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Nowadays, with the rapid development of multimedia technology and computer information processing, the data of multimedia
information presents explosive growth. At present, the method of using artificial recognition of sound materials is inefficient, and
an automatic recognition and classification system of sound materials is needed. To improve the accuracy of sound recognition,
two algorithm models are established to identify and compare the sound materials, which are the hidden Markov model (HMM)
and back propagation neural network (BPNN) model. Firstly, HMM is established, and the sound material is randomly selected as
the test sample. The comparison between the expected classification and the actual is tested, and the recognition rate of each
classification is got. The final average recognition rate is 61%. The anti-interference characteristics of the training HMM are
tested, and the identification rate of the training model is selected in 6 types of signal-to-noise ratio (SNR) environments. The
recognition rate of the training model has an obvious downward trend with the decrease of the SNR. Secondly, the BPNN
model is built, and 200 BPNN training experiments are conducted. The training model with the highest average recognition
rate is selected as the experimental model. The average recognition rate of the final model is higher than 90%. The expression
ability and stability of the trained model are simulated after the new sample is introduced, and the anti-interference
performance of the model is tested in different environments of SNR. The results of performance test are good, and only the
recognition rate of complex types of some sound sources decreased. Finally, the accuracy of the HMM in the experiment is not
as high as that obtained by BPNN. Therefore, the training method of BPNN has a greater advantage in both recognition
accuracy and recognition efficiency for the studied sound. It provides a reference for automatic recognition of sound materials.

1. Introduction

In the production of animation sound, the dubbing part
requires a lot of sound materials. Although a large number
of materials are stored in the sound effect material library,
some dubbings need to be temporarily designed to dub for
it or to record by onomatopoeia through various props [1].
At present, audio creation is still inseparable from manual
recognition, and sound effects contain a variety of available
sound resources. Through editing, classification, mixing
and other operations, its materials will be arranged very
compactly and rely on human ears for hearing. There is no
problem in the short term. If the amount of material is large,
it will consume a lot of energy and lead to hearing fatigue. In

serious cases, it will also cause memory errors, judgment
deviations, etc. [2–4]. In the field of sound classification
and recognition, speech recognition has developed relatively
maturely, including listening to songs and recognizing music
and other functions, which have been widely used. Nowa-
days, there are few studies related to the automatic classifica-
tion of animated sound effects.

Haeb-Umbach et al. introduced the algorithm used to
achieve accurate long-distance speech recognition. Although
deep learning (DL) occupies a large share of technological
breakthroughs, the ingenious combination with traditional
signal processing can bring effective solutions [5]. Yu et al.
proposed a peak-based framework for the errored second
ratio (ESR) task from a perspective of more brain-like.
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Results show that compared with other baseline methods,
the experimental design framework performs the best. The
peak-based framework has several favorable features, includ-
ing early decision-making, small dataset acquisition, and con-
tinuous dynamic processing [6]. Jin et al. successfully prepared
a sound detector based on MXene by combining DL with
2DMXenes, which had improved recognition and sensitive
response to pressure and vibration, which helped to produce
high recognition and resolution [7]. Li et al. studied the classi-
fication of feeding behavior of dairy cow based on automatic
sound recognition and found that DL technology can classify
feeding behavior [8]. Lhoest et al. indicated a classifier based
on classical machine learning (ML) and a lighter convolutional
neural network (CNN)model for environmental sound recog-
nition. The results show that the classic ML classifier can be
combined to obtain results similar to DLmodels and even bet-
ter than DL models in accuracy [9]. Demir et al. explored the
classification of environmental sound based on depth features.
The depth feature is extracted by using the fully connected
layer of a newly developed CNN model, which is trained with
spectrogram images in an end-to-end manner. Experiments
show that the classification accuracy of the model reaches
96.23% and 86.70%, respectively [10]. Zhang et al. studied
the application of CNN and recurrent neural network units
based on feature fusion in environmental sound classification
and found that the model with load manage control center
(LMCC) as input is suitable for solving problems of electronic
stability control. The model can achieve good classification
accuracy [11]. Catanghal advanced and discussed a framework
of a detection system in the study room. Feature extraction
technology is used to obtain the representation of parameter
type, which is used to analyze the sound of the intelligent
home machine listening system specially used in the study
room. It is concluded that ML is feasible for sound detection
and can be applied as a technology in an innovative learning
environment [12–14].

