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Mobile crowdsensing (MCS) uses ubiquitous smart devices and network access technology to migrate sensing tasks from a
centralized platform to a distributed computing terminal across time and space and provides new approaches for solving large-
scale, diversified, and complex sensing problems. MCS research is of great importance and has attracted wide attention from
researchers. Accordingly, this article summarizes the current research status of MCS. First, the typical applications of MCS are
summarized. Then, the research status of key technologies, such as task allocation, incentivizing, data transmission, quality
assurance, and evaluation methods, is considered. Finally, future research directions of MCS are given to provide a reference
for in-depth MCS research.

1. Introduction

In recent years, various handheld smart devices (e.g., smart-
phones and tablet computers) have been widely popularized
and have become an indispensable part of daily life [1–3].
Furthermore, with the rapid development of sensor technol-
ogy and embedded technology, these ubiquitous handheld
smart devices have integrated various sensors, such as grav-
ity sensors, speed sensors, and global positioning systems
(GPSs), endowing these handheld smart devices with power-
ful computing and sensing capabilities [4–6].

Handheld smart devices rely on built-in sensing and
storage functions, as well as powerful computing and com-
munication capabilities, to create sensing units with abun-
dant software and hardware resources [7]. These various
built-in sensors can help their carriers sense the surrounding
environment and obtain various real-time and accurate
sensing data [8]. In addition, smart devices can use commu-
nication technology to enable people to quickly and dynam-
ically share acquired sensing data [9]. These favorable
characteristics have rapidly promoted the development of

the emerging sensing paradigm of mobile crowdsensing
(MCS) [10].

Compared with traditional wireless sensor networks,
MCS not only achieves wider coverage at a lower deploy-
ment cost but also has the advantage of more flexible net-
work maintenance [11]. Since the research of MCS has
made great progress, to deeply understand the concept and
development trend of MCS and promote research in this
field, it is meaningful to summarize the research progress.

The remaining parts of this article are as follows: typical
applications of MCS are introduced in the second part; then,
in the third and fourth parts, the research status of key tech-
nologies, such as tasking allocation, incentive, data transmis-
sion, quality assurance, and evaluation methods, is
summarized. Finally, future research directions of MCS are
presented.

2. Basic Theory and Application of MCS

In this part, we introduce the basic theory and typical appli-
cations of MCS.
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2.1. Basic Theory of MCS. MCS uses ubiquitous smart
devices as the basic sensing unit to realize distributed and
cross-temporal and spatial sensing data collection, thereby
completing large-scale and complex sensing tasks [12]. Tak-
ing a smartphone as an example, Figure 1 shows common
embedded sensors.

MCS typically consists of a server platform, task
requesters, and task participants [13–15]. As shown in
Figure 2, the server platform is composed of server clusters
in the data center, which are used for publishing sensing
tasks, collecting sensing data, and processing sensing data
and other services. The role of task requesters is to send task
requests to the server platform; the role of task participants
is to collect various sensing data and use network communi-
cation technology to transmit sensing data [16–18]. The
workflow of MCS includes the following stages [19–30]:

(1) The sensing task requester sends a task service
request to the server platform, and the server plat-
form publishes sensing service requests to sensing
task participants. In addition, the server platform
adopts corresponding incentive mechanisms to
attract participants to participate in the sensing task
[19, 20]

(2) Participants choose whether to participate in the
sensing task based on their own sensing costs and
the benefit of completing the sensing task after
obtaining the sensing task information published
by the service platform [21, 22]

(3) After obtaining the assigned sensing tasks, the sens-
ing task participants use the sensing devices, which
they carried to collect sensing data and forward it
back to the service platform through network com-
munication technology [23–26]

(4) After receiving the sensing data delivered by the
sensing task participants, the service platform aggre-
gates and processes the sensing data and provides it
to the sensing task requester [27, 28]

(5) The service platform distributes the corresponding
rewards based on the contributions of participants
or the quality of the sensing data [29, 30]

2.2. Application of MCS. With the rapid development of
handheld smart devices and communication technology,
MCS has become one of the most important ways to collect
sensing data. MCS has a very broad development space and
has been widely used in various fields. The main applications
include the following.

