, the main contribu-
tions of our work are as follows:

(i) We propose a novel method of RMT-based ROI iden-
tification (RRI), to identify the ROIs by evaluating the

network traffic differences of adjacent regions mod-
eled by a spike model

(ii) The spike model is a zero mean random matrix with
a deterministic perturbation matrix utilized for
modeling the network traffic characteristics. The
RMT spectral analysis is employed to theoretically
verify the model, showing that the empirical spec-
tral distribution of the spike model confirms the
raw eigenvalue distribution

(iii) An average divergence capacity model is proposed
to identify the ROIs by evaluating the divergent
degree of adjacent single regionsmodeled by the spike
model. We aggregate the adjacent single regions with
shrinking divergence as an identified ROI

(iv) Numerical results show that the proposed RRI
approach can identify ROIs with ground truth veri-
fications. Moreover, with the aid of RRI, the perfor-
mance of prediction in ROIs can be improved with
a decrease of 36:87% root mean square error and
52:26% mean absolute error

The rest of the paper is organized as follows. Section 2
presents the data description and some preliminary data
analysis. The background knowledge about the RMT spec-
tral analysis and RMT-based theoretical verification for the
spike modeling method is laid out in Section 3. In addition,
a real-world area network traffic dataset is employed to val-
idate the effectiveness of the proposed model. In Section 4,
an average divergence capacity model for evaluating the
divergent degree of adjacent regions is presented for the
RRI method. Case studies of ROI identification and network
traffic predictions are carried out in Section 5. Section 6 con-
cludes the paper.

2. Data Description and Preliminary
Data Analysis

As the spatiotemporal correlated data accumulate to an
enormous scale, the network traffic differences of diverse
regions are no longer static, and thus, the network traffic
prediction for isolated regions is not applicable to the fulfill-
ment of on-demand network in the era of big data [26].

ROI identification in wireless network can contribute to
a more accurate network traffic prediction. An appropriate
data model that can describe the network characteristics
with spatiotemporal information preserved is a good start
to begin with. In this aspect, a universal data model for net-
work traffic characteristic difference evaluation can greatly
facilitate the ROI identification and further improve the pre-
diction performance. Table 1 summarizes the notations used
in this paper.

2.1. Dataset Description. In order to model the wireless area
network traffic for the RMT analysis, we first present a
description of the dataset. It is a real-world spatiotemporal
correlated network traffic dataset that is comprised of com-
putation over the Call Detail Records (CDRs) consisting of
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the network traffic data collected from a real LTE network of
Telecom Italia at Milan, Italy. This public dataset was offi-
cially provided to the Big Data Challenge 2014 competition
[31]. It was collected from 3,450 base stations (BSs), which
logged the network traffic of each base station over two
months, from November to December, 2013. The dataset
includes SMS activity, call activity, and Internet traffic activ-
ity, which can be considered key performance indicators
(KPIs) of the region characteristics. To facilitate the data
analysis, the Milan region is divided into 100 × 100 grids
named as Milan Grids, with all the BSs mapped into individ-
ual grids, or single regions. When there are several BSs in a
single region, all the traffic loads are aggregated into one
traffic load [32]. Although these data were recorded nearly
a decade ago, due to the fact that they truly included the
characteristics of spatiotemporal information in real geo-
graphic scenarios, they have been widely utilized for network
traffic analyses in recent years [17, 30, 33, 34].

For expository purposes, we select an area with 16
regions (grids) as depicted in Figure 1(a). The area includes
three typical social function regions, which are the Conven-
tion Center (Grid 5848), Shopping Center (Grid 5849), and
Central Park (Grids 5748 and 5749). Figure 1(b) depicts
the statistic results of the accumulated spatially correlated
network traffic data of the 16 single regions within 24 hours.
The network traffic volume of adjacent regions shows great
similarities, but notably, the network traffic volume of the
regions adjacent to the Shopping Center and Convention
Center is much higher than that of the regions adjacent to
Central Park. The observation is consistent with the ground
truth that Central Park consumes much less network
resource than the Convention Center and the Shopping
Center [33, 34].

