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Physical layer identification is an emerging technique that exploits physical layer features to identify wireless devices. The
identification accuracy and the device quantity that can be identified at most are significant for the identification scheme.
Existing works primarily focus on the feature correlation analysis for multifeature selection without investigating the least
upper bound (supremum) of the performance of a single feature. The supremum indicates the limit of the performance, which
is another sight for evaluating the quality of features and improving the performance of the identification scheme. Therefore,
this paper first investigates the supremum of the performance of the most commonly used physical layer feature, i.e., carrier
frequency offset (CFO). Specifically, we offer a rigorous mathematical analysis and derive the closed-form expression of the
supremum of identification accuracy based on the max-min distance analysis (MMDA) criterion. And then, the supremum of
the number of distinguishable devices is also analyzed. Finally, we conducted a simulation study to verify the theoretical
analysis result.

1. Introduction

Device identification plays a vital role in wireless networks,
conventionally realized with pre-distributed information such
as IP addresses, MAC addresses, and international mobile sta-
tion equipment identity (IMEI) numbers. With this informa-
tion, basic access control [1] and location tracking [2] can be
implemented. However, the mentioned addresses and num-
bers can easily be spoofed, exposing wireless devices and infra-
structures to security threats [3]. Furthermore, it is often
restricted to collect identity information due to business, pri-
vacy, and legal reasons, while identity is necessary for some

applications. Therefore, there is an urgent need to find a more
reliable or complementary way to identify devices.

Recently, the rich characteristics of the physical layer
have been intensively investigated to implement device iden-
tification in wireless networks [4–6], also known as physical
layer identification. Various physical layer features can be
extracted and performed as the device’s identity. These fea-
tures stem from the small-scale hardware impairment in
the transceivers or the location-specific characteristics of
the wireless channel between the transmitter and receiver.
According to the signal types collected for feature extraction,
there are two categories of identification schemes, i.e.,
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transient and steady-state signal-based ones [7]. Since the
steady-state signal is easier to capture than the transient
one and has attracted more attention from researchers, we
concentrate on this type. Two approaches are reported in
the literature for physical layer identification based on
steady-state signals according to different classifier types.

The first approach, called shallow classifier-based device
identification, implements the identification with hand-crafted
features calculated from the received signals by carefully
designed feature extraction algorithms. These features, usually
relying on expert feature knowledge, will then be exploited with
traditional shallow classifiers such as support vector machine
(SVM) and K-nearest neighbor (KNN) or binary hypothesis
testing to identify and authenticate transmitters [7–11].

The second approach takes advantage of the powerful
learning ability of deep learning to identify wireless devices
with the collected raw in-phase and quadrature (IQ) signal
or its transformed information [6, 12–19]. Hence, it is
known as deep learning-based physical layer identification.
In this approach, hidden features can be automatically
extracted from wireless frames with the aid of the represen-
tation learning ability of deep learning methods without
using explicit feature calculation algorithms.

Both approaches are regarded as multiclass classification
problems when using machine learning classifiers to dis-
criminate multiple devices. It is intuitive that the identifica-
tion accuracy will decrease as the quantity of devices
increases. In other words, if we want to achieve the desired
accuracy, the quantity of devices that can be identified will
be limited. Recent work supports such a claim from the view
of experiments, where the accuracies drop for both WiFi and
ADS-B datasets using two deep learning models when the
quantity of devices increases to 10,000 from 100 [19]. And
there exist works focusing on the combination of multiple
features to improve identification performance [8]. Their
work is based on the view that a single feature leads to lim-
ited identification accuracy or limited number of distin-
guishable devices. User capacity of the physical layer
identification system is investigated in [20, 21], where the
authors consider the frequency characteristics from fast Fou-
rier transform (FFT) as the radio frequency fingerprints.