2.2.1. Environmental Monitoring. The MCS system uses sen-
sor devices carried by sensing participants to sense various
environmental information in the target area, such as air
quality, weather, and noise. In terms of sensing air quality
data information, literature [17] proposed an air quality
monitoring program that uses air quality sensors carried
by users to measure air pollution in their surroundings to
provide a theoretical basis for the control of pollution. To
measure air quality in a fine-grained and real-time manner,
Devarakonda et al. [18] proposed a vehicular-based mobile
sensing method. The method consists of two mobile plat-
forms, one of which is a mobile sensing box, which is used
deployed in public transportation, and the other is a per-
sonal sensing device that can be used for social pollution
sensing. In addition, Gao et al. [19] proposed a low-cost
mobile sensing method to monitor air quality. This method
uses the POI-oriented bus selection algorithm to select buses
for participation in environmental sensing activities and
deploys air quality sensors on these buses to increase the
coverage. In terms of sensing weather and noise data, in lit-
erature [20], Niforatos et al. proposed a hybrid crowdsour-
cing approach to estimate weather. This method uses
sensing data collected by sensing devices to evaluate and pre-
dict future weather. In literature [21], Rana et al. designed an
end-to-end noise mapping system based on MCS. This sys-
tem uses sensing equipment to measure environmental noise
and gather a large amount of user sensing data to construct a
city’s environmental noise map.
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Figure 1: Common sensors embedded in a smartphone.
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2.2.2. Smart Transportation. The MCS system uses sensor
equipment carried by users or vehicles to sense the road con-
ditions of a city. For instance, literature [22] proposed a pot-
hole patrol system that obtains sensing data collected by
vibration and GPS sensors to evaluate road surface condi-
tions. Mohan et al. [23] monitor road and traffic conditions
based on the mobility of smart device carriers and various
sensors embedded in smart devices. Biagioni et al. [24] use
a smartphone equipped with a map application to collect
GPS trajectory information, thereby tracking, matching,
and predicting the trajectory and arrival time of a vehicle.
Yan et al. [25] proposed a method for monitoring urban
traffic congestion based on cloud computing and MCS. This
method obtains sensing data from a smartphone carried by
the driver and provides a theoretical basis for controlling
traffic congestion based on these data. Based on the idea of
MCS, Wang et al. [26] studied how to extract actual road
traffic information from the reports of a large number of
unknown contributors.

2.2.3. Behavior Evaluation and Incident Discovery. The data
information sensed by the MCS system can be used to eval-
uate various human behaviors or predict and discover cer-
tain incidents in a timely manner. For instance, Bengtsson
et al. [27] established a model for estimating crowd behavior
and reactions when disasters occur by analyzing the data on
people’s behaviors sensed by users when an earthquake
occurs. In literature [28], Lee et al. proposed a geosocial
event detection method based on a large number of geo-
tagged Twitter messages to detect whether an area is in an
abnormal state. In literature [29], Weppner and Lukowicz
proposed a Bluetooth technology-based method for evaluat-
ing crowd density. This method uses information such as the
link structure between actively scanning Bluetooth devices,
the number of devices seen by a Bluetooth scan, teamwise
diversity of discovered devices, and ratio of discovered
devices in the current scan window to previous scan win-
dows to evaluate population density.

2.2.4. Social Service. The data and information sensed by the
MCS system can be used to improve urban management and
planning. For example, in literature [30], Mathur et al. pro-
posed a parking space statistics system. The system is based
on a passenger-side-facing ultrasonic range finder and a GPS
receiver to determine parking spot occupancy. In literature
[31], Wenqian Nan and Bin Guo proposed a campus activity
information collection and sharing system based on MCS.
The system collects sensing data through smartphones to
help students obtain timely, efficient, and comprehensive
campus activity information. In literature [32], Karamshuk
et al. chose a better geographic location for new retail stores
based on the population’s mobile pattern and geographic
information.