2.2. Preliminary Data Analysis. For a preliminary analysis of
the characteristics of the three different regions, the statisti-
cal results are presented with each network traffic dataset

grouped into a matrix, whose rows represent the individual
traffic of specific regions and the columns indicate the sam-
pling time. Assume the number of KPIs is N and the total
sampling time is T . Without loss of generality, for different
KPI i at the sampling time j, we model the raw KPI volume
as yi,j. All the sampled KPI i can be treated as a vector yi =
ðyi,1,⋯,yi,TÞ ∈ℂ1×T .

Figure 2 describes the network traffic data of three adja-
cent different single regions within a duration of two days,
which exhibits strong diverse time series characteristics.
Whereas the data consumed by Central Park peak at around
10:00 a.m. and the Convention Center reaches its maximal
data consumption at around 20:00 p.m., the Shopping
Center displays a plateau of data consumption during the
daytime. With respect to the different network traffic charac-
teristics of diverse regions, we can draw the conclusion that
the data are also spatially correlated. If we can aggregate the
adjacent regions with similar network traffic characteristics,
the ROIs can be identified accordingly. Therefore, before
we utilize the network traffic characteristic differences for
ROI identification, it is necessary to model the spatiotempo-
ral information of individual regions.

3. Network Traffic Data Modeling

RMT has been widely applied to the analysis of highly corre-
lated big wireless network data that contain a number of
random variables [27, 33, 35]. Most researches pertaining
to RMT utilize it as a benchmark for anomaly detection by
simply observing the eigenvalue distribution, yet lack a
mathematical intrinsic modeling investigation [33, 36, 37].
In [38], RMT is employed to analyze the time series data
for anomaly detection, which extends the RMT applications
to a non-Gaussian distribution scenario. In terms of a thor-
ough analysis of the network traffic data differences, pio-
neering works in [6, 30, 33] have proposed to apply the
RMT spectral analysis to anomaly detection. In this section,
we extend the application of RMT to the modeling of net-
work traffic characterization.

3.1. Data Modeling. Wireless network traffic data can be
decomposed into regular components and residual compo-
nents [21, 33]. But we present a more intuitive data model
hypothesis of the network traffic volume with the raw data
yi,j decomposed into two parts as shown in

yi,j = xi,j + σei,j, ð1Þ

where xi,j represents the deterministic network traffic pat-
tern in one region, ei,j is an independent identically distrib-
uted (i.i.d.) random variable with zero mean and unit
variance, and σ is the variance. Thereby, the raw data yi,j
can be considered a random variable with nonzero mean
by the probability, and the sampling matrix of the network
traffic dataset from a specific region r can be considered a
random matrix as formulated in

Yr
N ,T = Xr

N ,T + σrEN ,T , ð2Þ

Table 1: Summary of notations.

Notations Meaning

Y , y, yi, j A matrix, a vector, an entry of a matrix

N , T , c The numbers of rows and columns, c =N/T
S Covariance matrix of Y

CN×T Complex space

λ1,⋯, λN Eigenvalues of S

λ−1 , λ
+
1

� �
, λ−2 , λ

+
2

� �
Support of the bulk and spike

σ Variance

r, r1, r2 Different regions

Ir1,r2 Average divergence capacity of r1 and r2

vi, v̂i Observed and predicted traffic volumes

FSN Empirical spectral distribution

mf ·ð Þ Stieltjes transform

G ·ð Þ Inversion of Stieltjes transform
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where N stands for the number of KPIs, T denotes the total
sampling times, the matrix E = fei,jgN×T is a non-Hermitian
random matrix with i.i.d. zero-mean Gaussian distribution
entries ei,j, and Xr

N ,T is the deterministic matrix of a specific
ROI with all single valued entries.

3.2. Theoretical Verification for the Data Model. Since the
area traffic dataset has been constructed as (2), which is a
multidimensional and highly correlated random matrix,
RMT can be applied as a mathematical tool to theoretically
verify the model with spectral analysis. The RMT spectral
analysis can reveal the intrinsic data structure information
from the perspective of eigenvalue distribution. Therefore,
we focus on investigating the eigenvalue properties of the
data model in this section.

