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In order to realize the stable operation of the DC microgrid, a hierarchical coordinated control method of the DC microgrid based
on the recursive fuzzy neural network algorithm is designed in this article. Based on the analysis of the working mode and
topology of the DC microgrid, the droop control coefficient is calculated through power flow calculation, and then, a three-
layer control strategy is designed combined with a hierarchical coordinated control algorithm to realize the distributed
coordinated control of DC microgrid. Combined with the recursive fuzzy neural network algorithm, the real-time amplitude
limiting and convergence of the output of the distributed coordination controller are realized. Experimental results show that
under the control of this method, the changes in current and voltage at each port of the DC microgrid are relatively stable
during off-grid switching. In addition, this method effectively reduces the fault rate of power grid lines, which fully proves the
feasibility and reliability of this method.

1. Introduction

With the increasing proportion of renewable energy such as
solar energy and wind energy connected to the power grid,
microgrid has been widely used as an important form of dis-
tributed energy access [1]. Since the microgrid contains a
large number of DC power supplies, such as photovoltaic,
fuel cells, and energy storage, as well as DC loads, such as
LED lighting and electric vehicles, the traditional AC micro-
grid needs the connection of commutators to access these
power supplies and loads, which increases the cost and loss.
Therefore, in recent years, the DC microgrid has attracted
more and more attention from academic and industrial
circles at home and abroad [2]. With the continuous devel-
opment of power electronics technology, insulated gate
bipolar transistor (IGBT) and digital signal processing
(DSP) appear one after another. A voltage source converter
(VSC) is mainly composed of IGBT, and its control system
is mainly composed of DSP. VSC can be self-commutating
without an AC system providing commutation voltage. Sec-
ondly, VSC can independently control the output of active

and reactive power through IGBT. Finally, when the power
flow reverses, the direction of DC current reverses, and the
DC voltage remains unchanged. This is the theoretical basis
of parallel multiterminal flexible DC (VSC-MTDC). Nowa-
days, VSC-MTDC is the main topology of the DC microgrid.
The construction of a DC microgrid based on VSC-MTDC
is an effective way to solve DC load grid connection and
DC power consumption [3].

The multiterminal DC microgrid based on VSC-MTDC
has high control ability and flexibility compared with the
traditional AC microgrid, but its operation control strategy
is relatively complex. In particular, the control of DC voltage
is the most important control goal of a multiterminal DC
microgrid because it is related to the stability of DC power
flow. At present, the mainstream control strategies of multi-
terminal DC microgrids are mainly divided into two catego-
ries: one is single-point DC voltage control, and the other is
multipoint DC voltage control. Among them, single-point
DC voltage control is divided into master-slave control and
voltage margin control, and multipoint DC voltage control
is divided into voltage slope control and segmented voltage
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slope control [4]. Based on the background of multiterminal
flexible DC transmission, Reference [5] discusses the devel-
opment status and main control modes of multiterminal
DC microgrid and discusses the advantages and disadvan-
tages, existing problems, and protection methods of various
control modes. Reference [6] designed the DC microgrid
distributed coordination method based on finite time consis-
tency. In this control method, voltage secondary control and
power generation cost operation control are introduced
based on the original droop control, and each power gener-
ation unit is only communicated with the adjacent commu-
nication unit, and multiple control objectives such as voltage
stability and power generation cost minimization are
achieved by the finite time consistency algorithm. In Refer-
ence [7], a multisource coordinated control method for DC
microgrid based on virtual voltage is designed. Combined
with the idea of virtual voltage and autonomous decentra-
lized control, this method firstly analyzes the influence of
line resistance on current-sharing control in detail, proposes
a current-sharing control strategy based on virtual voltage,
and then proposes an improved dynamic consistency algo-
rithm, which can dynamically track and control the bus-
bar voltage at the outlet of each converter and quickly con-
verge the consistent value.

In the past few years, the neural network has been used
to identify and control the real-time value of a nonlinear sys-
tem, and the DC microgrid is essentially a nonlinear input-
output system. The recursive fuzzy neural network (RFNN)
combines many advantages of recurrent neural network
(RNN) and fuzzy control. It has the advantages of low-
level learning and computing ability, as well as high-level
human-like thinking and reasoning of fuzzy theory. Refer-
ence [8] proposed a servo-driven adaptive hybrid control
system of permanent magnet synchronous motor (PMSM)
based on self-evolving fuzzy neural network (RRSEFNN)
based on recursive radial basis function network (RBFN).
RRSEFNN combines the advantages of the self-evolving
fuzzy neural network, recursive neural network, and RBFN.
The simulation results show that this method has accurate
dynamic response ability. In Reference [9], a backstepping
control system with specified tracking performance using
tracking error constraints and recursive fuzzy neural net-
work (RFNN) is proposed for strict feedback nonlinear
dynamic systems. Through the control of a nonlinear system
and a manipulator, the effectiveness of the control method is
verified. However, the real-time output of the DC microgrid
controller is usually unstable, so a recursive fuzzy neural
algorithm can be used to optimize the output of the DC
microgrid controller to maintain the amplitude limitation
and convergence of controller output.