Except for the mentioned related works, we still lack
detailed analysis on the supremum of the identification
accuracy and distinguishable devices for specific hand-
crafted features, i.e., what is the highest identification accu-
racy and how many devices could identify at most under
given conditions? This is important for investigating the per-
formance and quality of a specific physical layer feature in an
identification scheme and gives insight into finding
approaches to improve the performance, such as identifica-
tion with multiple features. Therefore, this paper focuses
on issues not touched upon in existing works with the fol-
lowing contributions:

(1) Firstly, with the max-min distance analysis (MMDA)
criterion and other mathematical analyses, we derive
the closed-form expression of the supremum of the
identification accuracy of the shallow classifier-based
scheme given specific conditions

(2) Secondly, we also analyze the supremum of the num-
ber of distinguishable devices (device quantity supre-
mum) of the shallow classifier-based scheme given
the accuracy constraint

(3) Finally, through comprehensive simulations, we con-
firm the theoretical analysis and provide some interest-
ing insights. The results indicate that the feature range
(the value range of the physical layer features such as
CFO specified in the standard protocol) and the SNR
are the main factors affecting the identification perfor-
mance, consistent with the theoretical analysis. We
compare the accuracy of the shallow classifier– and
deep learning–based identification schemes with the
accuracy supremum. We also investigate the device
quantity supremum with simulation with different
CFO ranges and accuracy constraints at various SNRs

The rest of this paper is organized as follows. Section 2
reviews related works and introduces basic knowledge. Section
3 describes the system and communication models. Section 4
focuses on the supremum analysis of the shallow classifier-
based identification scheme. Section 5 presents the simulation
settings and results. Finally, Section 6 concludes this paper.

2. Related Work and Background

In this section, we first present related works, and further intro-
duce certain basic knowledge regarding machine learning.

2.1. Related Work. There is no difference between shallow
classifier– and deep learning–based device identification in
terms of essential processes, including feature extraction
and device identification. However, steady-state radiometric
features such as carrier frequency offset (CFO) [22] and in-
phase and quadrature imbalance (IQI) [23] rely on the expert
knowledge of signal processing. Therefore, the feature extrac-
tion is explicit and protocol-specific. On the other hand, deep
learning methods [17, 24] can automatically extract implicit
features rather than expert feature engineering based on the
raw IQ samples of the signal. However, this process usually
requires dedicated hardware, such as graphics processing units
(GPUs), to accelerate the computation.

For the first type of identification approaches, the esti-
mation method and the number of independent features
are the key factors that affect the performance. It is acknowl-
edged that employing multiple features can improve identi-
fication accuracy. Therefore, some existing works focus on
exploring new features and integrating with other features
[8]. Peng et al. smartly combine differential constellation
trace figure, CFO, modulation offset, and IQI to identify 54
ZigBee devices and achieve classification error rates of
4.48% and 9.42% under the line of sight (LOS) and none-
line of sight (NLOS) scenarios [25].

While recently, deep learning-based identification
approaches have attracted considerable research attention,
which apply various deep neural network models to imple-
ment the feature extraction and identification processes,
raw IQ samples or their transformed information, such
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as power spectrum and FFT sequence, can be used directly
as the inputs of the models.

However, the upper bounds or the supremum of identi-
fication accuracy and the number of distinguishable devices
for hand-crafted features are unclear for device identifica-
tion. The supremum of a single feature in terms of accuracy
and device number indicates the ultimate performance, with
which we can design a better identification scheme and
implement a more appropriate feature selection and combi-
nation. Although Wang et al. [20] [21] explore the user
capacity of the physical identification system, they consider
the frequency characteristics from FFT as the radio fre-
quency fingerprints without analyzing hand-crafted features.

2.2. Machine Learning. From the view of model structure,
machine learning can be categorized as shallow classifiers
and deep learning. Shallow classifiers, which usually adopt
statistical models with only a few layers of composition,
are mainstream research before the breakthrough of deep
learning. These classifiers include naive Bayes, support vec-
tor machine (SVM), AdaBoost, random forest, and KNN
and are still adopted in many commercial classification sys-
tems. Deep learning technologies are neural networks with
many layers of nonlinear information processing. In recent
years, they have been widely studied in many fields such as
computer vision, speech recognition, and cybersecurity.

2.2.1. Shallow Classifiers. Shallow classifiers always have a
very efficient and effective performance on high-quality samples
[26]. This paper adopts KNN as a shallow classifier for device
identification based on hand-crafted features. KNN is a sim-
ple but efficient machine learning algorithm, usually used for
classification and regression. Usually, the new sample/case
will be assigned to the class that is most common among
its K-nearest neighbors measured by a distance function,
i.e., the majority voting of the new case’s neighbors according
to the distance such as Euclidean distance [27].