2.2.5. Indoor Positioning. The data and information sensed
by the MCS system can also be used for indoor positioning.
For example, in literature [33], Gao et al. proposed a floor
reconstruction system that collects information, such as
location, size, and direction, and combines the user’s move-

ment trajectory and the locations where images are taken to
complete floor plans with hallway connectivity, room sizes,
and shapes. In literature [34], Zhang et al. proposed an
indoor navigation system that includes three components,
namely, map generation, localization, and navigation, where
map generation is implemented based on crowdsensing the-
ory. In literature [35], Teng et al. proposed an indoor-
outdoor navigation service based on MCS technology. The
service enables passengers to easily deploy indoor and out-
door navigation services for subway transportation systems.

3. Key Technology of MCS

In the field of MCS research, task allocation and incentive
methods have received extensive attention from researchers.
In this section, we summarize the research status of these
two topics.

3.1. Task Allocation Method. The assignment of sensing
tasks to sensing task participants is one of the main tasks
of MCS systems [36–73]. In this section, we summarize
existing research on task allocation methods from the fol-
lowing aspects: time, space, cost, benefit, and privacy.

3.1.1. Task Allocation Methods considering Time and Space
Factors. Task allocation methods that consider the time fac-
tor include the following. In literature [36], Xiao et al. stud-
ied how to allocate tasks in a social network environment
and proposed two algorithms for online task allocation and
offline task allocation. Both algorithms can minimize the
average makespan. In literature [37], Yao et al. studied
how to minimize the task allocation time in MCS system.
Based on historical encounter information and real-time
task allocation time, they proposed offline and online task
allocation methods. In literature [38], Li and Zhang studied
the multitask assignment problem with time constraints. In
this paper, the problem is first modeled as a combinatorial
optimization problem with two time constraints, aiming to
maximize the utility of the MCS platform. On this basis,
two heuristic methods are proposed to overcome this issue.

Task allocation methods that consider the space factor
include the following. According to the uncertainty of the
location and the trajectory of the participants in MCS sys-
tem, in literature [39], Pournajaf et al. designed a model
for spatial task allocation. The model is based on a dynamic
and adaptive data-driven method to allocate moving partic-
ipants with uncertain trajectories to sensing tasks in a nearly
optimal way. In addition, Pournajaf et al. also discussed the
problem of spatial task allocation when workers use spatial
cloaking to obfuscate their locations in literature [40]. In this
literature, they proposed a two-stage optimization algorithm
to obtain a feasible solution. In literature [41], He et al. stud-
ied the problem of assigning location-dependent tasks by
considering the spatial movement constraints of sensing task
participants and the geographic characteristics of the sensing
task. On this basis, to obtain an approximate optimal solu-
tion to the problem, they proposed a task allocation mecha-
nism based on the local ratio, which decomposes the
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problem into several subproblems by modifying the reward
function in each iteration.

In literature [42], Zhang et al. proposed a user selection
framework. This framework first predicts the coverage prob-
ability of users based on their historical records. On this
basis, this framework computes the joint coverage probabil-
ity of multiple users as a combined set and selects the near-
minimal set of uses. In literature [43], Xiong et al. proposed
a task allocation framework. This framework first predicts
the call and mobility of mobile users based on their historical
records. On this basis, this framework selects a group of
users in each sensing cycle for piggyback crowdsensing task
participation so that coverage quality close to the maximum
can be obtained without exceeding the incentive budget. In
literature [44], Tao and Song proposed a task allocation
algorithm based on the clustering effect. In the process of
designing the algorithm, not only how to maximize the data
quality and the profit of workers are considered but also the
clustering effect of tasks and the impact of different geo-
graphic distributions of tasks. In literature [45], Wu et al.
analyzed the possibility of applying crowdsensing technol-
ogy for sweep coverage. They proposed a framework to solve
how to arrange workers to sweep large-scale target areas
under dynamically changing quality requirements.