By consulting the references, it shows that the current
research is basically in the stage of feasibility analysis or
the effect of classification and recognition is not obvious
enough, and the efficiency and accuracy of automatic classi-
fication and recognition of sounds need to be improved. For
this reason, the idea of applying artificial intelligence (AI)
components and multimedia technology to sound recogni-
tion is proposed, which can realize the automatic recogni-
tion of sound materials and avoid the problems of labor
time and inefficiency. Firstly, the sound feature recognition
combined with ML is mainly aimed at fitting problems
caused by different ML algorithms or improving small sam-
ples in the experiment. Secondly, the model used in the sim-
ulation is adjusted to the best performance through
combination to achieve the effect of classification and recog-
nition. High-efficiency sound recognition is designed
through ML algorithm to facilitate the classification of sound
materials.

2. Establishment of Algorithm Model

2.1. Algorithm Model Based on Hidden Markov Model. The
hidden Markov model (HMM) is composed of the hidden

Markov chain. HHM describes the process of state transi-
tion. For the first order of the HHM, state transition depends
on several states in the system. The probability of state tran-
sition refers to the probability of one state to another. The
probabilities of all transitions are represented through the
matrix of state transitions, and this matrix will not change
over time. The initial probability is the probability parameter
of any state in the initial state of the model [15, 16]. Gener-
ally, HMM includes the matrix of the initial state and of state
transition.

HMM is usually represented by λ = ðP,Q, VÞ, and the
completed HMM should also have two other parameters,
N is the specified state parameter and M is the observation
symbol. These two parameters and three density probabili-
ties ðP,Q,VÞ constitute the HMM.

G is the number of states in HMM and a collection of
hidden states. When s = fS1, S2,⋯, SNg in the collection of
model states, and the state of t moment is represented as
qt , qt ∈ S1, S2,⋯, SN .

H is the number of observations. The set of observation
symbols is O = fO1,O2,⋯,ONg in the model.

P is the probability distribution of state transition, which
is a vector matrix composed of hidden transition probability.
The state transition probability of the hidden Markov chain
represents the probability of transition from one hidden
state to another.

A = aij
� �

, aij = P qt+1 = Sj ∣ qt = Si
� �

, 1 ≤ i, j ≤N: ð1Þ

In equation (1), aij has the following characteristics:

aij ≥ 0, 〠
N

j=1
aij = 1: ð2Þ

Q is the probability distribution of observation symbol in
state Sj. A specific hidden state will generate a specific prob-
ability matrix of the observation state in the specified HHM.
Therefore, in state Sj, the probability distribution of observa-
tion symbols includes the observation probability matrix
obtained by specifying the hidden states, which can also be
defined as a confusion matrix.

B = bj Okð Þ� �
, bj Okð Þ = p, 1 ≤ j ≤N , 1 ≤ k ≤M: ð3Þ

V is the probability distribution in the initial state, as
shown in

π = πif g, π = p q = Si½ �, 1 ≤ i ≤N: ð4Þ

These five parameters are generally called the five ele-
ments of the HMM, as shown in Figure 1.

Therefore, the HMM is to add the concept of observing
state distribution in the conventional Markov process, and
the probability distribution relationship between hidden
states and observation states is also established in the actual
algorithm of this model [17].
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If the HMM λ is given and the observation sequence of
each part of t time is O1,O2,⋯,Ot and the state qt is a for-
ward probability, as shown in

at ið Þ = p o1, o2,⋯ot , it = qi ∣ λð Þ: ð5Þ

Forward probability atðiÞ and observation sequence
probability pð0 ∣ λÞ can be obtained by recursive. The process
is shown in

at+1 ið Þ = 〠
N

j=1
at jð Þaji

" #
bi Ot + 1ð Þ: ð6Þ

In equation (7), aji is the transition probability.

aji = p it+1 = qi ∣ it = qj
� �

: ð7Þ

Combined with forward probability, the definition is
shown in

at jð Þ = p o1, o2,⋯ot , it = qj ∣ λ
� �

: ð8Þ

Combined with HMM, the hypothesis is shown in

aji = p it+1 = qi ∣ it = qj
� �

− p it+1 = qi ∣ o1, o2,⋯ot , it = qj
� �

:

ð9Þ

In

p o1, o2,⋯ot , it = qj, it+1 = qi ∣ λ
� �

: ð10Þ

Through the summation processing, the equation is
shown in

〠
N

j=1
at jð Þaji = p o1, o2,⋯ot , it = qj, it+1 = qi ∣ λ

� �
: ð11Þ

The observation probability in the recursive equation bi
ðot+1Þ, combined with the independent hypothesis of obser-
vation, is as

bi ot+1ð Þ = P ot+1 ∣ it+1 = qið Þ = P ot+1 ∣ o1, o2,⋯ot , it+1 = qið Þ:
ð12Þ

at+1ðiÞ can be expressed in probability, as

at+1 ið Þ = p o1, o2,⋯ot , ot+1, it+1 = qi ∣ λð Þ: ð13Þ

To get the value of Pð0 ∣ λÞ, all forward probability of the
last state of Markov sequence is summed, as

P 0 ∣ λð Þ = 〠
N

i=1
aT ið Þ = P o1, o2,⋯ot , it+1⋯,oT ∣ λð Þ: ð14Þ

If the HMM λ is given, under the condition of the state
qt at t time, the observation sequence of part from t to T
is Ot+1,Ot+2,⋯,OT and the state qt is a backward probabil-
ity, as shown in

βt ið Þ = P Ot+1,Ot+2,⋯,OT∨it = qi, λð Þ: ð15Þ

According to the successive approximation algorithm,
the Q function needs to be represented first. Through the
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Figure 1: Five elements of the HMM.
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parameters and observation variable conditions in the
model, the logarithmic function of the data is relative to
the hidden probability of variable condition, and the distri-
bution expectation is Q function, as shown in

Q λ, bλ� �
= 〠

N

i=1
logP 0, I ∣ λð ÞP I ∣ 0, bλ� �

: ð16Þ

In the equation, bλ is the current estimate of the HMM,
which is the parameters of the maximum HMM. According
to the successive approximation algorithm, and then the
maximization, so the Q function needs to be decomposed
and calculated.

In

log P 0, I ∣ λð Þ = πi1
bi1 o1ð Þai1i2bi2 O2ð Þ⋯ aiT−1 iTbiTOT : ð17Þ

In

P I ∣ 0, bλ� �
= P 0, I ∣ bλ� �

÷ P 0 ∣ bλ� �
: ð18Þ

The estimated parameters appear in the three terms
when they are substituted into the Q function, respectively,
and only need to be maximized for each item.

Q λ, bλ� �
= 〠

N

i=1,j=1
〠
T−1

t=1
logaijP O, it = i, it+1 = j∣,bλ� �

+ 〠
N

j=1
〠
T

i=1
logbj Otð ÞP O, it = j∣,bλ� �

+ 〠
N

i=1
logπiP O, i1 = i ∣ bλ� �

:

ð19Þ

Transition from any hidden state to hidden state Si
means that for the sum of time t, including all time expecta-
tions in the grid, it corresponds to the expectations of the
state i under observation O.

The essence of the Viterbi algorithm is to specify the
observation sequence to find the maximum possibility of
the state sequence, which is actually to maximize PðI ∣ 0, λÞ
. First input δ and φ.

δt ið Þ = max
i1,i2⋯it

P it = i, it−1,⋯, i1, at ,⋯, a1 ∣ λð Þ: ð20Þ

δ is the maximum probability in all single paths ði1, i2,
⋯, itÞwith a state of i at t moment, and the variable δ is
recursive, as shown in

δt+1 ið Þ = max
i1,i2⋯it

P it+1 = i, it ,⋯, i1, at+1,⋯, a1 ∣ λð Þ
= max

1≤j≤N
δt jð Þaji
� �

bi Ot+1ð Þ:
ð21Þ

Specify the starting value δ1ðiÞ = πibiðO1Þ and then iter-

ate, and the termination result is shown in

p∗ = max
1≤j≤N

δT ið Þ: ð22Þ

The Viterbi algorithm stores a reverse pointer for any
state. The partial probability will reach the specified state
according to the reverse pointer. The calculation of partial
probability in the Viterbi algorithm is different from that
processed in the forward algorithm, because the probability
will not change over time. The Viterbi algorithm calculates
the probability of the most direct path of reaching a certain
state at t moment, not the sum of all paths. When t = 1, there
is no way to find the maximum possible path to reach a cer-
tain state. Then the initial probability of the state in which
t = 1 is multiplied by the observation probability in the cor-
responding observation state to calculate the partial proba-
bility, which is similar to the forward algorithm. The result
of partial probability is obtained by multiplying the initial
probability and the observation probability [18].