In the light of the random matrix Yr
N ,T ∈ℂN×T in (2), its

covariance matrix can be derived as

SrN =
1
T
Yr
N ,TY

rT
N ,T , ð3Þ

where T stands for the matrix transpose. The matrix Yr
N ,T of

a specific ROI can be formulated with the data model pro-
posed in (2). Then, the covariance matrix of the raw data
matrix in (2) can be denoted as

SrN =
1
T

Xr
N ,T + σrEN ,T

� �
Xr
N ,T + σrEN ,T

� �T
: ð4Þ

Having obtained the covariance matrix SrN , the asymp-
totic spectrum of the data model can be derived with the
empirical spectral distribution (ESD) given in Definition 1
for mathematical verification, which is an important metric
to describe the eigenvalue distribution of a matrix.

Definition 1 (empirical spectral distribution [39]). Consider
anN ×N Hermitian matrix SN , the ESD FSN of the matrix
SN is defined as

FSN λð Þ = 1
N
〠
N

j=1
1 λ,λ j≤λf g λð Þ, ð5Þ

where 1Sð·Þ is an indicator function over a set S and fλ1,
⋯, λNg denotes the eigenvalues of SN .

By the definition of ESD FSN ðλÞ, the average eigenvalues
that are smaller than a particular variable λ constitute a
cumulative density function, based on which the eigenvalue
distribution of SrN can be derived. As illustrated in Figure 3,
the ESD of SrN shows two components, the bulk and the

(a) The selected 16 regions (Grids)
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Figure 1: Dataset description.
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Figure 2: Periodic network traffic volume of three different regions.
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spike. The bulk mainly arises from the random noise or fluc-
tuations of the stochastic part EN ,T in (4), and the spike rep-
resents the unusual network traffic volumes or anomalies in
the deterministic part XN ,T in (4). This kind of data model
can be analogically and mathematically considered a spike
model in RMT [40].

Generally speaking, the ESD of a random matrix is diffi-
cult to be deduced, especially after basic elementary mathe-
matical calculations. So a diversion is necessary before the
derivation of ESD. Stieltjes transform is an elementary but
indispensable transformation in RMT given in Definition 2.

Definition 2 (Stieltjes transform [39]). Consider F as a spec-
tral distribution of a given matrix; its Stieltjes transform is
defined as

mf zð Þ ≜
ð∞
−∞

1
λ − z

dF λð Þ, λ ∈ℂ, z ∈ℂ+, ð6Þ

where z ∈ℂ ≡ fz ∈ℂ : I½z� > 0g and I denotes the imagi-
nary part.

A correspondence exists between the spectral distribu-
tion and the Stieltjes transform, which can be described as
the convergence characteristics of finite measures [40, 41].
For any distribution function G, the inversion of Stieltjes
transform can be defined by

G λð Þ = lim
w⟶0+

1
π
I mf λ + jwð Þ� �

, ð7Þ

where j =
ffiffiffiffiffiffi
−1

p
is the imaginary unit.

Although Stieltjes transform is a way to deduce the ESD
of a given matrix, in practical scenarios, only some simple
structured random matrices can be derived with such an
explicit expression. For example, the classic Marchenko-
Pastur Law (M-P Law) is a close-form ESD of one particular

type of random matrix [40]. The M-P Law offers a deeper
insight into the correspondence between ESD and its
Stieltjes transform, which has become the foundation to
derive the ESD of complex matrices, as illustrated by the
red line in Figure 3. The M-P Law has been commonly
applied as a benchmark for anomaly detection in wireless
networks [28, 33]. The asymptotic theoretical spectrum of
the spike model can be obtained with Theorem 3.

Theorem 3 (spike model [40]). Given a matrix SrN defined as
in (4) and a non-Hermitian random matrix EN ,T in (2) with
i.i.d. zero-mean and unit variance Gaussian distribution
entries, such that the ESD of ð1/TÞXN ,TX

T
N ,T converges to

the function X with supNkð1/TÞXN ,TX
T
N ,Tk <∞ and the

Stieltjes transform mXðzÞ. Denote cN =N/T and assume cN
⟶ c, positive and finite; then, the ESD of SrN converges
almost surely to a limit distribution G with the Stieltjes trans-
formation mGðzÞ derivable from

m
1 + σr2cm

=mX z 1 + σr2cm
� �2

− σr2 1 − cð Þ 1 + σr2cm
� �	 


:

ð8Þ

The solution of m satisfies the conditions of the Stieltjes
transformation is mGðzÞ. The theorem presents the Stieltjes
transformation of SrN given in (4) with an implicit equation.
Notably, the deterministic matrix of X in Theorem 3 can be
generalized to any given matrix, and the rank of the matrix
remains uncertain, which means the spike model can be gen-
eralized to a variety of data analysis scenarios.

