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Nature-inspired algorithms are popular for auto-tuning software reliability growth models in recent decades due to their
derivative-free natural tendency to circumvent the local optima problem. These methods have indeed exhibited enormous
effectiveness in estimating software dependability. The goal of this study is to present a new nature-inspired approach for
parameter improvement of system reliability predictions based on the hunting abilities of smoother-coated otters. The otters’
most notable characteristic is their ability to hunt in groups. In this study, clever otter hunting behavior is used to enhance
reliability engineering parameters of the model. Otters work well together and have a strong sense of teamwork. Matte finish
coated otters’ smart fish scavenging capacity distinguishes them from many other swarm intelligence-based techniques. Three
stages of otter searching are accomplished: traveling in a V formation in the direction of the prey’s movements, advancing
forcefully via the stream, and then assaulting the prey on the beach. Three software dependability models are utilized to
validate the applicability of the suggested approach. The study’s findings demonstrate that the suggested algorithm
outperformed the ABC, GA, and PSO algorithms by 75% and 50%, respectively, in terms of reduced SSE and lower MSE. The
smooth-coated otter’s cognitive foraging behavior gives great gain capabilities in parameters software cost estimation system
reliability analysis. The outcomes are encouraging for auto-tuning software reliability growth models. Smooth-covered otter
optimization can also be used to solve other efficiency challenges.

1. Introduction

Because of its accessibility, adaptability, derivative-free
structure, and capability to circumvent the local optima dif-
ficulty, meta-heuristic algorithms have grown in popularity
over the last few generations. These algorithms search for
possible solutions using predefined rules that may be based
on computational intelligence behavior, nature’s develop-
mental processes, human control the way, or physics princi-
ples. A number of nature-inspired algorithms have been
created in the literature that may be used to solve quantita-
tive optimization-based challenges in a variety of disciplines.
The no-free lunch hypothesis [1] states that there is no best-
suited meta-heuristic method for resolving all performance
difficulties. This assumption has made this subject a contin-
ually developing field over the last century, motivating the
authors of this paper to present a novel optimization for
optimizing the process parameters of software dependability

models. Nature-inspired techniques are classified into four
categories [2]. Algorithmic based on the natural human evo-
lution principle [3], swarm intelligence behavior-based algo-
rithms [4, 5], physics patterns called algorithms [6, 7], and
algorithms based on human cognitive behavior [8] are
among them. Between all population-based algorithms, the
most difficult challenge is to maintain the algorithm’s local
and global search capacities [9]. This research proposes a
new swarm intelligence-based method based on the hunting
skill of a smooth-covered otter. They were among the
world’s brightest animals, capable of using tools other than
primates from an early age. The otters’ most notable trait
is their ability to hunt in groups while firmly coordinating
and demonstrating high team cohesion. Techniques for
maximizing the hyperparameters are available in the field
of software model validation, via the numerous conventional
methods of model parameters described [10]. In heteroge-
neous circumstances, these strategies are predicated on the
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number of obstacles and may fall in local maxima rather
than converging to worldwide maxima. Nature-inspired
optimization algorithms that handle nonlinear, nondifferen-
tial, and multimodal problems provide alternatives to these
standard mathematical optimization techniques. The algo-
rithm was proposed based on the swarm intelligence behav-
ior of smoothness coating. In this article, an otter is used to
test software dependability. The algorithm’s applicability is
validated using common software measures undertaken.
The suggested algorithm’s outcomes are presented to those
of artificial bee colonies [11], genetic algorithms [3], and
evolutionary algorithms [5]. The statistical GO model dis-
cussed the time-dependent error-detection rate model for
software reliability and other performance measures [12].
The descriptive statistics of the suggested algorithm proves
that the proposed otter-based method has a substantial com-
petence. The remainder of the paper is organized as follows:
A brief summary of related work nature-inspired algorithm
is given in Section 2. The otter-based optimization approach
presented in this study is discussed in Section 3. Section 4
goes into the experimental setup and datasets, as well as
the reliability engineering models that were employed dur-
ing the experiment. Section 5 outlines the planned work’s
results and analyses. Section 6 includes the conclusion and
references.