2.2.2. Deep Learning. There are different deep learning
models, such as recurrent neural network (RNN), convolu-
tional neural network (CNN), and generative adversarial net-
work (GAN). This paper focuses on CNN since it has been
investigated in much recent literature and has shown great
potential in device identification. A general CNN comprises
one or more convolutional layers, pooling layers, and fully
connected (FC) layers [28]. The convolutional layers aim to
promote important hidden features of the input data through
the specially designed structures called “filters” having differ-
ent dimensions, also known as feature extractors. Also, differ-
ent types of CNN have been investigated for device
identification. 1D and 2D CNNs with one/two-dimensional
convolutional layers are exploited to identify wireless devices
[19, 29]. Complex-valued neural networks are explored in
[30] to improve the wireless identification performance.

3. System Model

In this section, we first describe the considered identification
and communication model. Then, we formulate the con-
cerning problem about the least upper bound analysis.

Table 1 summarizes the main variables and notations used
in this paper.

3.1. Identification Model. As shown in Figure 1, the model
comprises a wireless receiver (RX) and M wireless transmit-
ters (TX). The receiver attempts to identify each transmitter
using the received wireless frames. The receiver first collects
the raw IQ samples of the concerned field, e.g., baseband
preamble, via frame detection and synchronization from
the received wireless signals subject to the concerned chan-
nels. The receiver can calculate the hand-crafted features
using the raw IQ samples for identification. Also, it can
directly use the raw IQ samples to identify transmitters with
deep learning. Then, the transmitter identification will be
formulated as a multiclass classification problem based on
hand-crafted features or raw IQ samples, depending on the
adopted classifier.

3.2. Communication Model. At the receiver, the passband
signal is down-converted to the baseband. Then, the received
baseband signal is sampled by the analog-to-digital con-
verter (ADC) to obtain the discrete complex-valued pream-
ble signal, i.e., the raw IQ samples. The baseband signal with
CFO is given as [31]:

r nð Þ = ej2πnΔf s nð Þ +w nð Þ, ð1Þ

where Δf = εTs is the normalized CFO with ε being the CFO
in the corresponding range ½−Uε,Uε� parts per million
(ppm) to the carrier frequency f c. The range is usually spec-
ified in the communication standard concerned. Here, Ts
≜ 1/Bw is the sampling interval with Bw being the total com-
munication bandwidth, and wðnÞ ~CN ð0, σ2

nÞ is the circu-
lar symmetric additive white Gaussian noise (AWGN) with
zero mean and variance σ2n. Let aðnÞ denotes the long train-
ing symbols with length of 2 × Ls, which usually contains

Table 1: List of variables and notations.

Notation Definition

M Class (transmitter) number

Uε CFO range

L Number of multipath components

γ/η Signal-to-noise ratio (SNR)

Ls The length of training sequence

·ð Þ∗ Complex conjugate operator

I ·ð Þ Imaginary part of complex number

R ·ð Þ Real part of complex number

Q ·ð Þ Q-function

sup A Supremum of set A

f ′ ·ð Þ First-order derivative

f ′′ ·ð Þ Second-order derivative

f −1 ·ð Þ Inverse function

·b c Floor function
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two Ls-length repetitive sequences. And it is a classical
preamble structure in many wireless protocols such as
most specifications in the IEEE 802.11 family. When the
baseband signal is only subject to the AWGN channel, sð
nÞ is the same as aðnÞ, and the received signal is denoted
as (1). When the baseband signal is subject to multipath
channel, sðnÞ is given by

s nð Þ = 〠
L−1

l=0
h lð Þan−l , ð2Þ

where hðlÞ0 ≤ l ≤ ðL − 1Þ represents the channel coefficients
of the multipath fading channel. Notably, we assume the
locations of transmitters and receiver are fixed. Hence,
the Doppler offset is zero, and the channel profile is
static during the operation time, which can be considered
a quasi-static channel similar to [32]. This is reasonable
for many wireless networks such as wireless sensor net-
works (WSN) and wireless local area networks (WLAN)
where fixed sink nodes or routers create a static channel
profile when the receiver location is also fixed. We then
denote the concerned preamble containing the two repet-
itive long training sequences as r = ½rð0Þ, rð1Þ,⋯,rð2Ls − 1
Þ� after synchronization and denote the SNR of the
received signal as γ with the unit of dB, which is calcu-
lated as follows:

γ = 10 log ηð Þ = 10 log 1
2Ls

∑2Ls−1
n=0 s nð Þj j2

σ2n

 !
, ð3Þ

where η = σ2s /σ2n and σ2s and σ2n represent the power of
signal and noise, respectively.