Literature [46] is aimed at maximizing the total task
quality under the constraint of worker travel distance bud-
gets. Gong et al. proposed location-based task allocation
and path planning methods and designed a travel-distance-
balance-based method, task-density-based method, bioin-
spired travel-distance-balance-based method, and quality-
based method. All four methods work online to assign tasks
when new work arrives. In literature [47], in terms of how to
allocate each task to appropriate participants, Zhao et al.
proposed a destination-aware task allocation method. This
method uses a tree-decomposition algorithm to separate
participants into independent clusters and utilizes a depth-
first search method to prune nonpromising assignments. In
literature [48], Tan et al. proposed a three-phase task alloca-
tion method for multiple cooperative tasks. This method
uses real-life relationships to form compatible groups and
increases task coverage through group-oriented cooperation
while achieving good task cooperation quality.

In some research literature, space-time factors are also
considered. In literature [49], Reddy et al. proposed a task
allocation framework to efficiently complete a sensing task.
In the process of designing the framework, the time and
space factors and the behavior habits of the participants were
considered. In literature [50], Cardone et al. proposed a
crowdsensing platform, the platform profile users based on
time, location, and social interaction. Then, participants
are autonomously selected based on a matching algorithm
to maximize sensing quality. According to the question of
how to use a limited number of heterogeneous sensing vehi-
cles to continuously collect comprehensive spatiotemporal
sensing data, Liu et al. [51] proposed a sensing vehicle selec-
tion method. In this method, a utility function is designed
based on the spatial distribution of the sensing vehicle and
the sensing interface and the temporospatial coverage of
the collected sensing data to estimate the sensing ability of

the vehicle. The mapping of sensing tasks and mobile vehi-
cles is realized based on the utility of the vehicle and the
restriction of the number of recruited sensing vehicles.

In literature [52], Karaliopoulos et al. proposed a worker
recruitment algorithm that translates the statistics of indi-
vidual worker mobility to statistics of spacetime path forma-
tion. Then, the recruitment of participants is realized under
the premise of ensuring the sensing coverage and minimiz-
ing consumption. In literature [53], according to the prob-
lem that sensing tasks are location-dependent and have
time features, Yang et al. proposed a heterogeneous task allo-
cation algorithm to ensure sensing quality. In literature [54],
Zeng et al. proposed a task allocation framework based on
the multisecret sharing method to preserve location privacy
in task allocation. In the process of task allocation, tasks
and participants are required to provide secret sharing of
their real location information to fog nodes. On this basis,
the paper also considered time-oriented and distance-
oriented task allocation optimization and proposed an adap-
tive top-k-based participant selection method to select par-
ticipants. In literature [55], Wei et al. proposed a task
allocation framework based on subarea division learning,
which uses an iterative self-organizing data analysis method
to perform uneven subarea division considering historical
data and spatiotemporal correlations. On this basis, the most
suitable cells and participants are selected.

In literature [56], to minimize the total incentive budget
and maximize data quality, Wang et al. proposed a two-stage
task allocation method based on the implicit spatiotemporal
correlations among heterogeneous tasks. To enhance the
efficiency of allocation search, a decomposition and combi-
nation framework was designed to accommodate large-
scale problem scenarios. In literature [57], Yucel and Bulut
proposed a task assignment algorithm based on dynamic
programming, which comprehensively considers worker
preferences and the influence of each task assignment on
the long-term utility of participants given the spatiotemporal
characteristics of tasks. In literature [58], Zhang J. and
Zhang X. proposed a task assignment method based on
mobility prediction to assign appropriate sensing tasks to
participants. This method selects suitable participants for
task assignment by considering the participants’ historical
movement trajectory and the time and space characteristics
of the task. In literature [59], Wang et al. proposed a partic-
ipant recruitment mechanism for time-sensitive and
location-dependent tasks. This mechanism combines spatio-
temporal context information with content information to
characterize participants’ preferences for tasks in mobile
crowdsensing systems, thereby improving the accuracy of
participant recruitment.

3.1.2. Task Allocation Methods considering Costs and
Benefits. Costs and benefits are important factors to consider
in the process of designing task allocation methods. In the
MCS system, the minimum sensing cost and the maximum
sensing benefit are usually considered as optimization goals
[60–68].