2. Related Work

Nature-inspired algorithms are derived from two classifica-
tions: single-solution techniques and demographical solutions.
In the previous class, the search process begins with a single
potential answer and then advances as the number of iterations
increases. Later, classes entail solving the problem using a col-
lection of feasible solutions that begins with a randomized
numerous solution and improves over the number of itera-
tions. These two classifications are further divided into four
divisions depending on their nature and include algorithms
connected to the basic evolutionary principle, swarm intelli-
gence behavior-based algorithms, physics natural process algo-
rithms, and machine learning originated from intelligence
gathering behavior. Human evolution principal-based algo-
rithms are inspired by nature’s evolution process and are pri-
marily centered on survival of the fittest. For example, genetic
algorithms [3, 13], optimization techniques [14], and evolu-
tionary programming [15] are used to generate the next gener-
ation of individuals. The second category adheres to physical
laws and includes well-known algorithms such as simulation
annealing, gravity phenomenon-based search algorithm [16],
black hole [6], charged system search [17], galaxy-based search
optimization [18], and parallel hybrid BBO [19], among others.
Swarm intelligence behavior-based algorithms are the third set
of combinatorial optimization and mimic the social actions of
swarms of animals, birds, and amphibian, among others. This
category has the most diverse set of nature-inspired algorithms,
including swarm optimization, bat method, artificial bee colony
algorithm [11], flower pollinating technique, and ant colony
optimization [20], among others. The last set of combinatorial
optimization is influenced by biological intelligent behavior
and includes a variety of generic algorithms such as teaching
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and learning raises the possibility [8], tabu search [21], and so
on. Swarm intelligence behavior-based algorithms imitate the
social activities of the flocks of animals, birds, amphibians,
etc. This group is the most wide range of nature-inspired algo-
rithms listed as follows: e particle swarm optimization (1995)
inspired by the flock of birds [5] e bat-inspired algorithm
(2010) inspired by the bat herd [20] e dolphin echolocation
(2013) inspired from echolocation behavior of dolphins [22]
e honey bee marriage based optimization (2001) inspired by
the honey bees [23] e artificial fish swarm optimization
(2003) inspired by the swarm of fish [24] e termite algorithm
(2005) inspired by the colony of termites [25] e ACO (2006)
inspired by the colony of ants [20] ¢ ABC algorithm (2006)
inspired by the bees e wasp swarm algorithm (2007) inspired
by the parasitic wasps [26] e monkey search algorithm (2007)
inspired by the monkeys [27] e wolf pack search algorithm
(2007) inspired by the herd of wolves [28] e BEE collecting pol-
len algorithm (2008) inspired by the bees [29] e cuckoo search
(2009) inspired by the cuckoos [30] e dolphin partner optimi-
zation (2009) inspired by the dolphins behavior [31] e firefly
algorithm (2010) inspired by fire flies [32] e fruit fly optimiza-
tion (2012) inspired by the fruit flies [33] o krill heard optimi-
zation (2012) inspired by the herd of krills [34]. e whale
optimization algorithm (2016) inspired by the behavior of
whales [2] e grey wolf optimization algorithm inspired by the
hunting of wolves [9] ¢ dynamic frequency based parallel K-
bat algorithm [35]. These algorithms are doing well in their
specific areas and no algorithm is applicable in all optimization
problems. The authors motivated from the swarm intelligence
behavior and proposed smooth-coated otter foraging
behavior-based algorithm for software reliability model param-
eter estimation [36]. Recently, nature-inspired algorithms have
been applied in 5th generation millimeter wave wireless com-
munication propagation [19], beam forming method for a
transmitting antenna [12], and 5th generation intelligent soft-
ware defined atmospheric effect processing and optimal selec-
tion of software reliability models [37].