In view of the above problems, a distributed coordinated
control method of DC microgrid based on power flow calcu-
lation is designed in this article. Based on the analysis of the
working mode of the DC microgrid, the droop control coef-
ficient of the DC microgrid is calculated through power flow
calculation, and then, combined with the hierarchical con-
trol strategy, a three-layer control mode is designed to
enhance the feedback connection of the control process.
Among them, the first layer is equipment-level control,

and the second and third layers are system-level control to
realize the distributed coordinated control of the DC micro-
grid. In the third layer control of system level, a recursive
fuzzy neural network algorithm is introduced to optimize
the output of the hierarchical controller, so as to maintain
the amplitude limitation and convergence of output and
improve dynamic response ability of the controller.

2. Analysis of Working Mode of DC Microgrid

The topology of the DC microgrid is one of the research hot
spots at home and abroad. Many scholars have proposed dif-
ferent types of DC microgrid topologies. For example, the
Royal Swedish Institute of Technology proposed a mesh
structure interconnected by multiple converters; the Swedish
CIGRE Institute proposed a ring network structure similar
to multiterminal DC transmission. The layered structure of
the DC microgrid is proposed by Aachen University of
Technology according to different voltage levels. At present,
common topologies mainly include parallel dendrite topol-
ogy and ring network topology, as shown in Figure 1.

In Figure 1, the solid line represents the positive elec-
trode, and the dotted line represents the negative electrode.
The DC microgrid structure in this article adopts a ring net-
work topology. In this article, the working modes of DC
microgrid are summarized into five situations, the specific
contents of which are as follows:

Mode (1): grid-connected operation. The power genera-
tion system runs in MPPT (Maximum Power Point Track-
ing) mode, the battery converter and two-way AC/DC
adopt voltage sag control, and the battery works in charging
or standby state according to the charge.

Mode (2): grid-connected operation. The power genera-
tion system operates in MPPT mode with a heavy load.
The bidirectional AC/DC works in the current-limiting state
of full power and needs to be discharged by the battery to
maintain the load terminal voltage stability.

Mode (3): off-grid operation. The power generation sys-
tem operates in MPPT mode, and the load terminal voltage
is kept stable by the battery.

Mode (4): off-grid operation under light load (load
power is less than the output power of PV MPPT mode con-
trol). The battery is full (SOC > 90%), and the power gener-
ation system operates in constant voltage mode to keep the
load terminal voltage constant.

Mode (5): off-grid operation. Under heavy load (load is
greater than the output power of PV MPPT control), the
battery has reached the maximum discharge current or the
discharge is too low (SOC < 40%), the power generation sys-
tem operates in MPPT mode, and part of the load needs to
be removed to keep the voltage at the load end constant,
so as to ensure the power supply of important loads.

In modes (1) and (2) in the parallel operation mode and
mode (3) which is the off-grid run time, the battery con-
verter and bidirectional AC/DC converter use droop control,
load voltage fluctuates with the load, and some is more sen-
sitive to voltage change of load to maintain a constant volt-
age, so it needs to compensate the voltage of the load [10,
11]. In modes (4) and (5), the load terminal voltage is
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accomplished by the photovoltaic DC/DC converter. There-
fore, the load terminal voltage control error needs to be
transmitted to these three converters [12].

3. Power Flow Calculation

Based on the consideration of droop control, this article real-
izes the inwards calculation. The DC microgrid structure
studied in this paper is shown in Figure 2.

In Figure 2, DC bus voltage stability is mainly achieved
by the AC power source and battery. The AC power source
is connected to the DC microgrid through a two-way AC/
DC rectifier. The battery is connected to the DC microgrid
through a DC/DC converter. The photovoltaic source is con-
nected to the DC microgrid through a DC-DC converter and
mainly operates in the MPPT mode. The load connected to
the DC microgrid is set as a constant power load.