In literature [60], Pham et al. proposed a participant
selection method based on an evolutionary algorithm that
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can obtain high-quality and low-cost data from participants.
In literature [61], Wang et al. proposed a multisensor task
scheduling algorithm that formalized the minimum energy
multisensor task scheduling problem as an integer linear
programming problem and provided a heuristic solution to
minimize energy consumption under the premise of guaran-
teed sensing quality. In literature [62], with the goal of min-
imizing the allocation cost and satisfying fairness, Liu et al.
modeled each worker’s processing ability as a worker pro-
cessing queue and converted the constraint of task assign-
ment frequency to task virtual queues. The Lyapunov
optimization was used to control actions in each time slot.
In literature [63], Yucel and Bulut proposed a user-
satisfaction-aware task allocation method to maximize sys-
tem utility and user satisfaction simultaneously. Since the
problem is NP-complete, the authors first solved the prob-
lem via integer linear programming and supplied two
heuristic-based polynomial solutions. In literature [64],
Yucel et al. proposed a task allocation method to address
the conflict between the coverage preferences of service
requesters and the profit preferences of budget-constrained
participants.

In addition, when designing task allocation methods,
some researchers consider not only cost or benefit factors
but also time or space factors.

In literature [65], Song et al. proposed a multitask-
oriented participant selection method that can collect the
maximum amount of sensing data in the time and space
dimensions for all sensing tasks under budget constraints.
In literature [66], Li et al. proposed a dynamic participant
recruitment algorithm to select participants to perform sens-
ing tasks under certain constraints. This algorithm mini-
mizes the cost of sensing while maintaining a certain level
of probabilistic coverage. In literature [67], Wang et al. pro-
posed a task allocation framework that combines Bayesian
inference, compressive sensing, and active learning to
dynamically select a minimum number of subareas for task
allocation. This method reduces the corresponding budget
while ensuring the sensing quality. In literature [68], Xiong
et al. defined a spatiotemporal coverage metric, named k-
depth coverage that considers two factors, namely, the num-
ber of sensor readings collected in each covered subarea and
the proportion of subareas covered by sensor readings. A
task allocation framework that enhances the efficiency of
sensing data collection without increasing consumption
was then proposed.

3.1.3. Task Allocation Methods considering Privacy. In the
process of task assignment and data collection, the MCS sys-
tem collects detailed sensing data from users, which
undoubtedly poses a threat to the privacy of users [69–73].
In literature [69], Wang et al. proposed a task assignment
framework that protects location privacy by obscuring par-
ticipants’ reported locations under the guarantee of differen-
tial privacy. In literature [70], Wu et al. proposed a privacy-
aware task allocation mechanism. They first presented a fog-
assisted architecture that can help the spatial crowdsourcing
server allocate tasks and aggregate sensing data in a privacy-
aware manner. On this basis, they proposed a privacy-aware

task allocation and sensing data aggregation mechanism that
provides strong privacy protection.

In literature [71], Wang et al. proposed a personalized
privacy-preserving task allocation framework. Each partici-
pant in the sensing task uploads their personal privacy level
and obfuscated distance to the server rather than their true
distance or location. In literature [72], Zhao et al. proposed
a bilateral privacy-preserving task allocation method that
cannot only protect the privacy of task participants but also
protect the privacy of task requesters and minimize travel
distance. In literature [73], Wang et al. proposed a task allo-
cation algorithm that performs task allocation based on the
mapping accuracy of sensing tasks and participants while
preserving participants’ location privacy. This algorithm
cannot only protect the privacy of participants but also effec-
tively enhance the overall performance of the crowdsensing
system.

3.2. Incentive Methods. In the MCS system, incentives can
effectively motivate workers to participate in sensing tasks
[74–95]. In this section, we summarize the existing research
on incentive methods from the following aspects: cost, ben-
efit, privacy, and quality.