The structure of the HHM consists of two closely related
steps. One is an observable Markov chain, and the other is a
hidden process that matches number of states and observa-
tions of the model. The states of HMMs can be transferred
to each other over time, and they can also remain in one state.
The training process uses audio clips of five seconds for each
category, and the training flow chart is shown in Figure 2.

When processing audio of each category, the HMM con-
sists of two closely connected processes, one is an observable
Markov chain and the other is a hidden process that matches
number of states and observations of the model. The states
of HMMs can be transferred to each other over time, and
they can also remain in one state. In this simulation, HHMs
are established for each classification.

Using the Viterbi algorithm in logarithmic form, the ini-
tial and transition probabilities are calculated separately. The
code is shown in this.

log initð Þ
ind1 = find init > 0ð Þ ;
ind0 = find init< = 0ð Þ ;
init ind0ð Þ = − inf ;

init ind1ð Þ = log init ind1ð Þð Þ ;
log transð Þ

ind1 = find trans > 0ð Þ ;
ind0 = find trans< = 0ð Þ ;
trans ind0ð Þ = − inf ;

trans ind1ð Þ = 1 log trans ind1ð Þð Þ:

ð23Þ

2.2. Establishment of Model Based on BPNN Algorithm. An
artificial neural network (ANN) is an adaptive neural net-
work composed of simple neurons. It has its own nonlinear
characteristics and can simulate the human nervous system
connected in parallel to perform qualitative and quantitative
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operations. Because it is actually composed of many neu-
rons, in ANN, the output of one neuron is the input of
another neuron. Forward propagation means that the signal
passes through the input layer and through the operation of
neurons to output. There are many hidden layers and output
neurons in the neural networks (NNs). They are evolved
through biological neuron models. In biological NNs, neu-
rons will transmit chemicals to other neurons after feeling
“excited.” Neurons are linked to each other, and the rest of
neurons will transmit information through incoming and
out of nerves and finally handed over to the central nervous
system processing to form NNs in machine learning
[19–21].

Workflow of the output-perceived neuron receives input
signal xi at the input end. According to the link weight wi, s
is regarded as an external input signal. All input weights are
shown in

σ = 〠
n

i=1
wixi + s: ð24Þ

Function f is a nonlinear feature function. Use this func-

tion to convert and get the output y:

y = f σð Þ: ð25Þ

In the equation, the f function is an activation function,
and the reverse propagation neural network and deep learn-
ing (DL) usually use the S-type logarithmic function or tan-
gent function. The expression of logarithmic S-type
activation function is shown in (b is a deviation value)

f xð Þ = 1
1 + exp − x + bð Þð Þ : ð26Þ

The expression of hyperbolic tangent S-type activation
function is shown in (b is the deviation value)

f xð Þ = 1 − exp −2 x + bð Þð Þ
1 + exp −2 x + bð Þð Þ : ð27Þ

The topology structure is formed by the links between
neurons. The structure of NNs is planned as a layered net-
work and an interconnected network. The layered networks
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Figure 2: Training flowchart of HMM.
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usually include input layer, middle layer, and output layer
[22]. Figure 3 shows the schematic diagram of the layered
network.

The layered networks can also be subdivided into: simple
forward network, forward network with feedback signals,
and forward network connected between layers. BP is one
of the most widely used ANN models at present. It usually
has three or more layers of multilayer NNs, each of which
has many neurons. BPNN is a network of multilevel feedfor-
ward, which is trained according to the supervised learning
method and error backpropagation algorithm [23].
Figure 4 shows the structure diagram of the BPNN model
with only one middle layer.

The middle layer is the characteristic space, and the
number of nodes is the dimension of the characteristic space.
In BPNN, neurons receive learning mode. Any neurons on
the left are linked to any neurons on the right. The activation
value of neurons is transmitted to the output layer through
the middle layer. The output feedback of neurons in the out-
put layer obeys the basic principle of reducing the difference
between the expected output value and the actual output
value. It feeds back to each connection element through
the hidden layer and the output layer, so it is also known
as the “error backpropagation algorithm.”With the continu-
ous adjustment of connection weight, the error rate of the
input mode response is reduced [24].