In a practical scenario such as that shown in Figure 3, the
bulk of the eigenvalue distribution mainly arises from the
random noise or fluctuations of the stochastic component
EN ,T in (4), and the spike is usually originated from the
deterministic component of Xr

N ,T in (4). With only one spike
spotted in Figure 3, we can deduce that there is only one non-
zero eigenvalue in the deterministic matrix Xr

N ,T , and its rank
is 1. It is due to the fact that the network traffic exhibits iden-
tical network behavior characteristics in a same ROI. Once we
can obtain the Stieltjes transform of the deterministic matrix
from (2) and the variance σ of the random component, the
ESD of the covariance matrix SrN can be derived.

Firstly, let us compute the Stieltjes transform of the
deterministic matrix in (2). Since the rank of Xr

N ,T is 1, the
only nonzero eigenvalue of the covariance matrix of ð1/TÞ
Xr
N ,TX

rT
N ,T can be denoted as bλX = Trðð1/TÞXr

N ,TX
rT
N ,TÞ with

the probability p = ð1/NÞ, while the other eigenvalues λ = 0
with the probability 1 − p = ðN − 1Þ/N . Thereby, the Stieltjes
transform mXðzÞ of ð1/TÞXr

N ,TX
rT
N ,T can be derived as

mX zð Þ =
ð 1
λ − z

dFX λð Þ = 1
N
〠
N

i=1

1
λi − z

=
1
N

N − 1
−z

+
1

λX − z

� �
:

ð9Þ

By means of the numerical operation of substituting (9)
into (8), the solution of m satisfies the conditions of the
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Figure 3: Eigenvalue distribution of SrN with the bulk denoting the
noise and the spike denoting the signal.
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Stieltjes transformation constitutes mGðzÞ. In turn, the ESD
of the spike model covariance matrix can be derived by
substituting the obtained mGðzÞ into the inversion formula
for the Stieltjes transform given in (7).

3.3. Numerical Verification for the Data Model. In this
subsection, we present validations for the data model by
comparing the theoretical ESD with the practical eigenvalue
distributions in three adjacent ROIs as depicted in
Figure 1(a). The Stieltjes transform calculations are repeated
for 50 times with averaged results.

Figure 4 shows the validations of the RMT estimation of
three adjacent regions, which are Convention Center, Shop-
ping Center, and Central Park, respectively. The solid red
line illustrates the theoretical RMT estimation of the ESD
of the spike model covariance matrix, and the green histo-
grams indicate the practical eigenvalue distributions of the
raw data source. The theoretical ESD of the RMT estimation
of the spike model can also be separated into two compo-
nents, the bulk and the spike, which theoretically and prac-
tically converge to the proposed model.

Figure 4(a) is the eigenvalue distribution of the Conven-
tion Center (Grid 5848), with the bulk more centralized. The
theoretical RMT estimation corresponds to the empirical
network traffic volume of the Convention Center with more
perturbations. Figure 4(b) demonstrates the eigenvalue dis-
tribution of the Shopping Center (Grid 5849) with a more
regular network status routine. Similarly, the deviations
between the bulk and the spike grow larger from November
to December for both the Convention Center and the Shop-
ping Center, which suggests their ESD difference enlarges
with time advancement.

Figure 4(c) demonstrates the eigenvalue distribution of
the Central Park (Grids 5748 and 5749) with the most regu-
lar network status routine, as the number of people that go
to the park remains almost constant. The deviations of the
Central Park between the bulk and the spike almost stay
static in November and December implying that the ESD
difference of the Central Park hardly changes in the two
months.

The verifications have proved the convergence of the
spike model. The gaps between the theoretical RMT estima-
tion and the empirical eigenvalue distribution are primarily
caused by the estimation of Xr

N ,T and the limitation of the
data size.

3.4. Support of the ESD. A step further, we investigate the
ESD separation phenomenon of the spike model. Generally
speaking, the raw dataset can be influenced by various fac-
tors, which results in the separation of ESD to different com-
ponents. As T ⟶∞, the ESD deviation of the bulk and the
spike can be deduced by deriving their support [42], which is
denoted as ½λ−1 , λ+1 � and ½λ−2 , λ+2 � given in (11) and (12),
respectively. The ESD separation of the covariance matrix
is given in Lemma 4.