3.3. Problem Formulation. For the shallow classifier-based
identification scheme with CFO, the CFO will be first esti-
mated from raw IQ samples of the preamble field of the
received signal. Then with the collected feature of each
frame, we can train a shallow classifier for device
identification.

We are interested in how the identification accuracy will
vary with the range of a single feature and other conditions.
And are there any supremum or upper bound of identifica-
tion accuracy and the number of distinguishable devices
with the considered feature? In a word, our primary aim is
to investigate the performance limits of each specific feature
adopted in physical layer identification by answering the
above questions.

4. Identification Performance and
the Supremum

At the receiver, the raw IQ samples of the long training
sequence are adopted to implement hand-crafted feature
estimation for identification. We then analyze the supre-
mum of identification accuracy and the device quantity
supremum considering CFO.

4.1. CFO Estimation. Similar to [33–35], when the length of
the long training sequence is larger than the maximum
channel delay L in (2), i.e., Ls ≥ L, the CFO can be esti-
mated by the two repetitive long training sequences. We
first calculate the phase difference ϕ between the frequency
responses of two identical and consecutive long training
sequences as

ϕ = arctan
I ∑Ls−1

n=0 r
∗ n½ �r n + Ls½ �

� �
R ∑Ls−1

n=0 r∗ n½ �r n + Ls½ �
� �

8<
:

9=
;, ð4Þ

where r½n� is the complex I and Q samples of the fre-
quency response of a training sequence and n is the time
index in a window of 2Ls samples. Then, we achieve the
estimated CFO as

bεh = ϕ

2πLs
, ð5Þ

and according to [35], the standard deviation of the CFO

Feature
extraction

Shallow
classifier Identification

Identification

RX

Raw IQ Deep learningTX m

TX 2

TX 1

Figure 1: System model of typical physical layer identification.
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estimation is

σbεh = 1
2πLs

ffiffiffiffiffiffiffi
Lsη

p , ð6Þ

which can be considered as the lower bound of the CFO
estimation error in the receiver. Usually, there exists more
than one method for estimating the same feature with dif-
ferent estimating errors, i.e., variance, which results in dif-
ferent performances for the shallow classifier-based
identification.

4.2. The Supremum of the Identification Accuracy. Since the
true CFOs of the transmitters are independent uniform ran-
dom variables in the concerned range ½−Uε,Uε� [35] [36],
we denote it as εm ∈ ½−U ε,Uε�,m = 1, 2,⋯,M. And we
define the spacing between two adjacent true CFOs as
the distance of dm = εm+1 − εm,m = 1, 2,⋯,M − 1; then,
we have ∑M−1

m=1dm ≤ 2U ε. Assuming the mean distance of

the CFO �d =∑M−1
m=1dm/M − 1, then we have

0 ≤ �d ≤
2Uε

M − 1 : ð7Þ

The overall accuracy is widely used for multiclass clas-
sification problems, whose definition is as

ACC = TPm

S
, ð8Þ

where S is the total number of predictions and TPm is the
true positive predictions when considering the classifica-
tion as a binary classification regarding the m-th class
and other classes. We can also denote the classification
error rate and accuracy as pe = 1 − pa and pa as (9) accord-
ing to [37], where QðxÞ = 1/

ffiffiffiffiffiffi
2π

p Ð∞
x e−t

2/2dt is the Q-
function:

As we assume that the variances of the estimated CFO of
all devices are the same at a specific SNR, which means all
the CFO samples are from homoscedastic Gaussians as the
same standard deviation of (6). We can adopt the MMDA
criterion to achieve the maximum separation of all devices
concerning CFO [38]. According to this criterion, to achieve
a maximum classification accuracy, we have to maximize the
minimum distance of each class pair (two devices) to guar-
antee the separation as best as possible of any class pairs as

max min
1≤m≤M−1

dm, ð10Þ

where the inner minimization chooses the minimum CFO
distance d′ ∈D′ of all class pairs, while the outer maximiza-
tion maximizes this minimum distance [38]. Here, D′ is the
set of minimum CFO distance.

Theorem 1. For M devices, the supremum of the minimum
distance of the CFO sup D′ in the range U ε is �d = 2Uε/ðM
− 1Þ.