The number of nodes is n in the input layer of the pro-
gram, the number of nodes in the middle layer is l, and the
number of nodes in the input layer is m. In addition, the
weight needs to be set. The weight from the input layer to
the middle layer is Wij, the weight from the middle layer

to the output layer isWjk, the bias value from the input layer
to the middle layer is aj, and the bias value from the middle
layer to the output layer is bk, and the learning rate is η. The
incentive function is set gðxÞ as a logarithmic S-type activa-
tion function, as shown in

g xð Þ = 1
1 + e−x

: ð28Þ

The output of middle layer is Hj:

Hj = g 〠
n

i=1
Wijχi + aj

 !
: ð29Þ

The output of output layer is Ok:

Ok = 〠
l

i=1
Hjwjk + bk: ð30Þ

Yk −Ok = ek, when Yk is the expected output, the error
calculation is shown in

E = 1
2〠

m

k=1
Yk −Okð Þ2: ð31Þ

If the error is minimal and the minimum value is min E,
the weights are updated from the middle layer to the output
layer and from the input layer to the middle layer by the
method of gradient descent. The principle of error adjust-
ment is to reduce the error value, which means that the
weight correction of each layer should change in positive
proportion to the negative gradient formed by the difference.
The weight update value from the middle layer to the output
layer is shown in

∂E
∂wjk

= 〠
m

k=1
Yk −Okð Þ −∂Ok

∂wjk

 !
= −ekHj: ð32Þ

The weight is wjk + ηekHj from the middle layer to the
output layer.

The updated weight from the input layer to the middle
layer is shown in

∂E
∂wij

= ∂E
∂Hj

·
∂Hj

∂wij
= −〠

m

k=1
wjkek ∗Hj 1 −Hj

� 	
xi: ð33Þ

The updated weight from the input layer to the middle
layer is shown in

wij+−η〠
m

k=1
wjkek ∗Hj 1 −Hj

� 	
xi: ð34Þ

According to the above methods, the updated bias value

Input layer

Middle layer

Output layer

Figure 3: Schematic diagram of the layered network.
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bk from the input layer to the middle layer is shown in

bk = bk + ηek: ð35Þ

The updated bias value aj from the output layer to the
middle layer is shown in

ak = ak + ηHj 1 −Hj

� 	
〠
m

k=1
wjkek: ð36Þ

The input layer propagates backward to obtain the actual
output. Compared with the expected output value, iteration
stops if it reaches the accuracy of meeting requirements of
the error function; if it is not achieved, it continues to update
the weights of each layer until the accuracy required by the
error function is reached.

The iterative algorithm must converge. The sequence of
Xk converges to a certain minimum point Xmin. The equa-
tion is shown in

lim
k⟶∞

Xk − Xminj j = 0: ð37Þ

If the iterative sequence can converge to Xmin by its start-

ing point being close to the minimum point, it is called a
local convergence algorithm, which is constrained by the
minimum point. If any starting point produces an iterative

Input 
layer

middle 
layer

Output 
layer

V1 V2 VN

F1 F2 FN

D1 D2 DN

ε1 ε1

W1 W2 WN

Figure 4: Structure diagram of the BPNN model with only one middle layer.
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Figure 5: Schematic diagram of easily confused sound effects.
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sequence that can converge to Xmin, it is called a global con-
vergence algorithm.

Using the iteration optimization algorithm, only the cal-
culated iteration point Xk is understood, and the optimal
solution Xmin is not known. Therefore, it is necessary to
judge when the iteration should end based on the informa-
tion provided by the known iteration point. The termination
condition is usually shown in equation (38):

In equation (39), determine whether the error is less
than a predefined value.

xk+1 − xkj j ≤ ε1, ð38Þ

f xk+1ð Þ − f xkð Þj j ≤ ε2: ð39Þ
In equations, there is the absolute error of two iterations.