In the DC microgrid power flow, nodes can be divided
into two types [13]. In this study, they are defined as W
nodes and Q nodes, where the node power equation of Q
node is

Qdci =Udci〠
j∈i
YijUdcj, ð1Þ

where j ∈ i means that node j after ∑Yij must be directly
connected to node i. Therefore, the nonlinear equations of
the voltage of each node can be written according to the
power column of each node. According to the power control
of DC microgrid photovoltaic grid inverter and wind power,
constant power load equipment can see as Q node, but the
energy storage device (such as battery and supercapacitor)
converter and two-way parallel converter can neither as Q
node nor as W here to define it as node WD, and the need
to meet

Qdci =Udci〠
j

YijUdcj,

Udci =U ref
0i − kdiIdci,

Idci =
Qdci

Udci
:

8>>>>>><
>>>>>>:

ð2Þ

After sorting out formula (2), we can get

U ref
0i =Udci + kdi〠

j

Y ijUdcj: ð3Þ

When the bidirectional converter and battery grid-
connected converter is controlled by drooping and the PV
is controlled by MPPT, the power flow calculation formula
is as follows when the load is constant power load:

U ref
dc s = ks

1
r12

+
1
r13

� �
Udc s −

Udc b

r12
−
Udc l

r13

� �
+Udc s,

U ref
dc b = kb

1
r12

+
1
r24

� �
Udc b −

Udc s

R12
−
Udc p

r24

� �
+Udc b,

Ql =Udc l
1
r13

+
1
r34

� �
Udc l −

Udc s

r13
−
Udc p

r34

� �
,

Qpv =Udc p
1
r24

+
1
r34

� �
Udc p −

Udc b

r24
−
Udc l

r34

� �
:

ð4Þ

Given the node power of Q node and the reference volt-
age value and sag coefficient atWD node, the voltage of each
node can be obtained by solving equation (4), and then, the
power flow of each branch can be obtained [14]. According
to formula (4), the influence of reference voltage, droop
coefficient, and line impedance must be considered in the
coordinated control. For example, suppose the PV adopts
the MPPT mode to output power of 5 kW, and the power
of constant power load is 10 kW. If the output of the AC/
DC converter and battery converter is expected to be equal,
the sagging control parameters of the two converters can be
set to be the same; that is, when U ref

dc s =U ref
dc b = 520V, ks =

kb = 0:5, and r12 = r13 = r24 = r34 = 2Ω, the voltage and
injected power of each node are shown in Table 1.

Obviously, bidirectional converter and battery converter
controlled by voltage sag use the same reference voltage
value and sag coefficient, their output is not the same, which
is related to the network topology and line resistance, and
the output of each converter can be changed by changing
the reference voltage value and sag coefficient [15]. For
example, the reference voltage of the power battery increases
as U ref

dc b = 525V, other parameters are constant, the AC/DC
converter and battery converter output, respectively, 2.2 kW
and 3.2 kW, and output of the storage battery is the

(a) Parallel dendrite topology (b) Ring network topology

Figure 1: Common topology of DC microgrid.
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proportion of increase; reducing the reference voltage of the
power battery, the battery output will decrease, even by the
discharge mode into charging mode. Similarly, changing
the droop coefficient can also change the output of the
converter.

To sum up, in the coordinated control of a DC micro-
grid, power flow calculation must be carried out first to ver-
ify whether the setting of the voltage reference value and sag
coefficient matches the expected value of output power of
each converter [16].

4. Hierarchical Coordinated Control of
DC Microgrid

On the basis of the power flow calculation of the DC micro-
grid above, the droop control coefficient is calculated. Then,
the structure and algorithm operation of the recursive fuzzy
neural network are analyzed. The recursive fuzzy neural net-
work algorithm is used to enhance the feedback connection
of the control process, and a three-layer control strategy is
designed.

The three-layer control strategy can be divided into
device-level control and system-level control. Device-level
control is based on local information to accomplish some
basic control objectives similar to load distribution;
system-level control is used to manage and optimize the
whole system. The control objectives include the secondary
regulation of DC bus voltage and the improvement of sys-
tem operation efficiency, so as to achieve optimal operation.
In this study, layer 1 is device-level control and layer 2 and
layer 3 are system-level control.

4.1. Recursive Fuzzy Neural Network Analysis. The DC
microgrid controller is a complex dynamic system with non-
linear and large time-varying characteristics. Its mechanism
model is difficult to establish by conventional methods, and
the stability of complex system control is particularly impor-
tant in operation. Therefore, we limit and modify the output

of the DC microgrid controller through a recursive fuzzy
neural network to improve its convergence and dynamic
performance. The control structure diagram based on the
recursive fuzzy neural network algorithm in this paper is
shown in Figure 3.

4.1.1. Structure Design of RFNN Identifier. The recursive
fuzzy neural network is a kind of optimal recursive neural
network, which uses the recursive network to realize fuzzy
inference of the output results of the neural network. It has
the advantages of both recursive neural network and fuzzy
logic, which not only can reflect the dynamic mapping rela-
tionship between the output results of the neural network
but also has the ability of qualitative knowledge expression,
which is easy to determine the structure of the network
and the parameters of neurons.

The recurrent fuzzy neural network model can be stored
in the form of feedback connection inside information, mak-
ing the network output not only affected by the current of
input data but also influenced by historical input and output
data, thus forming a global or local recursive network struc-
ture, which more effectively deals with the DC microgrid
nonlinear mapping problem. The network structure of the
recursive fuzzy neural network (RFNN) algorithm is shown
in Figure 4.