3. Smooth-Coated Otter Optimizer

Based on the actions of smoothly coating otters, this paper
offers a novel auto-tuning optimization algorithm for soft-
ware reliability growth models.

3.1. Otter Behavior. The (Lutrogaleperspicillata) smooth-coated
otter is one of the species of otter and is only surviving symbolic
of genus Lutrogale. These are generally found in Indian subcon-
tinent and eastward to south east Asia. Smooth-coated otter as
the name designates is recognized by very smooth and sleek
pelage. There are a lot of interesting facts about the otters. They
are among the world’s brightest animals, capable of using non-
primate tools from an early age. More than 100 sea otters living
around the California coast were studied genetically. They
observed that otters use rocks as hammers to shatter open shells
and gain access to the food within. Coordination among the
otters is using the vocal and non-vocal sounds. Otter, during
communication with other otters in group, seems to use their
mouth as the mean of non-vocal communication, mouthing,
nipping, and gripping each other. Smooth-coated otters live in
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group, and during fishing, they prefer a group of 4 and till now
maximum group of size 11 have been noticed while fishing. A
monogamous alpha pair forms an established family group hav-
ing beginners of previous years. The alpha female is dominant
in the group, and other mature females have been seen fighting
with the alpha female and sometime leave the group and make
separate groups. The dominant female regulates the group hier-
archy rarely by violence unless some outsider joins the group or
there is any challenge within the group. The alpha male initiates
the group movement always through the territory and forays in
other group, feeding ranges with conflicts. Another interesting
fact about the otters is that they are generally described as fish
specialist. Otters are having the intelligent foraging behavior;
the diving is associated with depth and time. Otters use the tools
for foraging. They hunt at time of the day and tide and place
with specific depth and aquatic vegetation. These are having
the most energetic foraging behavior, variation is due to fluctu-
ating water temperature, and youngers attain the adult foraging
proficiency at the age of 1-2 years. For fishing purpose, otters
are using their whiskers to sense the movement in water; they
also use their paws to feel for crabs in mud and for catfish in
the crevices. Hunting in group is the most striking feature of
the otters, strongly cooperating together, showing strong team
cooperation. Repeatedly group of otters diffuses in a single,
somewhat v-shaped line that points in particular direction of
movement and it is found to be as wide as a creek. The domi-
nant alpha female individual engaged in the center section. In
this creation, otter ripples violently over the creek and causes
panic-troubled fishes to jerk out of water a few meters forward.
After 2 to 3 minutes, otter dives and appears again with a fish
for about one-third in its snout. Immediately, the entire pack
follows this example, while a delay appears one after the other,
and many are having a fish in the muzzle. The otters then move
on the shore and consume fish on grubby part of the river. The
otter tosses the fish up and swallows its head in one piece. Tar-
get handling on the bank takes no more than 10 seconds.
Quickly, otters start with a nose dive and distribute again for
the next attack across board with the width of the creek. While
hunting, the otters avoid the places where there are large size
mammals as crocodiles which are the predators of otters. The
hunting process is smart enough that while hunting, they never
travel towards the regions where there are the fears of their lives.
It appears to be the true teamwork and cooperation as shown in
Figure 1. The families are hereby known to join together to
make large hunting parties, ending after the hunt and returning
to their own home areas. In the proposed work, smart foraging
with intelligent hunting capability of the smart otters has been
used for mathematical optimization. The smart and intelligent
foraging behavior of otters is similar to optimization. The pro-
cess of hunting fishes is analogous to finding an optimum solu-
tion to a problem.

3.2. Phases in Smooth-Coated Otter Hunting. Otter family is
divided into four groups as shown in Figure 2. The fittest
among the social group is considered the alpha («) pair that
dominates the other group members in the family. Second
beta (3) group is considered less fit and, in a v-shaped line,
this group follows the female alpha dominant member in
the group. Group gamma (y) follows  group members in

F1GuRre 1: Otters hunting group behavior in V formation.