Lemma 4 (spike model support [42]). Considering an eigen-
value λX > σ2 ffiffi

c
p

, then equation (10) holds with probability 1:

bλN ⟶
T⟶∞

ϕ λX , cð Þ, ð10Þ

and bλN ⟶T⟶∞ λ2ð1 + ffiffi
c

p Þ2, where bλN is the largest eigen-
value of the model if λ ≤ σ2 ffiffi

c
p

. Yet if λX > σ2 ffiffi
c

p
, the
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Figure 4: RMT estimations and eigenvalue distributions of three adjacent ROIs (2013.11-12).
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corresponding support of the bulk and the spike can be
derived as

λ−1 , λ
+
1

� �
= σ2 1 −

ffiffi
c

p �2 + O
1
T

	 

, σ2 1 +

ffiffi
c

p� �2 + O
1
T

	 
	 
� �
,

ð11Þ

λ−2 , λ
+
2

� �
= ϕ λX , cÞ − O

1ffiffiffiffi
T

p
	 


, ϕ λX , cð Þ+O 1ffiffiffiffi
T

p
	 
	 
� �

,

ð12Þ
where Oð·Þ represents the approximate value and ϕðλX , cÞ is
defined as

ϕ λX , cð Þ = λX + σ2c
� �

λX + σ2
� �

λX
: ð13Þ

From Lemma 4, we can deduce that the support intervals
of the bulk given in (11) and (12) are largely dominated by
the parameters of σ and c in σrEN ,T in (2). The spectral dis-
tribution of the matrix SrN in (4) will give rise to a spike with
a large enough λX . On the other hand, if λX is much smaller,
the ESD will be a bulk. The deviation between the bulk and
the spike is closely correlated to the deterministic matrix X
in (2), which can be utilized to evaluate the difference
between different datasets.

4. Divergent Region Difference
Evaluation for RRI

Since the theoretical ESD of the spike model matches empir-
ical eigenvalue distribution of the raw network traffic matrix,
we will identify ROIs by utilizing the spike model to recon-
struct the network traffic data. An average divergence capac-
ity model is proposed to mathematically quantify the
divergent degree of adjacent regions for RRI.

4.1. Average Divergence Capacity Model for RRI. In order to
numerically quantify the divergent degree of adjacent
regions with different datasets, the network traffic volume
difference of adjacent regions is defined as (14) according
to the spike model we proposed in Section 3.

Yr1,r2
N ,T = Yr1

N ,T − Yr2
N ,T = Xr1

N ,T + σr1EN ,T
� �

− Xr2
N ,T + σr2EN ,T

� �
,

ð14Þ

where r1 and r2 represent different adjacent regions. More-
over, (14) can be further expressed as

Yr1,r2
N ,T = Xr1,r2

N ,T + σr1,r2
� �

EN ,T , ð15Þ

where ðσr1,r2Þ2 = ðσr1Þ2 + ðσr2Þ2, σr1 and σr2 denote vari-
ances of adjacent regions and EN ,T stands for the random-
ness that follows the Gaussian distribution with zero mean
and unit variance entries. Xr1,r2

N ,T is defined as Xr1
N ,T − Xr2

N ,T ,
which is the deterministic matrix that indicates the network
characteristic difference of two adjacent regions.

We present an average divergence capacity model to
numerically quantify the different divergent degrees of adja-
cent regions for ROI identification. Inspired by the defini-
tion of the channel capacity, we consider Xr1,r2

N ,T defined in
(15) as a signal running through an additive white Gaussian
noise channel.Thus, the average divergence capacity model
can be analogically defined as

Ir1,r2 =
1
N

log2 det IN +
1
T
Xr1,r2
N ,T Xr1,r2T

N ,T

σr1,r2ð Þ2
 !

, ð16Þ

where IN is an N ×N identity matrix and T stands for the
matrix transpose. The model can quantify the uncertainty
of the data with a unit of bits from the perspective of infor-
mation theory [43], thereby providing a numerical quantifi-
cation measurement for the ROI identification problem. The
evaluation model is a mapping of multidimensional raw
support D to evaluation results ℝ+, which can be expressed
as F : D⟶ℝ+.

