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Next-generation wireless communication networks are expected to support massive connectivity with high data rate, low power
consumption, and computational latency. However, it can significantly enhance the existing network complexity, which results in
high latency. To ease this situation, mobile edge cloud and massive multiple input and multiple output (MIMO) have recently
emerged as the effective solutions. Mobile edge cloud has the ability to overcome the constraints of low power and finite
computational resources in next-generation communication systems by allowing devices to offload their extensive computation
to maximize the computation rate. On the other hand, MIMO can enhance network spectral efficiency by using large number
of antenna elements. The integration of mobile edge cloud with massive MIMO also helps to increase the energy efficiency of
the devices; as a result, more bits are computed with minimal energy consumption. In this work, a mathematical model is
formulated by considering the devices’ energy constraint, which is nonconvex in nature. Following that, to overcome this, we
transformed the original optimization problem using the first approximation method and solved the partial oftloading
schemes. Results reveal that the proposed scheme outperforms the others by considering computational rate as a performance

matrix.

1. Introduction

Future wireless communication networks are expected to
connect massive devices to the Internet [1]. These devices
would be intelligent, cost-effective, and energy efficient [2].
Moreover, such devices will provide diverse quality of ser-
vices [3]. Some promising technologies for these networks
are artificial intelligence/machine learning [4], autonomous
vehicles [5], reflecting intelligent surfaces [6], backscatter
communication system [7], unmanned aerial vehicles [8],
nonorthogonal multiple access [9], and high frequencies
such as millimeter wave, terahertz, and visible light commu-
nications [10]. However, there exist several challenges in the
development of these networks [11]. The most critical issue

is the spectral efficiency due to the limited spectrum
resources [12]. Another issue is the allocation of existing
resources in efficient way [13]. Furthermore, security is also
a big issue in both physical and network layers [14].

Recent advancements in the Internet of Things (IoT) and
applications such as augmented reality [15], self-driving vehi-
cles, smart cities [16], smart grids, and home automation have
resulted in the concept of the Internet of Everything (IoE)
[17], where a large number of computing and communication
capable devices (e.g., sensors) are deployed [18]. The primary
purpose of these sensor nodes is to collect a large amount of
data generated from real-time applications and use it to man-
age traffic control systems [19], security [20], surveillance [21],
and noise pollution control [22], as well as to assist existing
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infrastructure. Similarly, the amount of data generated grows
exponentially as IoT devices such as sensors, actuators, and
smartphones become more widely used [23, 24]. These devices
collect data from various applications, such as health care,
monitoring, and security [25, 26]. In addition, these devices
are small in size and have limited computing power and finite
battery life [27]. However, the processing of the huge amounts
of data that are produced by real-time applications must take
place in an extremely condensed amount of time [28]. Due
to their limited computational capabilities, these devices are
unable to handle large amounts of data [29]. As a result, their
quality of service (QoS) is highly compromised [30, 31].
Because of this, the need for a lot of computing power shows
that users are moving away from traditional ways of commu-
nicating and toward computers [32, 33].

1.1. Related Work. In the last few decades, central clouds
have been used to get around the problem of having too
many computers. These central clouds enable on-demand
access to massive storage and extensive computation
[33-36]. In addition to this, these clouds are situated too
far away from these devices, and as a result, they bring
latency into the system [37]. As a result of this, relying
on central clouds is insufficient [38]. However, to over-
come the latency constraint imposed by central clouds,
the mobile edge cloud (MEC) emerges as a practical solu-
tion, providing high computational capabilities in close
proximity to these devices. The MEC enables these devices
to offload their extensive computations in one of two
ways: binary offloading or partial offloading. Within the
framework of a binary offloading approach, the task in
its entirety is computed either locally or at the MEC. In
contrast, the task is divided in to two distinct segments
within the framework of the partial offloading system
[39]. A component of the task is carried out locally, while
the remaining portion is offloaded to MEC so that it can
be processed on a much larger scale. Thus, the perfect
match of MEC with IoT attracted much attention from
academia and industry and was identified as a critical
technology beyond 5G/6G wireless networks [27, 40-43].