Proof. According to the definition of supremum, we first
adopt proof by contradiction to prove that 2U ε/ðM − 1Þ is
an upper bound of the minimum distance set D′, i.e., 2U ε/
ðM − 1Þ ≥ d′, where 2U ε/ðM − 1Þ =max ð�dÞ as in (7). If
max ð�dÞ < d′, then we have 2U ε = ðM − 1Þ max ð�dÞ < ðM −
1Þd′ ≤ d1 + d2 +⋯+dM−1 ≤ 2U ε, which is a contradic-
tion.Therefore, 2U ε/ðM − 1Þ ≥ d′ holds. Second, we prove 2

U ε/ðM − 1Þ is the minimum of the upper bounds. ∀0 < ξ <
2U ε/ðM − 1Þ; we find d0′ = 1/2ðð2U ε/ðM − 1ÞÞ − ξ + ð2Uε/ð
M − 1ÞÞÞ = ð2Uε/ðM − 1ÞÞ − ðξ/2Þ, and d0′ ∈D′ fulfills d0′ > ð
2U ε/ðM − 1ÞÞ − ξ, which completes the proof.

Proposition 2.When the true CFOs of all devices are distrib-
uted with equal distance in the concerned range, i.e., the min-
imum distance of the CFO equals to its supremum, the
separation of all devices will be the best. Thus, in this case,
d1, d2,⋯, dM−1 = sup D′ = 2Uε/ðM − 1Þ, we have the least
upper bound, i.e., the supremum of accuracy pa as

�pa = 1 − 2
M − 1
M

� �
Q Yð Þ = 1 − 2

M − 1
M

� �
Q

U ε

M − 1ð Þσbεh
 !

= 1 − 2
M − 1
M

� �
Q

U ε

2 M − 1ð ÞπLs
ffiffiffiffiffiffiffi
Lsη

p
� �

,

ð11Þ

where Y = �d/2σbεh and �d = 2Uε/ðM − 1Þ.

Proof. First, we prove �pa is an upper bound of the accuracy
pa. Since QðxÞ = 1 −ΦðxÞ, where ΦðxÞ = 1/

ffiffiffiffiffiffi
2π

p Ð x
−∞e−1/2t

2
dt

is the cumulative distribution function (CDF) for the stan-
dard Gaussian distribution. We have Q′ðxÞ = −Φ′ðxÞ = −Pð
xÞ < 0, where PðxÞ = 1/

ffiffiffiffiffiffi
2π

p
e−1/2x

2
is the probability density

function (PDF). And when x > 0, Q′′ðxÞ = −P′ðxÞ = xð1/

pa =
1 −Q d1/2σbεh

� �� �
+∑M−2

m=1 1 −Q dm/2σbεh
� �

−Q dm+1/2σbε h
� �� �

+ 1 −Q dM−1/2σbε h
� �� �� �

M
= 1 − 2

M
〠
M−1

m=1
Q

dm
2σbεh

 !
:

ð9Þ
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ffiffiffiffiffiffi
2π

p Þe−1/2x2 > 0, which means the Q-function is a monotone
decreasing convex function when x > 0. Using Jensenâ€™s
inequality, we have

1
M − 1 〠

M−1

m=1
Q

dm
2σbε h

 !
≥Q

∑M−1
m=1dm

2σbεh M − 1ð Þ

 !
=Q Yð Þ, ð12Þ

1 − 2
M

〠
M−1

m=1
Q

dm
2σbεh

 !
≤ 1 − 2 M − 1

M

� �
Q Yð Þ: ð13Þ

Combining Equation (11) and the expressions of pa and
�pa in Equations (9) and (12), we have pa ≤ �pa, and thus, �pa is
an upper bound of pa.

Second, we prove �pa is the minimum of the upper
bounds of pa. With ∀0 < ξ < 2Uε/ðM − 1Þ, we construct a
function as

f ξð Þ = 2
M

Q Y − ξð Þ +Q Y + ξð Þ − 2Q Yð Þð Þ: ð14Þ

Given that the Q-function is a monotone decreasing
convex function when x > 0, we have f ðξÞ > 0, and when ξ
⟶ 0, f ðξÞ⟶ 0.