4.2. Parameter Estimation. Before we can employ the pro-
posed average divergence capacity model to analyze different
datasets, we need to compute the unknown parameter σ in
(16). We apply a large dimensional approach (LDA) to σ
calculation. The classical LDA assumes that the samples
are numerous, i.e., T ⟶∞, so it can accommodate much
more diversities in the total samplings. As T ⟶∞, the
ratio of the matrix dimensions c = ðN/TÞ⟶ 0, and the dis-

tribution of the largest eigenvalue of S ≜ ð1/TÞYr1,r2
N ,T Yr1,r2

N ,T
T

converges almost surely to σ2 +M, where M = TrðXr1,r2
N ,T

Xr1,r2T
N ,T Þ, and σ is the covariance. Whereas the distribution

of the rest eigenvalues of S converges almost surely to the
parameter σ2.

Yr1 = Xr1 + σr1E
(2)

Region r1
modeling

Yr2 = Xr2 + σr2E
(2)

Region r2
modeling

Shrinking
Ir1, r2

(16)

Identified ROI
for prediction

Figure 5: Architecture of the proposed RRI approach.
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Figure 6: Simulation results of the average divergence capacity of three different ROIs from RRI.
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However, in practice, the parameter σ2 is most likely
unknown, so we use the smaller N − 1 eigenvalues to esti-
mate σ2. Thereby, the estimation of M can be derived as

M̂1 = λN −cσ2 , ð17Þ

where cσ2 = ð1/ðN − 1ÞÞ∑N−1
i=1 λi and fλ1 ≤ λ2≤⋯≤λNg are

the eigenvalues of S in an ascending order.
The same results can also be obtained from (11) and (12).

As c = ðN/TÞ⟶ 0, the eigenvalue set of supp ðλ−1 , λ+1 Þ and
supp ðλ−2 , λ+2 Þ can be simplified to (18) and (19), respectively,

λ−1 , λ
+
1

� �
= σ2 − O

1
T

	 

, σ2 + O

1
T

	 
� �
, ð18Þ

λ−2 , λ
+
2

� �
= λX + σ2
� �

− O
1ffiffiffiffi
T

p
	 


, λX + σ2� �
+ O

1ffiffiffiffi
T

p
	 
� �

:

ð19Þ
As T ⟶∞, Oð1/TÞ, and Oð1/ ffiffiffiffi

T
p Þ converge to 0, we

hence obtain another result M̂2 = λN −cσ2 , which is the same
σ2 estimation as (17).

5. Experiments on RRI and Network
Traffic Prediction

In this section, we conduct experiments on ROI identifi-
cation using RRI and network traffic prediction with
real-world datasets described in Section 2.1. Figure 5 dis-
plays the architecture of our proposed ROI identification
method.

We present three comprehensive case studies of different
ROIs by evaluating the average divergence capacity Ir1,r2 of
adjacent single regions r1 and r2 derived from (16). The
experiments on network traffic predictions of the three iden-
tified ROIs are given in Section 5.1. The three ROIs are Con-
vention Center, Shopping Center, and Central Park.

5.1. Case Studies of the RRI. In order to prove the effective-
ness of the proposed ROI identification method, experi-
ments on adjacent single regions are conducted.

5.1.1. Identification for the ROI of Convention Center. The
ROI identification starts with the Convention Center in
region Grid 5848 as depicted in Figure 1(a), which has been
verified with Google Map [33, 34]. By evaluating the average
divergence capacity of Grid 5848 with adjacent single
regions, the ROI of the Convention Center can be identified.
Figure 6(a) illustrates the average divergence capacity of
region Grid 5848 with adjacent single regions.

The black solid line indicates the average divergence
capacity between the Convention Center (Grid 5848) and
the adjacent single region (Grid 5847), which decreases
gradually with time advancement. It suggests that the diver-
gent nature of the regional boundary between Grid 5848 and
5847 is growing blurry; in other words, the area network
traffic characteristics between the two adjacent single grids
are becoming more similar. The red dashed line and the blue

dotted line stand for the average divergence capacities of the
Convention Center and the adjacent regions of Grids 5849
and 5748, which is intensified as time advances. The
intensification of the regional differences (between Grids
5848 and 5849, 5748) indicates that the area network
traffic characteristics of the three adjacent regions are
becoming more diversified. Therefore, the ROI of the Con-
vention Center can be modified to a bigger area, with
Grids 5848 and 5847 aggregated.