N
Xa : best search agent

FiGure 2: Hierarchy of smooth-coated otter family in terms of
dominance that decreases from top to bottom the hunting
process involves various phases.

their family. Maximum members in an otter family could
be either 5 or 11. The rest of the family extends up to delta
(6) group. § group follows all the previous group members.
In a group, otters can communicate using their vocal and
non-vocal communication capabilities which involves their
chirping and growling shriek sounds.

3.2.1. Enriching the Prey. Otters prefer to hunt at the accu-
rate places like near to the aquatic vegetation and at depths
and at time when the availability of prey is high and in inac-
tive state; this is basically at the time of day and during tide.
An otter senses the prey movement very sharply in water
using the whiskers that are capable of sensing even the little
movements made by objects in the water. After sensing the
accurate position of the suitable preys, the group of otters
approaches violently towards the prey and pushes all of
them towards the shore and causes panic spasms to the
preys until they jump out of water. Approaching the prey
and moving the prey violently to the shore can be modeled
as -Vt+1=Vtw+SI (Xg-Xo)+ (CXp-Xo) (1) and X
(t+1)=Xt+V (2) where SI is sensation index of otters
while moving and diving; SI is linearly increasing from 0
to 2 over the course of iteration. W is the magnitude of
force in the direction of position of otter to prey. C is the
effect of obstacles in moving otter’s positions and varies
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FiGURE 3: The use of SI operator.

agent in the search space.

agent groups in otter family.
8. while (termination condition)
9. for each search agent

using equations 1 and 2.
10. end for
11. Update SI, C, and w;

13. Update Xa, X, Xy, and X§.
14. end while
15. return Xao;”

“1. Initialize the population of otters (Xi (i --- .n);
2. Initialize SI, C, and w; based on the random vector rl1;
3. Calculate fitness capability of individual search

4. Xa is considered the best search agent.
5. Xp is considered the second-best group of searches agent.

6. Xy is considered the third best group of searches agent.
7. X8 is the last group of search agent that follows other

Update velocity and position of search agent by

12. Calculate fitness of each search agent.

ArcoriTHM 1: Soft Hunting Smooth-Coated Otter-Based Optimization Algorithm.

according to equation (3) C=2.r1 (3) where rl is random
vector [0,1]. When the sensation index value is too large,
then searches for the prey in different direction. When
the sensation index is high and the distance value is very
low, then the otters will attack the prey with a large force
with a fast move, but when the distance becomes large,
otters will avoid the movement towards the prey.

3.2.2. Mathematically Model Hunting the Prey. To the hunt-
ing behavior of the otter, authors have assumed that «, f3, y,
and 0 family members are having the most skilled sensing
capabilities and they have paramount awareness of location
of the prey. So according to the hierarchy, the best search
agent is alpha female member and other agents follow it.
So the equation is modeled as —Vt+ la=Vtwa + Sla (Xg
—Xo) + (Cl.Xa - Xo) (4). Second beta group follows alpha
member and updates its position and velocity as Vt + 18 =
Vtwp+SIB (Xg - Xo) + (C2.X5— Xo) (5). Similarly, third
and fourth group members follow their higher members
and update positions and velocities.

3.2.3. Exploitation (Attacking the Prey). Smooth-coated otters
attack the prey in group after sensing it and strongly cooperat-
ing together, showing strong team cooperation. The most

dominant alpha female individual engaged the middle section
and all others follow it. To model the attacking of the prey, the
value of the sensation index (SI) is set in a way that when the
sensation by the otter is highest then it is assumed that the
prey is very near. Value of SI is decreased to minimum. When
the value of sensation index reaches its maximum value, then
it is assumed that prey is not approachable and all otters start
searching in all directions. It is also assumed that when SI < 1,
then it forces the otter to attack the prey. When SI > 1, then
otters start searching of the preys in all directions. The use of
SI operator is shown in Figure 3.