With (12) and (15), then we have

�pa − f ξð Þ = 1 − 2
M

M − 3ð ÞQ Yð Þ−Q Y − ξð Þ −Q Y + ξð ÞÞ,ð
ð15Þ

and we can find

p0 = 1 − 2
M

M − 3ð ÞQ Yð Þ+Q Y −
ξ

2

� �
+Q Y + ξ

2

� ��
,

�
ð16Þ

with p0 ∈ℙa fulfills p0 > �pa − f ðξÞ, where ℙa is the set of
identification accuracy. Because combined with (16) and
(17) and applying the Lagrange mean value theorem, we
have p0 − ð�pa − f ðξÞÞ > 0, i.e., p0 > �pa − f ðξÞ as in (17), where
Y − ξ < x1 < Y − ðξ/2Þ, Y + ðξ/2Þ < x2 < Y + ξ, and x2 > x1.
Finally, according to the definition of supremum, the proof
completes.

p0 − �pa − f ξð Þð Þ = 2
M

Q Y − ξð Þ −Q Y −
ξ

2

� �� ��

− Q Y + ξ

2

� �
−Q Y + ξð Þ

� ��

= ξ

M
Q′ x2ð Þ −Q′ x1ð Þ
� �

> 0:

ð17Þ

We can observe from (11) that the accuracy supremum
is determined by the feature range, the number of transmit-
ters to be identified, and the precision of the feature estima-
tion method (i.e., the standard deviation of the estimate).

4.3. The Device Quantity Supremum. We define the supre-
mum of the number of distinguishable devices or the device
quantity supremum of an identification scheme as the device
number under which the accuracy of the identification
scheme will not exceed the given constraint. And then, with
this supremum, we can evaluate the performance limit of the
adopted feature for device identification. Intuitively, the
supremum is related to the identification accuracy as shown
in (11). However, it is difficult to deduce a closed-form
expression of the inverse function of (11) concerning M
and �pa, then we denote (11) as �pa = f ðMÞ for simplicity.
And given the monotone decreasing property of �pa = f ðMÞ,
we have the following proposition.

Proposition 3. For a specific feature range U ε and feature
estimation, given the target accuracy, the device quantity
supremum is �M = b f −1ð�paÞc, �M ≥ 2, �M ∈ℕ+, where �pa = f ð
MÞ is as shown in (11).

Proof. We define two functions gðmÞ = ðm − 1Þ/m and hðm
Þ =QðU ε/ððm − 1ÞσbεhÞÞ, then we can denote (11) as �pa = 1
− 2gðmÞhðmÞ. Since both gðmÞ and hðmÞ are strictly mono-
tone decreasing with 0:5 ≤ gðmÞ < 1,m ∈ℝ,m ≥ 2 and 0 < h
ðmÞ < 0:5, −2gðmÞhðmÞ will be strictly monotone increasing.
Thus, f ðmÞ will be a strictly monotone decreasing function
too. According to the properties of the inverse of strictly
monotone function, f −1ð�paÞ also will be a monotone
decreasing function. The device number is an integer set,
denoting as M = fM ⊂ℕ+jM ≤ b f −1ð�paÞcg, and �M = b f −1ð
�paÞc is the supremum of the number set M. We prove it by
contradiction as follows. Suppose that �M is not the supre-
mum of M, which means there is at least an integer M ′ ∈
M that fullfils M ′ > �M. Obviously, this is a contradiction
because M ′ should be ≤ �M according to its definition, which
means the premise cannot be true. Thus, the device number
supremum is �M.

It indicates that the maximum number of transmitters
can be identified, i.e., device quantity supremum under the
constraint of the desired accuracy is determined by the fea-
ture’s range and the precision of the estimation method.
Although it is difficult to give the closed-form expression
of f −1ð�paÞ, we can depict the relationship between M and
�pa by simulation and observe the variation of the device
quantity supremum.

5. Simulation Study

5.1. Simulation Settings. We simulated a typical wireless
communication processing of 802.11a based on OFDM. Sim-
ilar to [16], we also generated the beacon frames for transmit-
ter identification where the (legacy) long training field (L-LTF)
was adopted to estimate the CFO. We implemented data gen-
eration and processing, machine learning, and deep learning
methods on a platform with MATLAB R2021a. The platform
is a Dell Precision 3640 tower workstation (https://dl.dell.com/
topicspdf/precision-3640-workstation_owners-manual2_en-
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us.pdf) with an Intel(R) Core(TM) i9-10900K CPU and 32GB
RAM running the Ubuntu 18.04 operating system. Further, we
used an NVIDIA GeForce RTX 3080 GPU configured on the
workstation to train and test the deep learning-based models.
The main simulation parameters, including the communica-
tion system and the Rayleigh channel, are shown in Table 2.

As the system model shows in Section 3, the receiver col-
lects signals from the transmitters and then uses L-LTF to
extract the features and identify the devices. Following the
specification, the transmitted L-LTF sequences are config-
ured as the same for all transmitters, enabling the algorithm
to avoid any data dependency. Since we assume the trans-
mitters and receiver are static, the multipath channel profile
and RF impairments do not vary in time.