Similar operations are performed on the other two
regions of the Shopping Center and Central Park, and their
ROIs can be identified as well.

5.1.2. Identification for the ROI of Shopping Center. The ROI
identification begins with the Shopping Center in the region
of Grid 5849 as denoted by the orange shade in Figure 1(a),
which has also been verified with Google Map. We conduct
similar computations of the average divergence capacity of
Grid 5849 with adjacent single regions (Grids 5850 and
5749) to identify the ROI of the Shopping Center. The
results are illustrated in Figure 6(b), from which we can
observe that the average divergence capacity of Grids 5849
and 5850 is fast declining; thus, the two adjacent single
regions can be aggregated into one ROI. Meanwhile, we note
that the average divergence capacity of Grid 5849 with 5848
and 5749 is enhanced with time in contrast, which provides
the evidence that the latter two Grids do not belong to the
ROI of the Shopping Center.

5.1.3. Identification for the ROI of Central Park. The ROI
identification initiates with the Central Park in the regions
of Grids 5748 and 5749 as indicated by the green shade in
Figure 1(a), which has been verified by Google Map as well.
Similarly, we performed computation of the average diver-
gence capacity of Grids 5748 and 5749 with adjacent single
regions (Grids 5648 and 5649) to identify the ROI of Central
Park. The results are displayed in Figure 6(c). Again, two
contrastive tendencies are clearly observable. The average
divergence capacities of Grids 5748 and 5749 with Grids

Figure 7: Aggregated adjacent ROIs obtained from RRI. The blue
shade represents the ROI of Convention Center, the orange shade
represents the ROI of Shopping Center, and the green shade
represents the ROI of Central Park.
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5648 and 5649 decline substantially with time advancement
in a similar pattern, which indicates that the four adjacent
single regions can be aggregated into one ROI. On the other
hand, the average divergence capacities of Grids 5748 and

5749 with Grids 5848 and 5849 are intensified over time
despite at slightly different speeds, which suggests that the
former two Grids (5748 and 5749) do not belong to the same
ROI as the latter two.

800

600

400

200

N
et

w
or

k 
tr

affi
c 

vo
lu

m
es

0 20 40 60 80 100 120

Time (Hour)

(a) Prediction for ROI of Convention Center

800

1000

1200

600

400

200

N
et

w
or

k 
tr

affi
c 

vo
lu

m
es

0 20 40 60 80 100 120

Time (Hour)

(b) Prediction for ROI of Shopping Center

800

1000

600

400

200

N
et

w
or

k 
tr

affi
c 

vo
lu

m
es

0 20 40 60 80 100 120

Time (Hour)

True data
LSTM_predicted

GRU_predicted
SAEs_predicted

(c) Prediction for ROI of Central Park

Figure 8: Simulation results of the network traffic volume prediction of three identified ROIs.
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The aggregated adjacent ROIs obtained from RRI are
presented in Figure 7, with the blue shade denoting the
ROI of the Convention Center, the orange that of the Shop-
ping Center, and the green that of Central Park.

5.2. Case Studies on Network Traffic Prediction in ROIs
Identified by RRI. Accurate and timely network traffic pre-
diction plays a pivotal role in intelligent resource allocation
[17]. When the divergence between adjacent regions sub-
stantially decreases, the aggregation of adjacent regions to
one dataset contributes to the improvement of the network
traffic prediction performance in the identified ROI.

In order to demonstrate the strength of the aggregated
ROI, we apply three neural network-based schemes to pre-
dict the network traffic volumes hour by hour, including
LSTM, GRU [20], and SAEs [9]. The three prediction
methods share the same parameter settings with 3 hidden
layers and σðxÞ = 1/ð1 + exÞ as the sigmoid activation func-
tion in performance evaluation.

We apply two metrics to evaluate the effectiveness of the
prediction performance of the three schemes on aggregated
and single ROIs. The first one is root mean square error
(RMSE), which measures the difference between the pre-
dicted network traffic volumes and the ground truth vol-
umes as defined in

RMSE =
1
T
〠
T

t=1
vi − v̂ij jð Þ2

" #1/2
, ð20Þ

where T is the total time, vi is the observed network traffic
volume, and v̂i is the predicted network traffic volume.