In Figure 4, the recursive fuzzy neural network is divided
into six levels, namely, the input layer, the membership
layer, the rule layer, the recurrent layer, the TSK fuzzy layer,
and the output layer.

Layer 1 is the input layer. Each node of this layer is
directly connected with the input vector, and the input value
can be transmitted to the next layer. The input-output rela-
tionship of the network is

o 1ð Þ
i = xi: ð5Þ

Layer 2 is the membership layer. Usually, the member-
ship function is a Gaussian function, and each node in this
layer represents a membership function:

o 2ð Þ
ij = exp −

1
2

u 2ð Þ
j − μpij

σpij

 !22
4

3
5, j = 1, 2,⋯,m, ð6Þ

where μij
ð2Þ represents the mean of the jth membership

function of the ith input variable of the pth output mapping

AC/ DC

Load

DC/ DC

DC/ DC

Battery

Photovoltaic

Figure 2: DC microgrid structure drawing.

Table 1: Voltage and power injection at each node.

Node Voltage (V) Power (kW)

AC/DC converter 515 5

Accumulator converter 518 2

Constant power load 496 10

Photovoltaic converter 517 5
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relationship, σij
ð2Þ represents the variance of the jth mem-

bership function of the jth input variable of the pth output
mapping relationship,m is the number of membership func-
tions of each input variable, and oij

ð2Þ is the ith output value.
Layer 3 is the rule layer. The activation function is the

product function adopted by this layer, and a fuzzy logic rule
is a node:

o 3ð Þ
pj =

Yn
j=1

u 3ð Þ
pj , ð7Þ

where the degree to which the input data conforms to the
rule is expressed by the output strength of the jth rule node,
which is oj

ð3Þ:

Jsum = 〠
m

j=1
o 3ð Þ
j , ð8Þ

Jmax = arg max
1≤j≤m

oj
3ð Þ

� �
, ð9Þ

Jmin = arg min
1≤j≤m

oj
3ð Þ

� �
, ð10Þ

where the minimal activated degree of the rules is Jmin and
the maximal activated degree is Jmax, respectively.

Layer 4 is the recurrent layer. In the recursive layer, the
internal variable qj is introduced into the feedback link.
The activation function of the feedback link is a linear sum-
mation function, and this link is dynamic feedback:

o 4ð Þ
j = u 4ð Þ

j kð Þ + pj kð Þ, ð11Þ

pj k + 1ð Þ = ajo
4ð Þ
j kð Þ, ð12Þ

where aj ∈ ð0, 1Þ is a constant value and the output of the
jth internal feedback variables is represented as pj ðkÞ and
aj ∈ ð0, 1Þ.

Layer 5 is the T S fuzzy layer. Use T S type fuzzy rules
sum of each node. The operation is

o 5ð Þ
j = o 4ð Þ

j 〠
n

i=0
wijxi, ð13Þ

where the ith input variable is xi and the jth consequent
weight of the ith input variable is wij.

Layer 6 is the output layer. The calculation equation of
nodes is

o =
∑m

j=1o
5ð Þ
j

∑m
j=1o

4ð Þ
j

, ð14Þ

where i ∈ 1, 2,⋯, n ; j ∈ 1, 2,⋯,m.

4.1.2. Structure Design of RFNN Controller. The structure of
the RFNN controller is the same as that of the RFNN iden-
tifier, as shown in Figure 4, and its input-output relationship
expression is

YC kð Þ = GC XC
1 kð Þ, XC

2 kð Þ, uC kð Þ� 	
, ð15Þ

where ucðkÞ is the error e between the set value of the con-
troller output and the actual output value, x1

cðkÞ represent
the nonlinear mapping relationship of e in the rule layer,
and x2

cðkÞ represent the nonlinear mapping relationship of
e in the T S fuzzy layer.

4.1.3. Parameter Learning. The gradient descent method is
set as the parameter learning algorithm of the RFNN con-
troller and RFNN identifier, and their forward parameters
and consequent parameters are both online learning param-
eters. The online learning performance index is set to

J =
1
2
〠
N0

p=1
yp − yp′
� �2

: ð16Þ

According to the structural design of the RFNN identi-
fier in the previous section, as shown in Figure 4, the
approximation of y1 ′ to y1 is recursive convergence during
parameter learning. Therefore, the analysis shows that the
parameter update formula of the identifier network is

wp
ij k + 1ð Þ =wp

ij kð Þ − ηwij
∂J kð Þ
∂wp

ij

, ð17Þ

σpij k + 1ð Þ = σpij kð Þ − ησij
∂J kð Þ
∂σp

ij

: ð18Þ

RFNN
controller

+
– BSM

RFNN
Identifier

yr1

yc1

y1

e′1

y′1

y1

e1

Figure 3: The control structure diagram based on recursive fuzzy
neural network.
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At time k, the gradient value of each parameter of the
RFNN controller can be calculated by the gradient algo-
rithm, and the specific calculation equation is shown in for-
mulas (19) and (20). Since the RFNN controller adopts the
same design structure as the RFNN identifier, the parameter
learning of the RFNN controller also adopts the gradient
descent method. The model information provided by the
identifier for the output of the DC microgrid controller is
shown in formula (21). Based on the model information of
formula (21), formulas (17)(–)(20) are consistent with the
parameter update process of the RFNN controller and will
not be described in detail:

∂J
∂wp

ij

=
∂J
∂yp

∂yp
∂wp

ij

=
1
2

∂∑N0
p=1 yp − yp

:
� �2
∂yp

∂yp
∂wp

ij

= ep
∂ yp − yp

:
� �

∂yp

∂yp
∂wp

ij

= −ep
o 4ð Þ
pj

∑M
j=1o

4ð Þ
pj

,

ð19Þ

∂J
∂σp

ij

= −ep
∂yp
∂σp

ij

=
−2 × ep Wp

ijxio
4ð Þ
pj − o 5ð Þ

pj

� �
× u 2ð Þ

j − μpij

� �2
× o 3ð Þ

pj

∑M
j=1o

4ð Þ
pj

� �2
× σp

ij
3

,

ð20Þ

yp
~ =

−2 × ep Wp
ijxio

4ð Þ
pj − o 5ð Þ

pj

� �
× u 2ð Þ

j − μpij

� �
× o 3ð Þ

pj

∑M
j=1o

4ð Þ
pj

� �2
× σp

ij

:

ð21Þ
4.1.4. Adaptive Learning Algorithm and Its Convergence
Analysis. The learning rate is the most important determi-
nant of the neural network algorithm in the learning process.
A too high learning rate will cause the instability of the neu-
ral network algorithm and then make the whole learning
process fail. A too low learning rate will lead to the whole
learning process being too slow. To solve this problem, the
adaptive change method based on the Lyapunov framework
is adopted as the learning algorithm in this paper. The for-
mula is as follows:

ηw tð Þ = 1

max
k

∂yp tð Þ/∂wp
ij

� �2 , ð22Þ

ησ tð Þ = 1

max
k

∂yp tð Þ/∂σpij
� �2 : ð23Þ

On the premise of ensuring the convergence of neural
networks, in order to speed up the convergence process of
the neural network, this paper adopts the adaptive variable
learning rate. The convergence proof of adaptive learning
rate can be obtained by constructing the Lyapunov function.
Firstly, the Lyapunov function is constructed, as shown in
the following formula:

V tð Þ = J tð Þ = 1
2
〠
N0

p=1
e2p: ð24Þ

It can be obtained from formula (24):

ΔV tð Þ =V t + 1ð Þ −V tð Þ = 1
2
〠
N0

p=1
e2p t + 1ð Þ − e2p tð Þ
� �

: ð25Þ

When ΔV ≤ 0, the neural network algorithm is conver-
gent and stable, which is determined by the Lyapunov sta-
bility principle. According to the model structure of the
recursive fuzzy neural network algorithm, the following
equation can be obtained:

ΔV tð Þ = ΔV1 tð Þ + ΔV2 tð Þ+⋯+ΔVN0
tð Þ, ð26Þ

ΔVp tð Þ = Vp t + 1ð Þ −Vp tð Þ = 1
2

e2p t + 1ð Þ − e2p tð Þ
� �

:

ð27Þ
According to Reference [9], formula (28) can be

obtained:

Δe tð Þ = e t + 1ð Þ − e tð Þ ≅ ∂e tð Þ
∂X

� �T
ΔX, ð28Þ

where

∂e tð Þ
∂X

� �
=

∂e tð Þ
∂w

∂e tð Þ
∂σ

� �
, ð29Þ

ΔX = ΔwΔσ½ �T : ð30Þ
Theorem 1. When it is satisfied,

ηw tð Þ = 2

max
k

∂yp tð Þ/∂wp
ij

� �2 , ð31Þ

ησ tð Þ = 2

max
k

∂yp tð Þ/∂σpij
� �2 : ð32Þ

This neural network learning algorithm is convergent
and stable.