3.2.4. Exploration (Searching of the Prey). Smooth-coated otter
searches for the prey in a coordination with its team. When
the value of SI > 1, then Xa: best search agent X3 XyX§ explo-
ration happens as all have to search for the prey in different
directions. The solution tends to diverge from the prey when
SI>1 and it converge towards the prey when SI < 1. There
is also an operator C that reflects the obstacles in the way to
attack the prey. Operator C is provided random values
depending on the random vector r1. This feature also empha-
sizes the exploration from initial to final iterations and is help-
ful in stagnation of local optimum values to find the prey. Soft
hunting algorithm is depicting the hunting behavior of
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TaBLE 1: Models taken under consideration and their MVF for soft hunting analysis.

Model

Mean value function

G-O NHPP model [36]

Inflection S-shaped model [12]

Zheng-Teng-Pham [37]

m(t) = a(1 - e’b‘)/l + Be ', b(t) = b/1 + Be ™, a(t)

m(t) = a<1 - e*bt>, a(t)=a,b(t)=b

a

m(t) = (alp - f) {(1 ~(1+a)e/1+ zxe'bt>(db)@iﬁ)} Jb(t) =l +ae™™, B(t) =B

TABLE 2: Datasets.

Dataset Number of faults Time (sec/hours/days) Type of application
DS-1 136 25 hours Control system and real-time command
DS-2 100 10000 hours Software projects for tandem computers
DS-3 34 849 days Tactical data systems of US navel
DS-4 136 88682 sec Real-time control system
TaBLE 3: GO model result analysis DS-1.
Parameter values
Sr. no. Name of algorithm (estimated) SSE MSE Elapsed time
a b
1 ABC 142.41 0.18 2.81E+05 7.76E+03 27.43
2 GA 138.97 0.17 4.03E+05 2.10E+03 69.68
3 PSO 139.41 0.18 3.17E+06 1.27E+04 4.25
4 Otter 138.82 0.19 1.94E+05 7.16E+02 16.69
TABLE 4: Result analysis using inflection S-shaped model on DS-1.
Sr. no Name of algorithm Parameter values (estimated) SSE MSE Elapsed time
a b beta
1 ABC 143.5475 0.199477 0.494249 2.14E+03 8.57E+01 28.13206
2 GA 139.4072 0.1817297 0.4938127 1.97E+05 7.57E+03 75.68854
3 PSO 135.2333 0.197125 0.478044 2.450E+05 1.00E+04 4.012182
4 Otter 134.0043 0.158224 0.370924 1.89E+05 5.17E+03 14.89633

smooth-coated otter used to provide the optimized solution of
the problem discussed in this paper.

4. Experimental Setup

The smoothly coated otters’ attractive and capable hunting
skill is used to estimate software dependability set of parame-
ters. The suggested approach is implemented on an Intel(R)
Core (TM) i5(5th gen)-62000 CPU running at 2.40 GHz with
4GB of RAM and a 64-bit Windows architectural, x64-based
microprocessor. The proposed approach has been tested on
the most commonly used dependability estimate frameworks.
The following models and their mean value function are
shown in Table 1, and useful for experimental work:

The suggested algorithm’s results were compared to that
of various meta-heuristic algorithms such as PSO, GA, and
ABC. Four benchmark datasets [38] have been used for

experimental analysis. Table 2 shows the dataset used for
implementation.