Recent work has focused on overcoming finite battery
life constraints and limited computational capabilities by
using either a partial or binary offloading scheme. The
author of [15] investigates the concept of wireless power
mobile edge cloud using a partial offloading scheme and
maximizes end-user energy efficiency by optimally allocating
the resources such as transmitted power and local chip com-
putation and transmitting time using a mesh adaptive direct
search algorithm. In [44], the author optimizes resource
allocation and implements a partial offloading scheme to
reduce the energy consumption of orthogonal frequency
division multiple access-based mobile edge cloud networks.
Simultaneously, the author describes task placement in
[45] as a stochastic optimization problem, which will even-
tually lead to a deterministic approach for minimizing
energy consumption via the dynamic offloading algorithm.
In [46], the author investigates a binary offloading scheme
based on optimal resource allocation over a stochastic wire-
less channel in order to reduce the MEC’s energy consump-
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tion, whereas in [47], the author optimizes the end-
computation user’s rate by allocating resources such as trans-
mission time, chip computational capabilities, and mode
selection variables that specify whether the task is computed
locally or offloaded to MEC for further processing.

The literature shows that offloading tasks minimize
energy consumption, either partial or binary offloading
schemes. However, latency is also a critical performance
metric for evaluating the MEC network’s performance. As
a result, considerable research has been conducted in the lit-
erature to address the time-sensitive application. In [48], an
author formulates the latency minimization problem for sin-
gle and multiple device scenarios by partially offloading the
task to MEC and investigates the role of the intelligent
reflecting surface in MEC. Simultaneously, the author for-
mulates the mutual communication and computational
resource allocation problem in [49] in order to minimize
the weighted sum latency of all devices. Additionally, some
work has been conducted that takes into account both
energy consumption and latency constraints for time-
sensitive applications [50, 51]. The authors in [51] formulate
the multiobjective constraint optimization problem and
investigate the trade-off between energy consumption and
latency in this joint formulation. Simultaneously, the author
of [51] investigates the weighted sum of the task’s execution
time and computational energy consumption while taking
the transmission power constraint into account via a partial
offloading scheme.

Furthermore, the researcher contributed significantly to
the field by integrating orthogonal frequency division multi-
ple access with MEC in order to further optimize communi-
cation resource utilization by considering profit [52, 53],
latency [54], and energy efliciency [55] as performance met-
rics. In [52], the authors consider the price of computation
and optimize end-users and MEC resources using the game
theory approach. Simultaneously, the author in [53] con-
siders the objective of mobile network profit maximization
while taking the end-user’s quality of service constraints into
account by optimizing computational and communication
resources jointly. As illustrated above, successive offloading
to MEC reduces energy consumption and latency. In com-
parison, the success of the MEC network is mainly depen-
dent on the performance of the communication links.
Thus, its performance can be enhanced by integrating it with
cutting-edge wireless communication technologies such as
massive MIMO. Massive MIMO, as a critical technology
for the 5th generation of communication systems, supports
a large number of users while increasing spectral efficiency,
system capacity, robustness, and energy efficiency.

Getting inspired by massive MIMO’s advantage, some
researchers started considering its integration with MEC.
In [56], authors consider the concept of cell-free massive
MIMO which enables mobile edge cloud and uses stochastic
and queuing theory to analyze the impact of computational
probability on energy consumption. In [57], a low complex-
ity algorithm is designed to optimize the communication
and computational resources by considering energy con-
sumption as a performance metric for massive MIMO-
enabled MEC. The above discussion shows that MEC can
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overcome finite battery life constraints, but their perfor-
mance mainly depends on the communication link. Simul-
taneously, massive MIMO is a cutting-edge technology of
wireless communication that increases spectral efficiency.
Integrating it with the MEC will dramatically increase
the transmission rate, which directly leads to a higher
computational rate.

1.2. Motivation and Contribution. The concept of smart cit-
ies includes a significant number of Internet of Things
devices. IoT is an abbreviation for the Internet of Things,
which refers to low-power devices that are used to manage
or aid the infrastructure of smart cities, such as traffic con-
trol, security aspects, surveillance, and pollution control.
These real-time applications on these devices are generating
a significant amount of data, which is being collected by
these devices. On the other hand, the processing capabilities
of these devices are insufficient to process the huge amount
of data detected by these low-power sensors, which demand
massive computation in a short amount of time. To over-
come the limitations mentioned earlier, MEC emerges as a
practical solution that allows these devices to oftload their
extensive computation. In comparison, MEC’s performance
can be increased by integrating it with the cutting-edge
wireless communication technology called massive MIMO.
Integration of massive MIMO and MEC will increase the
performance of the MEC network and increase the spec-
tral efficiency provided by massive MIMO. Specifically,
massive MIMO’s increased spectral and energy efficiencies
can yield higher transmission rates and lower energy con-
sumption for offloading in MEC. Moreover, the more sig-
nificant number of users supported by massive MIMO can
enable more parties to offload simultaneously, thus reduc-
ing queuing delays. Motivated by these facts, we aim to
show the benefits of applying massive MIMO to MEC net-
works as given below:

(1) A mathematical model is formulated for optimal
allocation of resources like channel estimation time,
transmission power, computational resources, and
task offloading decision parameter to maximize the
cumulative computation rate of the network with
subject to latency and energy constraint

(2) A fundamental trade-off between offloading and
local computation is analyzed. It reveals that as the
number of computational cycles requirement
increases, devices start offloading their extensive task
to maintain the quality of service requirements

(3) Comparative analysis of partial offloading, binary
offloading, edge computation, and local computation
scheme is done. Results demonstrate that the partial
offloading scheme outperforms the other by consid-
ering cumulative computational rate as a perfor-
mance metric

The rest of the paper is organized as follows: Section 1
represents the mathematical model of massive MIMO-
enabled mobile edge cloud, whereas algorithms and simula-

tions results are discussed in Section 3. Similarly, Section 4
concludes the work.

2. System Model

In this work, we consider the concept of massive MIMO-
enabled MEC. As illustrated in Figure 1, an access point
(AP) such as a base station equipped with K of antennas
and a mobile edge cloud, also known as a MEC, is used
to offer N number connected Internet of Things devices
access to communication and computational resources.
These IoT devices, such as sensor nodes, are deployed in
smart cities to collect real-time data for the purpose of
managing or assisting the smart city’s existing infrastruc-
ture. Similarly, data generated by real-time applications is
time-sensitive and must be processed in a minimal
amount of time. In addition, Internet of Things devices
have limited processing resources, which are insufficient
to carry out operations that need large computations in
a short period of time. As a result, IoT devices add latency
to the system in which they are used. To overcome the
constraint imposed by IoT devices’ limited computational
capability, the mobile edge cloud emerges as a practical
solution capable of providing extensive computation to
low-power IoT devices on-demand. IoT devices can off-
load computations that require massive amounts of com-
putation in a short period of time.

Similarly, frame-based transmission is carried out over
the same frequency band and flat fading channel. For ease
of simplicity, we consider the case of perfect CSI, which
means the channel is known at AP. Furthermore, for
extensive computation, all users simultaneously transmit
a portion of the computation task to the MEC located at
the AP via space-division multiple access (SDMA)
methods. Because of simultaneous transmission, AP uses
the linear detector to detect each user information as rep-
resented by the matrix @ between n-th user and K anten-
nas. In addition, we take into consideration a partial
oftfloading approach for the placement of the task at the
MEC. In this particular scheme, the task is broken up into
two portions. The remaining part of the work is sent to
the MEC to be processed, while the first part of the task
is computed locally.

2.1. Task Offloading Model. Low-power Internet of Things
devices are used in smart cities to collect huge amounts of
raw data from real-time applications. These applications
require considerable computation to be completed in a short
amount of time. Latency is a problem that arises within the
system as a result of the limited computational capacity of
the components. As a result, quality of service (QoS) and
quality of experience (QoE) are greatly compromised.
Therefore, to meet the QoS and QoE requirements, these
devices start oftloading their tasks using a partial offloading
scheme. Similarly, the number of bits offloaded by n-th to
MEC located at AP in time ¢ is represented as

%5:Blog2(1+xn)t. (1)
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FIGURE 1: System model of mobile edge cloud system.

In Equation (1), B represents the system bandwidth,
and y, represents the signal to interference plus noise
ratio given by

& am,)
@, +q)lq,lo*

(2)

n

Similarly in (2), h, represent the channel coefficient
column matrix between n-th user and K number of anten-

nas, &, represents the uplink transmission power, and g,

represents the linear detector coefficient, whereas @, =

Zfil#kfimfhif represents the interference imposed on n
-th users from others and o? represents the Gaussian noise
factor. Simultaneously, energy consumption while offload-
ing the number of bits to MEC for extensive computation
is given by

lIﬂj:Ent-'—Ert' (3)

In Equation (3), &, signifies the constant circuit energy
required for signal processing, which is static across all
devices.