3.2.1. Incentive Methods considering Costs and Benefits. In
the MCS system, the budget is usually relatively limited, so
cost and benefit are key factors to consider when designing
an incentive method [74–86]. Some incentive methods are
designed based on auction mechanisms. For example, in lit-
erature [74], Jaimes et al. proposed a recurrent reverse auc-
tion incentive method that uses a greedy mechanism to
choose a representative subset of users based on location
under a given fixed budget. In literature [75], Zhao et al. pro-
posed an online incentive method based on an online auc-
tion, in which participants report their strategic profiles to
the crowdsourcer in an online mode. The crowdsourcer then
selects participants to complete a specific number of sensing
tasks before the deadline while minimizing the total pay-
ment. In literature [76], Zheng et al. considered budget fea-
sibility in designing an incentive method. They first
modeled the weighted coverage maximization under differ-
ent coverage requirements in MCS as budget-limited reverse
auctions. On this basis, a deterministic method for maximiz-
ing weighted coverage in MCS was proposed and theoreti-
cally shown to improve performance.

In literature [77], because users have heterogeneous
sensing costs in different regions of interest, Zhang et al.
designed two optimization models to characterize the quality
of service for MCS applications. They proposed a budget-
limited incentive mechanism based on reverse auctions,
thereby maximizing the numbers of recruited users and the
utility functions for all regions of interest across the sensing
area. In literature [78], Liu et al. proposed a monetary-based
incentive method. In the article, they proposed two system
models for single tasks and multiple tasks. In the single-
task-oriented model, an incentive method was designed
based on game theory, and it was proven that a Nash equi-
librium exists. In the multi-task-oriented model, an
auction-based incentive method was proposed, and it was
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proven that the incentive method has the desirable proper-
ties of truthfulness, profitability, individual rationality, and
computational efficiency. In addition, while designing the
incentive method, the utility maximization problems of the
workers and crowdsourcer are simultaneously considered.

In literature [79], Wang et al. proposed a social awareness
reverse auction mechanism for how both the platform and
participants can obtain the greatest benefits when the budget
is limited. In this mechanism, the total contribution of partic-
ipants is the key to choosing winners, and the winners are paid
based on critical prices. In literature [80],Wang et al. proposed
an incentive method for budget-constrained mobile crowd-
sensing systems. They presented a reverse-auction framework
to model interactions between workers and the platform.
Moreover, an online incentive mechanism was proposed to
motivate users based on remuneration determination and
online winner selection strategies.

In addition, in literature [81], Zhao and Liu proposed an
incentive method for vehicular crowdsensing. To maximize
the overall utility of the vehicle driver, deep reinforcement
learning technology was used to derive the optimal long-
term sensing strategy for all vehicles. In literature [82], Li
et al. proposed a point-of-interest- (POI-) tagging app-
assisted incentive method that models the interactions of
users, platforms, and apps through a three-stage decision
process. The app first determines the POI-tagging price to
maximize the payoff. The platform and the user then decide
how to determine the task reward and choose edges to be
tagged and how to choose the best task to perform,
respectively.

In literature [83], Nie et al. proposed an incentive
method that formalized the social influence of users and
the strategic interconnections of service providers into a
game model. The model optimizes the players’ decisions to
achieve their individual objectives to maximize the profits
of service providers and maximize the utility of users. In lit-
erature [84], Li et al. designed an incentive method for
crowdsensing under continuous and time-varying scenarios.
First, the incentive problem is modeled as a three-stage
Stackelberg game. On this basis, the method uses the Lyapu-
nov optimization to solve the issue of users’ long-term par-
ticipation and guarantee the platform’s profit. In addition,
the method calculates the users’ interests in tasks based on
the computing capabilities of their mobile devices.

In literature [85], Han et al. proposed an incentive
method for the MCS scheduling problem. In this article,
the owner of a mobile crowdsensing application publishes
sensing tasks; then, participants compete for sensing tasks
based on their respective available time periods and sensing
costs. Finally, the task publisher schedules and pays partici-
pants to maximize its own sensing revenue under a certain
budget. In literature [86], Ji and Chen proposed an incentive
method for MCS, where each participant has a uniform
sensing subtask length. Furthermore, the authors prove that
this mechanism can achieve perfect Bayesian equilibrium
and maximize platform utility.