After comparing several shallow classifiers in common
use, we selected KNN for the shallow classifier-based identi-
fication. We tuned parameters of “100” as the number of
neighbors, “Euclidean” as the distance metric, and “Equal”
as the distance weight.

We adopted the same CNN architecture in [16] as the deep
learning identification method. The detailed CNN architec-
ture’s parameters, including convolutional layers (Conv2D),
pooling layers (MaxPooling2D), and fully connected layers
(FC, also known as the dense layer), is shown in Table 3.

To minimize the sampling bias (when selecting data from
the dataset) and ensuring statistical confidence, we adopted a
5-fold cross-validation (CV) in the classification evaluation.
We split the dataset into five blocks, ensuring that each block
has 200 random frames from each device since we collected
1000 frames per transmitter. Then, we performed five rounds
of training and testing for each shallow classifier- and deep
learning-based model. One block was selected as the test data-
set, and the rest were used for training in each round.We con-
sidered the averaged overall test accuracy of the five-round CV
as the final metric to evaluate the identification performance,
i.e., �ACC = ACCk/5, where ACCk is the overall test accuracy
of the k-th round of CV.

5.2. Identification Accuracy and the Supremum

5.2.1. Identification Under AWGN Channel. As shown in
Figure 2, in each CFO range (2.5CFO means Uε = 2:5
ppm), the identification accuracy of the shallow classifier-
based scheme (i.e., with the classifier of KNN and hand-
crafted feature CFO, denoted as HC) is always under the
supremum (SUP). As the SNR increases, the accuracy first
exceeds that of deep learning and then to the supremum.
When the SNR is between −20 and 0dB, the gap between
the accuracy of the shallow classifier-based scheme and the
supremum is small. When the SNR increases from 0 to
50 dB, the gap first widens and then closes. When SNR
≥45 dB, the accuracy reaches the supremum of 100% in
the range of 20 ppm. It is reasonable because the error of
the estimated CFO will be smaller at higher SNR, as dis-
cussed in Section 4. Moreover, the accuracy of the deep
learning-based scheme (denoted as DP) in all CFO ranges
converges to approximately 95% except for 20 ppm where
the accuracy converges to 98%. It indicates that deep learn-
ing has limited discriminative capabilities for CFO at higher

SNR compared with hand-crafted feature estimation. On the
other hand, the deep learning-based scheme can achieve bet-
ter performance at lower SNR. It means that the influence of
SNR on the deep learning scheme is not as significant as that
of hand-crafted feature estimation since the former performs
better under low SNR.

5.2.2. Identification on More Transmitters. To observe the
supremum and identification accuracy with a larger device
scale, we implemented the simulation with 400 transmitters.
Figure 3 shows the results considering 400 transmitters with
the same CFO ranges as in Figure 2. It also presents the
identification accuracy of the two shallow classifier-based
and deep learning-based schemes with the same CFO ranges
and the same transmitter quantity under the AWGN chan-
nel. Comparing Figures 3(a)–3(d)with Figures 2(a)–2(d), it
is evident that the accuracy of both schemes with 400 trans-
mitters is lower than those with 50 transmitters, respectively.
Also, the supremum decreases too. Combined with Figure 2,
we find that at the SNR of about 45 dB, no matter how the
quantity of devices changes, the shallow classifier-based
scheme consistently exceeds the deep learning-based one.

5.2.3. Identification Under Static Rayleigh Channel. In
Figure 4, we also compare the identification accuracy under
the static Rayleigh channel with the supremum. Comparing
the performance of the deep learning-based scheme in

Table 2: Simulation parameters of the communication system.

Parameter Value

Transmitter number (M) 50,400
Frames per transmitter (Fd) 1000

Carrier frequency (f c) 5.765GHz

CFO ranges (Uε) 2:5,5, 10, 20 ppm

Bandwidth (Bw) 20MHz

Sampling frequency (f s) 20MHz

Length of L-LTF (Ls) 64

Rayleigh path number 3

Discrete path delay in seconds 0,1:8,3:4½ �/f s s
Average path gains 0,−2,−10½ �
Maximum Doppler shift 0

Table 3: Architecture of the CNN Model [16].