2.2. Local Computation. In conjunction with the computa-
tion that is taking place at MEC, a piece of the task is carried
out locally by making use of the limited processing resources
that are accessible on the devices. The number of cycles that
must pass through the devices before one bit of data may be
computed denoted by the notation &,,. In order to complete
the computation on a local scale, devices use the entire I
time frame. As a consequence of this, the following is how

the number of bits is determined locally:

v,T

k
A €

(4)

n

In Equation (4), the symbol ¥, denotes the proportion
of computational resources that the n-th device has desig-
nated to be used by itself in order to carry out the task
locally. While simultaneously computing the task locally by
the n-th user, the energy computation is expressed as
follows:

N

X =x¥,T. (5)

In Equation (5), k; represents the computational energy
efficiency of the IoT devices.

2.3. Problem Formulation. Within the scope of this work, we
investigate the idea of massive MIMO-enabled MEC. This
work was aimed at improving the device’s computational
rate by optimizing transmission power &, edge computa-
tional time t, local computational resources ¥, and task seg-
mentation y£. Following that, mathematically, optimization
problems can be formulated as follows:

P1: max
£yt Ao

N g E
yL J t
( L nf +w5yn

. Blog, (1 +Xn)) (6a)

Co: i 2T +y (Bt +p,T) < E a1 (6b)

max’>

C,:0<Y <Y, VN (6¢)

max’>

Cs:y,€(0,1),&,>0,Yn. (6d)

The fundamental goal of this work is to maximize the
computational rate of low-power devices that are connected
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>n
bound of Decision variables,
2 Initialization: Number of decision variables
3 A —— 4N + 1, Generate Population.
4 Execution:
5 whileerror < €

1 input:N «— sensor nodes, € «— cycles requirement, &, ,, «— Maximum battery life, ¥ «— Maximum computational capabil-

. . I . .
ity of devices, [¢ower, & 1w, \p lower JERWEr | g lower] [oyer bound of Decision variables, [£4279r, &, “PPT, \p/, upper yEUPPET | o upper] ypper

6 foreachp € Populationdo

7 O« solve (8)

8 end

9 /1 Sort © in Descending order, and select best Population

10 //Base on best population, calculate mean M and standard deviation . foreachp € Populationdo
11 O« solve (8)

12 end

13 end

14

ArcoriTHM 1: Convex Optimization Algorithm.

to the MEC at the AP while simultaneously taking into con-
sideration a number of constraints. In (6a), (6b), (6¢), and
(6d), the overhead at the MEC due to successive oftloading
is denoted by v, whereas w’ and w’ are the weighting coef-
ficients used to prioritize the users according to their quality
of service requirements, such that wk+wf=1. Simulta-
neously, y- and y£ are chosen in such a way that y£=1-
yL indicates the part of the task that was executed either
locally or at the MEC. Following that, constraint C,; specifies
that the task is computed locally or offloaded to MEC. In
both cases, the energy consumption should be less than the
maximum amount of power that the gadgets can draw from
their batteries, as represented by E_ ...

3. Results and Discussion

3.1. Optimal Resource Allocation. The objective function
specified in (6a), (6b), (6¢), and (6d) is nonlinear and non-
convex in nature due to logarithmic nature of rate equation.
Following that, it is analytically challenging to solve and get
the optimal results. To overcome this limitation, we intro-
duce a slag variable # and transform an optimization prob-
lem P1 as follows:

| max
t’En’an’yﬁ’gn n=1

Hh 2
C, :Blog2<l+ M) >F,Nn  (7b)

@, +|qiq,|0?

s.t.Equations (6b) to (6d). (7¢)

The objective function specified in (7a), (7b), and (7c) is
convex by definition. Additionally, the constraint mentioned
in (7b) is not convex in nature. To overcome this, we use the
first-order approximation method and further transform the

objective function as follows:

N Ly E
J t
P3: max Z (wﬁy”E + wf;yif%”n> (8a)
t’En'an’yg"chn n=1 %n v
log (2)&,
C, tlog (§,) = % +log (@, +|q'q,|)¥n  (8b)
s.t.Equations (6b) to (6d). (8¢c)

In Equation (8b), &, =, + |q7'q,|0> +&,|q"h,|*. Fol-
lowing that, the constraints and objection function of (8a),
(8b), and (8c) is convex in nature and can be solve easily
using the convex optimization Algorithm 1.