Dataset: the number of flaws. Time (sec/hours/days):
application type 25 hours. DS-1 136 System of direction
structure in instantaneously 10000 hours. DS-2 100 Tandem
computing software development projects 34 849 days. DS-3
Strategic compute clusters for the United States Navy 136
88682 sec. DS-4 Systems of ultimate control

5. Result Analysis

The suggested algorithm’s effectiveness is computed and
assessed using different statistical findings such as predicted
model attribute values, calculated value errors, root mean
squared error, and completion time in milliseconds taken
by techniques. More than 1000 repetitions are used to
accomplish the technique. The results of several cases are
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FIGURE 4: Estimated number of errors using GO model and inflection S-shaped model and DS-1.
TaBLE 5: PTZ model parameter estimation DS-2.
Sr. no. Algorithm Parameter values (estimated) SSE MSE Elapsed time
a b c alpha beta
1 ABC 108.789 0.0679 0.09664 1.414755 0.000490 1.02E+02 5.11E+03 25.48469
2 GA 104.7803 0.090261 1.485479 0.000361 0.000573 3.931E+05 1.97E+04 23.29652
3 PSO 109.9867 0.098521 1.692284 0.000389 0.000548 3.57E+05 1.78E+04 2.53464
4 Otter 103.4378 0.059748 0.52414 0.000386 0.00058 4.48E+04 2.241E+03 16.79884
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TaBLE 6: GO model result analysis DS-3.

Parameter values

Sr. no. Algorithm (estimated) SSE MSE Elapsed time
a b

1 ABC 31.7865 0.0039 6.11E+03, 132.7339 25.15042

2 GA 34.3050 0.0068 5.07E+02 19.5016 50.8989

3 PSO 35.9554 0.0068 4.74E+02 18.22528 3.1298

4 Otter 31.0675 0.0061 6.05e+02 119.57884 16.261985

Estimated number of errors
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FIGURE 6: Estimated number of errors using GO model and inflection S-shaped model and DS-3.
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TaBLE 7: Inflection model result analysis DS-3.
Sr. no. Algorithm Parameter values (estimated) SSE MSE Elapsed time
a b beta
1 ABC 31.78 7.24E-05 8.80E-05 5.41E+03 2.08E+02 27.58383
2 GA 35.77057 0.006895 0.000333 5.056E+02 19.46594 81.44662
3 PSO 31.08892 0.006895 0.000333 5.85E+03 9.78414 1.502138
4 Otter 30.95481 9.44E-05 0.000106 3.93E+02 2.33E+02 14.52722
150
" _iﬂ- -
M Bl
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5 100 - s
s
2
g
=
g
]
I
<
E 50
5
0 T T T T T T T x104
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FIGURE 7: Estimated number of faults using PTZ model and DS-4.

analyzed using three of the most well-known software
dependability frameworks and four databases.

5.1. Example 1. Analysis of the data using the GO model and
the DS-1. In this example, the results obtained meta-
heuristic strategies that is investigated and contrasted to an
otter-based approach suggested utilizing DS-1 and the Goel-
Okumotto model. Table 3 displays the findings in terms of cal-
culated attribute values and goodness of fit of compared algo-
rithms of SSE, MSE, and elapsed time. The suggested
computation projected values obtained for the GO model for
DS-1 are quite close to the real dataset values. Performance
on the basis of SSE and MSE outperforms other techniques
and has the lowest error rate when compared to other algo-
rithms. Figure 3 depicts the estimated amount of mistakes
using the GO model and DS-1.

5.2. Example 2. Statistical analysis using inflection S-shaped
model and DS-1. This example uses inflection S-shaped model
and DS-1 to illustrate how the proposed algorithm behaves in
terms of parameter estimation, SSE, MSE, and elapsed time
values. Data in Table 4 is showing that values of parameters
estimated using the proposed algorithm are much close to

actual number of errors in the dataset DS-1. In terms of SSE
and MSE values, the proposed algorithm behaves significantly
better than other used algorithms. The value of elapsed time is
little bit more than PSO algorithm because of a greater num-
ber of parameters in the proposed algorithm. Figure 4 is
depicting the behavior of DS-1 in estimating the number of
faults using inflection S-shaped model.

5.3. Example 3. Statistical analysis using PTZ model and DS-2.
In this example, the proposed algorithm is analyzed using five
parameters PTZ model and DS-2 as shown in Table 5. The
number of parameters is five in the PTZ model. Here, the pro-
posed algorithm is tested with a large number of parameters.