In some cases, the minimum relative error is required to
judge the termination.

xk+1 − xkj j
xkj j ≤ ε1, ð40Þ

f xk+1ð Þ − f xkð Þj j
f xkð Þ ≤ ε2: ð41Þ

There will also be cases of calculating the gradient mode.
When the specified value range is reached, the iteration will
be terminated, as shown in equation (41):

Δ f xk+1ð Þj j ≤ ε ð42Þ

The quality of a NN design depends on the accuracy and

the training time of the network. The construction of the
BPNN determines the structure of the BPNN according
to the characteristics of the input and output data of the
system. The characteristic parameters have a total of 26
dimensions. There are 15 types of sound to be classified.
Some problems can be solved with a single-layer network
with a nonlinear activation function. Considering that
the adaptive linear network can also be solved, and the
correct rate of solving the problem with only a single-
layer nonlinear function will not be too high, the number
of layers must be increased to achieve better training accu-
racy. To improve the accuracy of network training,
increasing the number of layers can further improve the
accuracy rate and reduce the error. The experiment con-
siders appropriately increasing the number of network
layers without increasing the complexity of the network.
After repeated simulation and training, it is finally con-
firmed that the selection of the BPNN training consists
of 26-13-15. The input layer consists of 26 neurons, the
middle layer consists of 13 neurons, and the output layer
consists of 15 neurons. The 15 sound effects are reclassi-
fied to verify the recognition rate of the NN training
model for confusing sound effects. The schematic diagram
of easily confused sound effects is shown in Figure 5.

3. Analysis of the Simulation Results of Sound
Feature of the Model

3.1. Simulation Results of Sound Feature Parameters Based
on Hidden Markov. 10 sound effects are selected for hidden
Markov modeling, namely, street crowd sound jd, stadium
crowd sound ty, TV program sound ds, train sound hc1,
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aircraft sound fj, stream sound xl, wave sound hl, ship sound
lc, truck sound hc2, and motorcycle sound mt. The number
of HHM training samples is shown in Figure 6.

Each frame parameter of audio file data, the first-order
difference and the second-order difference of the 8th
order, and short-term energy, and the short-term average
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Figure 7: Recognition rate of each audio category.
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zero-over rate are extracted. A total of characteristic
parameters are used as observation symbols in this exper-
iment. In this experiment, the HHM is established for
each classification. The recognition rate of each category
is shown in Figure 7.

Among them, the recognition effect of stadium crowd
voice and train sound is relatively ideal, and the rest of the
results are unsatisfactory. There may be more confusing ele-
ments in the sound of vehicles in various categories, and the
recognition effect is not good. The recognition rate of ships
sound is less than 50%, which may be due to the sound of
ocean waves has multiple characteristics, resulting in a low
recognition rate. The experiment added Gaussian white

noise that simulates the real environment to the sample to
verify the anti-interference ability of the HHM. The signal-
to-noise ratio (SNR) of the original tested sound materials
was higher than 75dB. After adding Gaussian white noise,
the SNR was 10, 20, 30, 40, 50, and 60dB, respectively.
The comparison of test recognition rate is shown in Figure 8.

In Figure 8, as the SNR decreases, the recognition rate of
the HHM has a significant downward trend, indicating that
the anti-interference ability of this model is insufficient. To
sum up, the Hidden Markov training model is not very suit-
able for describing sound materials containing more com-
plex content, nor can it meet the needs of applying
onomatopoeia materials.
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Figure 10: Scattered distribution of the actual classification and predicted classification errors of 100 to 500 audio clips randomly selected.
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3.2. Simulation Results of Sound Feature Based on BPNN.
The selection of the BPNN training consists of 26-13-15.
The input layer consists of 26 neurons, the middle layer con-
sists of 13 neurons, and the output layer consists of 15 neu-
rons. A total of 15 typical sound materials are set, and five
sounds are added to the above set: sound of children ht,
sound of meeting hy, sound of footstep jb, sound of bicycle
zx, and sound of car qc. The sound type can be divided into
vehicle sound, human voice, and water sound. The recogni-
tion accuracy of each category is shown in Figure 9.

As shown in Figure 9, except for the low probability of
children’s voice being recognized, the recognition rate of
all categories is more than 80%, of which human voice is
more complex and should be further subdivided. The voice

recognition rate of confusing stadiums has reached 100%,
and the voice recognition rate of street can reach 90%. The
recognition rate of conference sound is better than that of
TV human voice, reaching 95.56%. The recognition rate of
footsteps is better, and the rate of vehicles is relatively high.
The recognition rate of cars, trains, and planes has reached
100%, but the recognition rate of ship sounds is not ideal,
only 80.36%, which may be caused by the coincidence of
the waves with certain characteristics. The recognition rate
of sound of water is about 90%, which is ideal. To sum up,
the recognition rate of confusing sound effects is relatively
high, which is higher than 90% on average.