3.2. Discussion. In the concept of smart cities, these low-
power devices are used to collect the real-time data used to
make decisions for further action or planning. Data collected
from real-time applications needs extensive computation
that can be computed locally using device computational
resources or placed as a whole in MEC for further process-
ing. Figure 2 is a comparative study of the local computa-
tional scheme and the edge computational scheme through
the use of varied amounts of computational cycles Cy from
10 K-cycles to 100 K-cycles. The computational rate is used
as a performance metric, and this number refers to the num-
ber of bits that are computed in T = 1 seconds. The effective-
ness of the model that has been proposed is evaluated using
this metric. Simulations were carried out using Algorithm 1
by setting a number of devices K =50. Results reveal that
local computation, in which the whole task is computed
locally using device computational resources, outperforms
the edge computation scheme, where the whole task is to
be placed on the MEC server for extensive computation.
This behavior is because of successive offloading, and it leads
to congestion at MEC and thus introduces overhead. As a
result, it takes more time to compute the task. As a result,
the computation rate is low using the edge computational
scheme as compared to the local computation scheme. On
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the other hand, as the computational cycle requirements
increase, the performance of the local computational scheme
is going to decrease because of the finite computational
capability of the devices. Thus, the quality of service require-
ments is highly compromised.

As is evident from the above discussion, successive off-
loading results in congestion at the MEC servers; thus, it

introduces overhead. In order to prevent congestion, MEC
gives devices the ability to oftload their computation by uti-
lizing a binary offloading method. In a binary offloading
strategy, some devices offload their tasks to MEC, where
the rest compute locally using their finite computational
resources. Figure 3 shows a comparative analysis of the
binary offloading method and the local computation by
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taking the computational rate into consideration as a perfor-
mance parameter across numerous needs for the computa-
tional cycle. Results reveal that, for the low number of
computational cycles required, the performance of both
schemes is the same. On the other hand, as the number of
computational cycle requirements increases, the binary off-
loading scheme starts performing better than the local com-
putation scheme. This trend is because, in the local
computation scheme, the finite computational capability of

the devices is not enough to handle a large number of com-
putational cycle requirements. Therefore, as a result, to
maintain the quality of service requirements, they started
oftfloading their whole task to the MEC server located at
the AP for extensive computation. To overcome the latency
constraint, binary offloading is an effective solution that
allows some of the devices to start oftfloading their extensive
computation; thus, the commutative computation rate of the
network increases.



In the binary offloading scheme, some devices are off-
loading their task to MEC, whereas the rest of the devices
are computing their task locally using finite computational
resources. In contrast, a second offloading technique
known as the partial offloading scheme delegates a portion
of the work to MEC from each of the devices. In the par-
tial offloading technique, the work is divided into two
halves; one component is computed locally, and the other
portion is offloaded to MEC for additional processing.
Both portions of the task are computed in parallel.
Figure 4 represents the comparative analysis of the partial
and binary offloading scheme. An extensive simulation
was carried out, and average results were produced. The
results reveal that the partial offloading scheme’s perfor-
mance is much better than the binary offloading scheme,
even for the small number of computational cycle require-
ments. This trend is because, in the binary offloading
scheme, the task as a whole is offloaded to MEC; thus, it
requires more computational energy and time, whereas
in the partial offloading scheme, only a portion of the task
is offloaded, and as compared to the whole task, it also
consumes less energy and requires minimal time. This tre-
mendous effect can be seen more effectively by increasing
the number of users from 50 to 100, as shown in Figure 5.
The effectiveness of this proposed model can be utilized in
the future generation communication system, where a
large number of devices are used to collect data for mak-
ing a future decisions like in smart cities to manage traffic,
and pollution control, make better use of infrastructure,
and keep citizens safe and clean.

4. Conclusion

In this work, we considered the massive MIMO-enabled
mobile edge cloud to provide the computational resources
to the low-power devices to maintain the quality of service
requirements. This work is aimed at maximizing the com-
putational rate by optimal allocation of computational
resources, computational and channel estimation time,
and transmission powers. A comparative analysis of the
local computation scheme, edge computational scheme,
binary offloading scheme, and partial offloading scheme
were carried out in order to validate the proposed system.
The results of these analyses revealed the fundamental
trade-off that exists between offloading and local computa-
tions. The findings demonstrate that the limited comput-
ing capabilities of devices are insufficient to manage
substantial computation when the required number of
computational cycles grows. In contrast, a partial offload-
ing strategy performs significantly better than the other
offloading strategies used for comparison in the scenario
described above.
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