The second evaluation index is mean absolute error
(MAE), which measures the average of absolute differences
between the predicted volumes and the ground truth vol-
umes as defined in

MAE =
1
T
〠
T

t=1
vi − v̂ij j: ð21Þ

5.2.1. ROI of Convention Center. The identified ROI of the
Convention Center is the aggregation of Grids 5847 and
5848 as denoted by the blue shade in Figure 5. The data used

for the prediction of the Convention Center ROI come from
the CDR dataset of the two Grids (5847 and 5848) [31]. Spe-
cifically, the training data consist of the aggregated CDR
dataset of Grids 5847 and 5848, while the testing data com-
prise the CDR dataset of Grid 5848 from December 14th to
20th. The prediction results of the three methods on the
identified ROI of the Convention Center with aggregated
single regions are presented in Figure 8(a).

5.2.2. ROI of Shopping Center. The identified ROIs of the
Shopping Center with adjacent single regions are Grids
5849 and 5850, as indicated by the orange shade in
Figure 5. The aggregated ROI data of Grids 5849 and 5850
are utilized as the training set, while the data of Grid 5850
from December 14th to 20th are selected as the testing set.
The prediction results of the three prediction methods on
the identified ROI of the Shopping Center with aggregated
single regions are shown in Figure 8(b).

5.2.3. ROI of Central Park. The identified Central Park ROIs
with adjacent single regions are Grids 5748, 5749, 5648, and
5649, as denoted by the green shade in Figure 5. The data
used for the prediction training are comprised of the aggre-
gated CDR dataset of Grids 5748, 5749, 5648, and 5649 [31],
while the data of Grids 5748 and 5749 from December 14th
to 20th constitute the testing set. The prediction results of
the three prediction methods on the identified ROI of Cen-
tral Park with aggregated single regions are illustrated in
Figure 8(c).

5.3. Discussion on the Prediction Performance of Identified
ROIs. We evaluate the performance of the three prediction
methods on the identified ROIs by means of the RMSE
and MAE metrics in order to demonstrate the strengths of
ROI identification with aggregated adjacent single regions.

The comparative results by the RMSE and MAE metrics
on the single versus aggregated region prediction perfor-
mance of the three different schemes on the identified ROIs
are displayed in Table 2. A general pattern that emerges
from Table 2 is that for all three prediction schemes both
of the RMSE and MAE results on identified ROIs with
aggregated regions are much smaller than those with single
regions. In particular, the largest RMSE difference is found

Table 2: Comparative results of RMSE and MAE prediction schemes on three identified ROIs.

ROIs Schemes
RMSE MAE

Single Aggregated Single Aggregated

Convention Center

LTSM 577.63 415.33 380.82 222.54

GRU 437.42 276.16 333.65 185.92

SAEs 615.23 401.33 506.67 241.86

Shopping Center

LTSM 194.30 178.89 145.30 137.15

GRU 144.47 125.20 105.10 96.16

SAEs 250.73 161.00 192.10 125.35

Central Park

LTSM 175.10 148.48 127.11 109.84

GRU 167.01 132.62 118.16 94.53

SAEs 159.34 156.93 143.01 130.66
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with the GRU prediction scheme on the identified Conven-
tion Center ROI, which is a decrease of 36:87 percent from
437:42 to 276:16. And the largest MAE difference is
observed with the SAE prediction scheme on the identified
Convention Center ROI, which is a decline of 52:26 percent
from 506:67 to 241:86. Based on the above evidence we can
conclude that the identified ROIs can substantially improve
the performance of network traffic prediction.

6. Conclusion

In this paper, we propose a novel method of RRI which uti-
lizes RMT to analyze the dynamic network traffic character-
istics between adjacent regions for ROI identification. By
means of RMT, we are able to derive the empirical spectral
distribution of the covariance matrix to prove the validity
of the spike model. In order to evaluate the divergent degree
of identified ROIs, we employ an average divergence capac-
ity model to illustrate the ideological differences with respect
to time and region, from which we conclude that the diver-
sity of network traffic in different regions varies with time
advancement, and an aggregated ROI can be identified with
diminishing diversity between adjacent regions. With our
proposed RRI method, we are able to provide more accurate
predictions of the network traffic in identified ROIs, which
will contribute to the improvement of the system perfor-
mance, in particular pertaining to energy efficiency and
resource allocation.
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