3.2.2. Incentive Methods considering Privacy. In the MCS
system, the privacy factor must also be considered in the

process of incentive method design. In literature [87], Jin
et al. proposed an incentive method for MCS that chooses
participants who are likely to supply reliable data and com-
pensates them for the cost of privacy and sensing leakage. In
literature [88], according to most existing incentive
methods, only consider how to compensate participants’
sensing cost, and the cost incurred by potential privacy leak-
age is ignored. Sun et al. proposed a contract-based person-
alized privacy preserving incentive method that supplies
personalized payments for participants as compensation
for privacy costs while achieving accurate truth discovery.

In literature [89], Liu et al. proposed an incentive
method based on game theory and deep learning. The goal
of this method is to ensure the availability of sensing data
and maximize the utilities of the platform and participants
while protecting the privacy of participants. In literature
[90], Zhao et al. proposed a privacy and reliability-aware
real-time incentive system that simultaneously solves the
three problems of incentive method design, privacy preser-
vation, and data reliability estimation. The system can effec-
tively solve the problems of workers’ calculation and
communication costs and unfair reward distribution.

3.2.3. Incentive Methods considering Quality. In the MCS
system, quality factors are also considered in the process of
designing incentive methods. In literature [91], Jin et al.
added users’ quality of information as a key indicator to
the design of the incentive mechanism and proposed an
incentive method based on reverse combinatorial auctions.
This mechanism enables the platform to obtain high-
quality data at a very low cost. In literature [92], Hou and
Pei proposed an incentive method for video collection. This
method introduces multiple parameters to evaluate the qual-
ity of the collected data. Based on the social relationships of
participants, they proposed a social-aware incentive method
to achieve full-view coverage for a target by efficiently col-
lecting video clips. Moreover, the method satisfies the char-
acteristics of truth, individual rationality, and computational
efficiency.

In literature [93], Liu et al. proposed an incentive
method based on behavioral economics. The mechanism
consists of two components, namely, participant selection
and payment decision. This mechanism can effectively moti-
vate participants to complete sensing tasks in areas with
sparse participants, thereby ensuring the completion rate of
the tasks. In literature [94], Zhao et al. proposed an incentive
method based on privacy preservation and quality awareness
that can preserve data privacy while evaluating data reliabil-
ity. In addition, data quality is quantified based on the devi-
ation between the ground truth and reliable data. Finally, the
method assigns monetary rewards to task participants based
on the quality of data they provide. In literature [95], Fang
et al. proposed an online incentive method oriented to social
crowdsensing networks. To maximize the accumulated
social welfare achieved by the network, the authors designed
a user selection mechanism and payment determination
mechanism. The article considered two aspects when paying
participants: data quality and social influence.

6 Wireless Communications and Mobile Computing



4. Other Key Technologies in MCS

In the MCS system, data forwarding, sensing quality assur-
ance, and evaluation have also been studied by many
researchers. In this section, we summarize these three parts.

4.1. Data Transmission Methods. In the MCS system, effi-
cient data forwarding methods can effectively guarantee
the sensing quality [96–102]. In literature [96], to build sens-
ing maps satisfying specific sensing quality with low energy
consumption and delay, Zhao et al. proposed a cooperative
sensing and data forwarding framework. They presented
two cooperative forwarding mechanisms by leveraging data
fusion. These two forwarding mechanisms are epidemic
routing with fusion and binary spray-and-wait with fusion.
Cooperative forwarding mechanisms can obtain a satisfac-
tory tradeoff between delay and overhead. In literature
[97], Higuchi et al. proposed an information diffusion
method for sensing data collection through an opportunistic
network. This method first detects groups of pedestrians
based on the history of radio connectivity information
between mobile users and maintains a local network. On this
basis, this method collaboratively performs neighbor discov-
ery and link management with the local network members
to improve the energy efficiency of neighbor discovery and
minimize transmission delay.

In literature [98], Wang et al. proposed a method to eval-
uate a node’s data forwarding ability. The paper first deter-
mines whether the encountered node is able to forward
data to the destination and then calculates the probability
of the node forwarding data to the destination based on
the intercontact time distribution. Only nodes with high
metric values can carry data. In literature [99], to obtain
energy-efficient transmission, Xiao et al. proposed a data
transmission protocol that deploys static nodes based on
the “Archimedes-curve” model to aid data forwarding.