In real, sound may be damaged for various reasons,
making it impossible to use later. Replaceable sound
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Figure 11: Test recognition rate of BPNN models in different SNR environments. (a) Test recognition rates of 8 sound categories in
different SNR environments. (b) Test recognition rates of 7 sound categories in different SNR environments.
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Figure 12: Specific performance of the model in each scenario. (a) Specific performance of two algorithms under a single sound source. (b)
Specific performance of two algorithms under a combined sound source. (c) Specific performance of two algorithms under a complex sound
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resources can be found to compensate. Figure 10 shows the
scattered distribution of the actual classification and pre-
dicted classification errors of 100 to 500 audio clips ran-
domly selected.

The experiment is not very practical, and the character-
istics of the sound material are not the same in the same
classification. For example, the sound of the car engine, the
sound of the door, the sound of airplanes taking off and
landing, the sound of bicycle chain and bell, and other
sounds are all distributed in the sound of the car. In the same
scene, there are also new sounds replacing the original
sound. Therefore, only use onomatopoeia to replace dam-
aged materials is considered. Figure 11 shows the test recog-
nition rate of BPNN models in different SNR environments.

Figure 11 indicates that the introduction of new sound
materials by BPNNs does not have much impact on the orig-
inal sound effects. Although it has a certain impact on the
recognition rate, it is not easy to accurately recognize
whether the new sound resources are complex or not. The
BPNN has a good anti-interference performance when the
SNR of the sound material is greater than 30dB.

3.3. Comparison and Analysis of HMM and BPNN. From the
previous section, it shows that the recognition result of the
HMM is only about 60%, the accuracy of the BPNN algo-
rithm is higher, and the average recognition rate reaches
91%. Because the previous selection of sound materials was
randomly selected, the recognition effect was observed by
selecting 3 sets of exactly the same sound materials to simu-
late in the two algorithm models. Figure 12 shows the spe-
cific performance of two algorithms under a single sound
source, combined sound source, and complex sound source.

As Figure 12 indicates, the accuracy of HMM recogni-
tion is not as efficient as that of BPNN model. The reason
may be that the HMM needs to cooperate with supervise
learning algorithms to play a better role, but the BPNN
model does not. Moreover, the HMM is relatively stable in
the single sound source scenario, but the stability is greatly
reduced when the sound source situation is slightly
complicated.

In the BPNN model, the recognition effect of the single
sound source, combined sound source, and compound
sound source is better than that of the HMM, and the stabil-
ity is relatively better. To sum up, the BPNN model has more
advantages than the HMM for the recognition of sound
effect materials. The BPNN model can achieve a higher rec-
ognition rate in a shorter training time and has a better gen-
eralization and reasoning ability and good performance of
tamper resistance.

4. Conclusion

At present, the workload of sound effect classification by
manual listening is large and cumbersome. Therefore, it is
urgent to study the automatic classification of sound effect
materials and improve work efficiency. To improve the accu-
racy of sound recognition, two algorithm models are estab-
lished to automatically identify and compare sound
materials, which are the HMM and BPNN models. First,

the HMM is established, and the sound material is randomly
selected as the test sample. The comparison between the
expected classification and the actual classification is tested,
and the recognition rate of each classification is obtained.
The final average recognition rate is 61%. The anti-
interference characteristics of the hidden Markov training
model are tested under 6 types of SNR environment, and
the recognition rate of the training model has a significant
downward trend with the decrease of the SNR. Additionally,
the BPNN model is established, and 200 training experi-
ments of BPNN are carried out. The training model with
the highest average recognition rate is selected as the final
model in the experimental training. The average recognition
rate of the final model is higher than 90%. It stimulates the
expression ability and stability of the trained model after
introducing new samples. And the tamper-interference per-
formance of the model has been tested in different SNR
environments. The performance test results are good, and
only the recognition rate of complex sound types of individ-
ual sound sources has decreased. Finally, the accuracy of the
HMM established in the experiment is not as high as that
obtained by BPNN. Therefore, the BPNN training method
has more advantages, and the automatic classification of
sound effects can better meet the needs of practical applica-
tions, facilitate the work of the majority of audio workers,
and provide a good theoretical basis for the automatic iden-
tification and classification of audio materials in the future.
Due to some limitations, it needs to be further developed
and improved in combination with practical applications
so that it can be used better.
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