Proof of Theorem 1. Formulas (33) and (34) can be obtained
from formulas (17), (20), (26), and (28):

Δep tð Þ = −ep tð Þ 〠
Np

j=1
〠
n

i=0
ηwij

∂yp tð Þ
∂wp

ij

 !2
2
4 + 〠

Np

j=1
〠
n

i=0
η
μ
ij

∂yp tð Þ
∂μpij

 !2

+〠
Np

j=1
〠
n

i=0
ησij

∂yp tð Þ
∂σpij

 !2
3
5,

ð33Þ
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ΔVp tð Þ = −
1
2
e2p tð Þ 〠

Np

j=1
〠
n

i=0
ηwij

∂yp tð Þ
∂wp

ij

 !2

2 − ηwij
∂yp tð Þ
∂wp

ij

 !2" #8<
:

+ 〠
Np

j=1
〠
n

i=1
η
μ
ij

∂yp tð Þ
∂μpij

 !2

2 − η
μ
ij

∂yp tð Þ
∂μpij

 !2" #

+〠
Np

j=1
〠
n

i=1
ησij

∂yp tð Þ
∂σp

ij

 !2

2 − ησij
∂yp tð Þ
∂σpij

 !2" #9=
;:

ð34Þ
ep

2 ≥ 0 can be obtained according to equation (34). For
ΔV ≤ 0, formula (34) in braces is not less than zero. It is
obtained:

ηwij tð Þ <
2

∂yp tð Þ/∂wp
ij

� �2 , ð35Þ

ησij tð Þ <
2

∂yp tð Þ/∂σpij
� �2 : ð36Þ

For each type of parameter, in order to unify the learning
rate standard, the unified standard of the learning rate of
each type of parameter can be formulated by

ηw tð Þ < 2

max
k

∂yp tð Þ/∂wp
ij

� �2 , ð37Þ

ησ tð Þ < 2

max
k

∂yp tð Þ/∂σpij
� �2 : ð38Þ

Therefore, when the change of learning rate satisfies for-
mulas (37) and (38), the algorithm is convergent and stable,
and Theorem 1 is correct.

4.2. Layered Coordinated Control Process Design. On the
basis of the above analysis of the recursive fuzzy neural net-
work, the recursive fuzzy neural network algorithm is used
to enhance the feedback connection of the control process,
so as to form a three-layer coordinated control strategy.

4.2.1. Layer 1 Control. In the first layer control, each unit
only depends on its own injected power and port voltage
and other internal information, according to their own
droop characteristics to carry out load distribution, so as to
achieve supply and demand power balance [17, 18]. As for
the uncontrollable clean energy, such as photovoltaic power
supply, which generally generates electricity according to the
maximum power, it can be considered as a whole with
energy storage as controllable clean energy. In this case,
the droop method can be applied for control.

The droop control can be expressed as a linear function
of voltage and power. Therefore, the governing equation of
the first-layer control is set as follows:

v0 = V ref − diPi + Δv,

di = di0 − Δd:

(
ð39Þ

In the formula, v0 represents the voltage value of the cur-
rent operating point; V ref represents the reference voltage of
sag control; di represents the improved sag coefficient; di0
represents the original reference value of sag coefficient,
which is proportional to their respective capacities; and Δv
and Δd represent the changes in output voltage and sag coef-
ficient, respectively, which are determined by the control
results of the second and third layers, respectively.

4.2.2. Layer 2 Control. In the second layer, each control unit
calculates the average voltage value of the system through
the finite time consistency algorithm based on the voltage
information of itself and its connected communication units.

The voltage iteration formula of control unit i is

vi m + 1ð Þ =wii mð Þvi mð Þ +〠
j∈i
wij mð Þvj mð Þ, ð40Þ

where viðmÞ represents the output voltage value calculated
by element i after the mth iteration and wiiðmÞ and wijðmÞ
represent weights, which can adapt to the changes of system
communication topology and meet the requirements of
“plug and play” of distributed power supply. The average
uniform voltage of each unit is obtained after g iterations,
and its value is shown in

�v = vg1 = vg2 =⋯ = vgi =
1
n
〠
n

i=0
vi0, ð41Þ

where �v represents the average voltage, vgi represents the
voltage value calculated by element i after the gth iteration,
and vi0 represents the initial voltage of each element. At
the end of iteration, in view of the problem of voltage devi-
ation caused by droop control, the recursive fuzzy neural
network algorithm is used to fuzzy the voltage of each gen-
eration unit to realize the voltage correction and control.
The voltage deviation Δvi is obtained by comparing the aver-
age voltage with the given reference voltage. The calculation
process is as follows:

Δvi = Kpv +
Kiv

s

� �
V ref − �vð Þ, ð42Þ

where Kpv and Kiv represent fuzziness coefficient and mem-
bership coefficient, respectively.

4.2.3. Layer 3 Control. The primary objective of layer 3 con-
trol is to minimize the cost of generating electricity. In this
paper, uncontrollable clean energy, such as wind power
and photovoltaic, is matched with energy storage units to
change the situation that wind power and photovoltaic are
unimpeachable. Therefore, the distributed power supply in
the DC microgrid can be divided into internal combustion
power supply and clean energy for discussion.
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For the internal combustion type generation unit, the
fuel cost is much larger than the converter loss, so the cost
function mainly considers both the fuel cost and the mainte-
nance cost. For the ith internal combustion type generation
unit, PGi is its output power, and the cost function is shown
as follows:

CGiPGi
=MGiPGi + FGi αGi + βGi + λGiP

2
Gi

� 	
, ð43Þ

where CGi represents the cost of power generation, MGi rep-
resents the maintenance cost per unit power generation unit
i of the internal combustion engine, FGi represents the cost
of fuel per kilo calorie, and αGi, βGi, and λGi represent the
fuel cost coefficient of the gas turbine.