Layer Type Kernel size Stride #kernel Input size

L1 Input 128 × 2 × 1
L2 Conv2D 7 × 1 50 128 × 2 × 1
L3 MaxPool 2, 1½ � 2, 1½ � 122 × 2 × 50
L4 Conv2D 7 × 2 50 61 × 2 × 50
L5 MaxPool 2, 1½ � 2, 1½ � 55 × 1 × 50
L6 FC 256 27 × 1 × 50
L7 FC 80 27 × 1 × 256
L8 Out M 27 × 1 × 80
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Figure 2: Identification accuracy of schemes using KNN with CFO (HC) and deep learning with raw IQ samples (DP) under different CFO
ranges (e.g., 2.5CFO means U ε = 2:5 ppm) and AWGN channel vs. the accuracy supremum (SUP).
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Figure 3: Identification accuracy under AWGN channel vs. the accuracy supremum.
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Figure 4: Identification accuracy under Rayleigh channel vs. the accuracy supremum.
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Figure 5: Continued.
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Figure 2 with that of Figure 4, we can observe that the accu-
racy is improved obviously under the static Rayleigh channel
in each CFO range. However, when looking into the three
subfigures in Figure 4, we can find that expanding the CFO
range has little effect on the accuracy improvement for the
deep learning-based scheme. This result validates that deep
learning can learn more information from the multipath
channel than from the device’s feature, which is consistent
with the study of [32]. In other words, the identification
accuracy of the deep learning-based scheme will be affected
more by the channel than device features. On the other

hand, the shallow classifier-based scheme is less affected by
the channel than the deep learning one since the accuracy
under the Rayleigh channel is only improved slightly in each
CFO range. Especially at low SNRs, the gap between the
accuracy of the shallow classifier-based scheme and the
supremum under the Rayleigh channel is slightly smaller
than that of the AWGN channel.

5.3. The Device Quantity Supremum. Figure 5 presents the
device quantity supremum under different SNRs considering
CFO as the physical layer feature. Figures 5(b) and 5(d)
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Figure 5: The device quantity supremum using KNN with hand-crafted feature (i.e., CFO) under different identification accuracy and SNR
with different CFO range.
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show the details of Figures 5(a) and 5(c), respectively, when
the accuracy constraint ≥99%. As shown in Figures 5(a) and
5(c), the supremum will decrease with the increasing of the
desired identification accuracy while also increases with the
SNR. With the feature range of 2.5 ppm, the results in
Figures 5(a) and 5(b) show that when the SNR<20dB, the
receiver can identify no more than 15 transmitters under
the required accuracy of 90%. Even at a high SNR of
40 dB, if a 90% accuracy is required, there should be no more
than 140 transmitters. Moreover, when higher accuracy is
required, the supremum will be smaller. For example, with
the accuracy requirement reaching 99.9%, the device quan-
tity supremum even decreased to 7 and 70 at the SNR of
20 and 40 dB, respectively. However, a small CFO range is
quite common for some off-the-shelf wireless devices oper-
ating under rigorous synchronization requirements, such
as mobile phones and high-end laptops [39].

In Figures 5(c) and 5(d), losing the feature range to
20 ppm, then we can see the supremum increases too. For
the same accuracy requirement of 90%, the device quantity
supremum can reach 112 at the SNR of 20dB, more than
seven times that in the CFO range of 2.5 ppm. But the supre-
mum is only 11 when the SNR is 0 dB. With the high accu-
racy requirement of 99.9%, the supremum is 5, 56, and 563
at the SNRs of 0, 20, and 40dB, respectively. Thus, it is evi-
dent that only considering one feature such as CFO, the
device identification capability, i.e., the device number
supremum, is small, especially when the range is small.
Combined with the analysis of the supremum and the simu-
lation results, we can find that a larger feature range, more
precise feature estimation, and higher SNR of the signal
can improve the accuracy and the device quantity
supremum.

6. Conclusion

This paper analyzed the accuracy supremum and the device
quantity supremum of the shallow classifier-based physical
layer identification scheme based on the hand-crafted fea-
ture. Specifically, we mathematically analyzed and deduced
the closed-form expression of the accuracy supremum of
the identification scheme based on CFO. We also investi-
gated the device quantity supremum, i.e., the supremum of
the number of distinguishable devices. The simulation
results are consistent with the theoretical analysis. According
to the analysis and simulation, there is insufficient finger-
printing space only considering one feature, such as CFO.
Thus, if we want to identify more devices, a larger feature
range or higher SNR of the signal can help.
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