The proposed algorithm is performing well in terms of
parameter estimation but its SSE and MSE values are little
bit higher than PSO and GA algorithms. In terms of elapsed
time taken by the algorithms, PSO algorithm behaves well
than another algorithm. Figure 5 is showing the estimated
number of faults using DS-2.

5.4. Example 4. Statistical analysis using GO model and DS-3.
This example tests the validity of proposed algorithm using time
domain dataset DS-3 as shown in Table 6. In this case, GO
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TaBLE 8: PTZ model result analysis DS-4.

Parameter values (estimated)

Sr. no. Algorithm B b c alpha beta SSE MSE Elapsed time
1 ABC 139.9816 0.000602 3.99E-05 8.05E-05 9.69E-05 8.74E+03 64.29368 45.512
2 GA 138.3598 0.000988 3.98E-05 0.009964 0.000348 7.25E+03 53.31243 156.644
3 PSO 139.7796 0.000998 3.99E-05 0.009884 0.007576 7.90E+03 57.25215 51.426
4 Otter 136.0941 0.000933 3.30E-05 0.008679 9.53E-05 1.22E+03 38.49756 35.229

model is used again but with time domain dataset DS-3. The
proposed algorithm is beating other algorithms in terms of esti-
mated parameter values, but in terms of MSE, SSE, and elapsed
time, PSO algorithm works well than other algorithms. Figure 6
is showing the behavior of DS-3 using GO model and DS-3.

5.5. Example 5. Statistical study with the intonation S-shaped
models and the DS-3. This example confirms the proposed
methodology using a two-parameter bifurcation S-shaped
model using DS-3. In this scenario, the suggested approach
outperforms all other metrics except time duration and has
acceptable parameter, SSE, and MSE values. Figure 6 depicts
the estimated amount of mistakes using the inflection S-
shaped model and DS-3 result analysis is shown in
Table 7. Example 6: Statistical analysis with the PTZ para-
digm and DS-4. This example employs the PTZ model once
more, but this time using dataset DS-4, and the results show
that the suggested approach outperformed all other algo-
rithms and is capable of parameter estimation, SSE, MSE,
and delayed time values. Figure 7 depicts the estimated
amount of mistakes using the PTZ model and DS-4, whose
result analysis is shown in Table 8.

From all results in all examples, it is found that the pro-
posed algorithm is having better performance in most of the
cases. Parameter estimation done by the proposed algorithm
proves that it has estimated parameters very precisely than
other algorithms. The little difference in parameter values
depicts that the algorithm saves imperfect debugging behav-
ior of the models. The number of fault values is having a lit-
tle bit of deviation from the actual values due to the reason
that developers and testers are not perfect initially and they
gain knowledge by learning with time. Goodness of fit of
the algorithm in terms of SSE and MSE values are showing
major beating criterion than other algorithms where PSO
and GA algorithms are behaving well. In terms of elapsed
time, the proposed algorithm is found to be satisfactory even
with a greater number of parameters than PSO and ABC
algorithms.

6. Conclusion

This paper proposes a novel method based on the search algo-
rithm behavior of a smoothly covered otter and it is useful for
auto-tuning the software reliability growth models. A compar-
ison of the proposed work with several other nature-inspired
algorithms on the basis of statistical inference SSE, MSE, and
elapsed time demonstrates the suggested algorithm’s substan-
tial optimization potential over the ABC, GA, and PSO in
numerous ways. The suggested approach may be more diffi-

cult in certain circumstances, but it outperforms in others. In
the future, the suggested approach might be employed as a
generic algorithm for topology optimization across several
domains like intelligent computing techniques. Artificial intel-
ligence and optimization algorithm is useful for real-life appli-
cations like autonomous driving, healthcare, and
recommender systems. It can also be applicable for ubiquitous
and pervasive smart healthcare systems.
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