Clean energy generally outputs power through the con-
verter; at this time, the converter loss value becomes an
important factor affecting the cost of power generation.
Therefore, the cost function of controllable clean energy of
fuel cells includes three parts: fuel cost, maintenance cost,
and converter loss. For the jth controllable clean energy gen-
eration unit, PQj is its output power, and the cost function
can be expressed as

CQj PQj

� 	
= MQj + FQj

� 	
aQj + bQjPQj + cQjP

2
Qj

� �
: ð44Þ

In formula (44), PQj represents the output power unit of
the converter, MQj represents the maintenance cost per unit
power of the clean energy generation unit j, FQj represents
the cost per unit power of the fuel cell, and aQj, bQj, and
cQj represent the loss coefficient of the converter, corre-
sponding to the no-load loss, resistance loss, and power
device loss of the converter, respectively.

In the cost of wind power and photovoltaic power gener-
ation, fuel costs are not taken into account, and the cost of
energy storage is mainly taken into account in terms of
maintenance costs. Therefore, the cost functions of both
can be expressed in formula (44), except that the value of
PQj is 0 at this time. Since the whole composition of scenery
and energy storage is taken into account in this paper, the
overall cost function is finally expressed in the form of for-
mula (44).

In the process of stable operation, each generation unit
should also meet a series of constraints, including supply
and demand power balance constraints and maximum and
minimum power constraints. Formula (45) is the constraint
function:

〠
m

i=1
PGi + 〠

n

j=1
PQj − 〠

l

k=1
PLk = 0,

PGi,min ≤ PGi ≤ PGi,max,

PQj,min ≤ PQj ≤ PQj,max,

8>>>>><
>>>>>:

ð45Þ

where PLk represents the power consumed by the load.
When all generating units and loads meet the inequality

constraint conditions, the fuzzy correction value of the

droop coefficient can be obtained after processing by the
recursive fuzzy neural network algorithm. The calculation
process is as follows:

Δdi = Kpc +
Kic

s

� �
× C: ð46Þ

In the formula, Kpc and Kic represent the correction
coefficients of the recursive layer and the fuzzy layer, respec-
tively, and C represents the average cost, that is, the cost of
each generation unit after iterative convergence.

This enables layer 3 control. It can be seen that the units
with high generation costs bear less output power, so as to
realize the economic operation of the system while satisfying
the proportional distribution of load.

To sum up, this study carried out distributed and coordi-
nated control for the DC microgrid based on the above
working mode analysis and power flow calculation results.
The recursive fuzzy neural network algorithm is used to
enhance the feedback connection of the control process,
and the three-layer coordinated control can be formed [19].

In the recursive fuzzy neural network, an identifier and a
controller are set. Among them, the controller can output
the control signal according to the system error, combined
with the adaptive control law, and is used for the controlled
object, making the output result of the object load the
expected value range. The identifiers can identify the con-
trolled objects and provide object information for the adap-
tive adjustment of the controller.

Because processing layer 3 of the recursive fuzzy neural
network contains the dynamic feedback connection link,
when using the discriminator to identify the controlled
object, only the output value of the controlled object at the
previous time and the control signal value at the current
time are used as the input of the network, which can greatly
control the process.

Thus, the specific idea of the layered coordinated control
method for DC microgrid based on the recursive fuzzy neu-
ral network algorithm is shown in Figure 5.

Before the method is started, each unit is controlled by
the traditional droop control method. With this method
enabled, each cell relies on its local controller to exchange
information with its neighboring cells, including its own

Vref

vi

Droop control

Communication
connection

Layer 2 control

Layer 3 control

Ci,vi

vi

di
di0

Controlled objectController

Identifier

Recursive
processing
and fuzzy
processing

Figure 5: Block diagram of distributed coordinated control of DC
microgrid.
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operating voltage and cost. After the initial cost is iteratively
averaged in the third layer of control, Δdi is used to modify
the sag coefficient to obtain di, and the new operating point
voltage is obtained. The voltage was substituted into control
layer 2 to calculate the average voltage, then compared with
V ref to get the voltage deviation Δvi, and then substituted
Δvi into formula (39) to get the final control equation.
Through the final control equation, each control unit can
realize the load distribution based on the minimum genera-
tion cost and finally effectively maintain the bus voltage
stability.