In literature [100], Jung and Baek proposed a multihop
sensing data forwarding algorithm for crowdsensing net-
works. A main feature of this algorithm is the abbreviation
of an intermediate node’s address. In addition, in terms of
latency and delivery ratio, the algorithm can obtain better
network performance. In literature [101], Ghafoor et al. pro-
posed a routing algorithm based on fuzzy logic. The algo-
rithm combines human social behavior, link quality, and
node quality to make routing decisions. Furthermore, the
algorithm uses the signal-to-noise ratio to ensure good link
quality node selection, a friendship mechanism for trust
management, and the remaining energy for long-lasting sen-
sor lifetime.

In literature [102], Peng et al. proposed a data transmis-
sion method based on the city public transportation system
that selects mobile nodes to transmit data by maximizing
the incremental transmission utility. This paper makes full
use of the advantages of buses in public transportation sys-
tems to realize the rapid transmission of large-scale sensed
data. In literature [103], He et al. proposed a spatiotemporal
opportunistic transmission algorithm that defines spatio-
temporal encountering and visiting parameters. On this
basis, the algorithm searches publishers or participants of

sensing tasks based on the spatiotemporal encountering
parameters and tracks the publishers or participants based
on the spatiotemporal visiting parameters to realize reliable
opportunistic transmission across regions and time intervals.

4.2. Sensing Quality Assurance and Evaluation Methods.
Sensing quality is a measure of sensing results that is used
to quantify the degree of satisfaction of users with sensing
information [104–108]. In literature [104], Vergara-
Laurens et al. proposed a hybrid privacy-preserving method
based on data obfuscation, anonymization, and encryption
techniques to guarantee the quality of information and pri-
vacy protection without increasing energy consumption. In
literature [105], according to the contradiction between
sensing cost and sensing quality, Wang et al. proposed a
sparse crowdsensing paradigm. The paradigm uses the spa-
tiotemporal correlation among data sensed in different sub-
areas to reduce the required number of sensing tasks. This
paradigm guarantees the sensing quality and effectively
reduces the sensing cost. In literature [106], Marjanović
et al. proposed a framework for green MCS. This framework
can effectively eliminate redundant sensor activity while
meeting sensing coverage requirements and sensing quality
and consequently reduces the overall energy consumption
of an MCS application.

In literature [107], An et al. proposed a crowdsensing
quality control model based on a two-consensus blockchain.
The article introduces the idea of a blockchain into a quality
control model. On this basis, a credit-based verifier selection
method and a two-consensus method are proposed to
achieve the nonrepudiation and nontampering of informa-
tion in crowdsensing. Finally, the article proposes node
matching and quality grading evaluation methods to help
task publishers obtain high-quality sensing data. In literature
[108], Liu et al. designed a social team crowdsourcing frame-
work for social Internet of Things systems. To design the
framework, they introduced the trust relationships between
nodes into the quality evaluation of the sensing data. Then,
they proposed a task allocation algorithm in which the sens-
ing quality guides the participant selection to maximize the
overall task valuation under a budget constraint.

5. Conclusions and Future Work

MCS uses ubiquitous smart devices and network access tech-
nology to migrate sensing tasks from a centralized platform
to a distributed computing terminal across time and space
and provides a new approach to solving large-scale, diversi-
fied, and complex sensing problems. This article summarizes
the current research progress of MCS to promote attention
and research of this emerging technology by scholars in
related fields. We expect that the key research directions of
MCS in the future will include the following: (1) research
on hybrid network application systems that combine posi-
tioning technology, edge computing technology, etc.; (2)
research on general task allocation methods to address
large-scale and uncertain sensing environments; (3) research
on cross-layer incentive methods based on the architecture
of MCS to handle uncertain sensing environments; (4)
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research on efficient sensing data transmission methods
based on cloud computing and vehicle network theory; and
(5) research on multiobjective optimization methods in
large-scale sensing environments based on related technolo-
gies in the field of big data to guarantee the quality of sensing
data.
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