5. Experiment and Analysis

In order to verify the feasibility of the hierarchical coordi-
nated control method of DC microgrid based on the recur-
sive fuzzy neural network algorithm designed above, the
following experiments were designed in the MATLAB plat-
form to verify.

The experiment takes a DC microgrid as the object, and
its operation is as follows: the DC bus voltage of the DC
microgrid is 500V; the two-way AC/DC converter is con-
nected to the 220V AC grid through a 2 : 1 transformer, with
a capacity of 5 kW, a reference voltage of 515V, and a sag
coefficient of 0.5. Of photovoltaic power generation unit
capacity of 5 kW, the energy storage unit adopts the rated
power of 3 kW battery, its capacity is 220V/50Ah, the rated
discharge current is 10A, battery SOC upper and lower are
90% and 40%, respectively, the battery converter of three ref-
erence voltage values is 515V, 512.55V, and 510V, corre-
sponding to the discharging and charging, automatic
mode, and droop coefficient of 0.25, and dead zone limit is
+/-2.5V, allowing the load side of plus or minus 10V DC
bus voltage variation.

5.1. Check the Effect of Seamless Switch Control of Grid-
Connected–Off-Grid–Grid-Connected. Firstly, the method in
this paper is used to carry out grid-off grid-connected seam-
less switching control for DC microgrid, and its control
effect is tested. When the load resistance is 40Ω (12.5A),
the photovoltaic converter has been working in MPPT
mode; the port, the change of the voltage, and current are
shown in Figure 6.

As can be seen from Figure 6, the AC/DC bidirectional
converter operates in the voltage sag control mode during

0-5 s, and the battery converter reference voltage is 514V
and is in the automatic switching mode. At this point, due
to the relatively light load, the battery is in standby mode.
After 5 s, disconnect the AC/DC bidirectional converter,
the DC microgrid changes from grid-connected operation
to off-grid operation, the battery automatically switches to
discharge mode, and the load terminal voltage is maintained
at 500V. At 10.5 s, the grid connection is restored, and the
AC/DC bidirectional converter operates in voltage sag
mode. The voltage at the negative end is maintained at
500V. After a short transient process, the battery converter
returns to a standby state. In the grid–off-grid switching,
the operating mode of each converter is automatically
switched. During the switching process, the voltage of each
port will fluctuate. Under the steady-state condition that
the voltage fluctuation of the load terminal is less than
10V, both the grid-connected and off-grid terminals will
remain at 500V. Thus, it can be shown that this paper has
achieved a better control effect. It can be seen from the figure
that after the step of voltage and current, they both can
quickly return to a stable state. It shows that after the
improvement of the recursive fuzzy neural network algo-
rithm, the DC microgrid control system has good robust-
ness, stability, and fast convergence speed.
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Figure 6: Changes in the current and voltage of each port during grid-connected–off-grid–grid-connected switching.
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5.2. Check the Failure Rate of DC Microgrid Line. On this
basis, in order to further highlight the effectiveness of the
proposed method, the application performance of the pro-
posed method, the Reference [6] method, and the Reference
[7] method is verified by taking the failure rate of the DC
microgrid line as the index. The line failure rate can reflect
the operation safety of the DC microgrid, and it is a key
index to evaluate the control effect and reflect the effective-
ness of the control method.

A line in the experimental area was randomly selected as
the experimental object to verify the failure rate of DC
microgrid lines under the control of different methods. The
results are shown in Figure 7.

According to the results shown in Figure 7, under the
control of different methods, the failure rate of the circuit
decreases over time. Under the control of methods of Refer-
ence [6], the fault rate of the circuit is slightly higher than
that of the methods of this paper. Under the control of
methods of Reference [7], the line failure rate is obviously
higher. Under the control of methods of this paper, the line
failure rate decreases from 6% to 3%. The above results fully
demonstrate that the methods of this paper can realize effec-
tive coordinated control of fault frequency of DC microgrid
lines, so as to ensure the operation safety of the DC
microgrid.

6. Conclusion

In this article, a hierarchical coordinated control method of
DC microgrid based on the recursive fuzzy neural network
algorithm is designed. On the basis of droop control, the
coordinated and optimal control of the DC microgrid is real-
ized through a three-layer hierarchical control structure, so
as to achieve the purpose of stable operation of the DC
microgrid. At the same time, the recursive fuzzy neural net-
work algorithm is used to optimize the system-level control
of the third layer in the hierarchical control structure, so as
to ensure the real-time amplitude limiting, convergence,
and stability of the DC microgrid controller. The experimen-
tal results show that under the control of the intelligent con-
trol algorithm in this paper, the current and voltage changes
of each port of the DC microgrid are relatively stable in the
process of off-grid switching, and the power grid line fault
rate is low, which fully proves the effectiveness of this
method. In the following research, we can further optimize
the method in this paper from the perspective of shortening
the control reaction time, so as to comprehensively improve
its application performance.
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