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This paper focuses on the problem of protocol identification in the industrial internet and proposes an unknown protocol
identification method. We first establish an industrial internet protocol detection model to classify known protocols, unknown
protocols, and interference signals and then store the unknown protocols for manual analysis. Based on the Eps-neighborhood
idea, we further develop an Eps-neighborhood hit algorithm and propose an identification method to identify unknown
protocols, where the supervised learning classification of unknown protocol detection is realized. Finally, extensive
experimental results are provided to illustrate our theoretical findings. It indicates that the proposed method has an average
screening accuracy of 94.675% and 95.159% for unknown protocols encoded in binary and ASCII, respectively, while the
average screening accuracy of known protocols in binary and ASCII encoding is 94.242% and 94.075%.

1. Introduction

Industrial internet has become an indispensable component
of intelligent manufacturing and has been widely used in
many applications, such as product traceability, product life
management, supply chain optimization, and health man-
agement [1–4]. Since the industrial internet has the charac-
teristics like large scale, complex structure, and difficult
management [5–7], it is urgent to establish a flexible and
scalable platform to detect and identify industrial internet
protocols and to realize the interconnection under such sce-
nario [8]. In particular, the identification of industrial inter-
net protocols can be divided into two categories: known
protocol identification and unknown protocol identification
[9]. The research and implementation of the former have
been relatively mature, while the latter remains an open
problem. How to solve the problem of identification of
unknown protocols has been an important difficulty in the
field of network security [10–12].

Compared with known protocols, unknown protocols
have the characteristics of unknown format, unknown length,
unknown characteristics, and unknown traffic, which make it
more difficult to be detected and classified. In order to achieve

the purpose of detecting unknown protocols, Liu et al. [13]
proposed a port-based network traffic classification method
with the advantages of fast recognition speed, high precision,
and good performance. Zhang and Chen [14] used a small
amount of labeled data to classify unknown protocols based
on the semisupervised learning, which effectively improved
the classification accuracy. By using a feature selection tech-
nique, Singh [15] proposed an unsupervised clustering
method for unknown protocols classification, where a higher
performance than K-means clustering accuracy was achieved.
Ma and Qin [16] used the convolutional network to identify
unknown protocols and treated the network flow load as
image data, while Wang et al. [17] proposed a zero-
knowledge classification model for unknown protocols in a
bit stream. Jung and Jeong [18] considered a system where a
deep belief network was combined and then proposed an
extraction algorithm to realize the classification of unknown
protocols based on average histogram features. Liu and Lang
[19] proposed a traffic detection and identification method
to detect traffic of unknown protocol, where the density-
based spatial clustering of applications with noise (DBSCAN)
clustering algorithm and convolutional neural network
(CNN) algorithm was jointly utilized.
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It is worth noting that in the existing methods, the afore-
mentioned literature mainly focuses on how to improve the
performance and accuracy of the system when the number
of unknown protocols is relatively small. If there exist a large
number of unknown protocols and interference signals,
these methods will not meet the requirements of the indus-
trial internet. To address this problem, this paper establishes
an industrial internet protocol detection model and develops
an Eps-neighborhood hit algorithm. The main contributions
of this paper are as follows:

(i) We establish an industrial internet protocol identifi-
cation framework to classify 18 common known
protocols, unknown protocols, and interference
signals

(ii) We investigate for the first time the application of
the DBSCAN clustering algorithm in the area of
the industrial internet protocol identification. Based
on the Eps-neighborhood idea, we propose an Eps-
neighborhood hit algorithm to identify the
unknown protocols

(iii) The experimental results verify our theoretical find-
ings and demonstrate that the proposed Eps-
neighborhood hit algorithm can effectively distin-
guish known and unknown protocols and improve
the performance and accuracy of the system

The rest of the paper is organized as follows. Section 2
presents the industrial internet protocol detection model.
Section 3 proposes the Eps-neighborhood hit algorithm.
Experimental results are provided in Section 4, followed by
the conclusion in Section 5.

2. System Model

We consider a system model which consists of a preprocess-
ing module, a known protocol and unknown protocol
screening module, a known protocol classification module,
and an unknown protocol and interference signal screening
module. We assume that the model’s message data are all

binary codes, ASCII codes, or interference signals. When
the model receives a processing signal, the message data col-
lected from the industrial programmable logic controller and
distributed control system is divided into binary code and
ASCII code, and then the features are extracted by principal
component analysis in the message preprocessing stage.

By using the Eps-neighborhood hit algorithm at the fil-
ter, the filtered known protocol packets are submitted to
the corresponding known protocol packet processing mod-
ule for classification, while the filtered unknown protocol
packets with interference signals are submitted to unknown
industrial protocols and interference signal screening mod-
ule. Note that the latter module further exploits the
DBSCAN algorithm to discard the filtered interference sig-
nals. Moreover, when the number of identified unknown
protocol packets reaches the threshold, it is added to the
protocol database as a training data set for a single protocol,
so that the unknown protocol packets can be added to the
protocol database.

3. The Unknown Protocol
Identification Method

In this section, we propose an unknown protocol identifica-
tion method for industrial internet, where the principal
component analysis (PCA) feature dimensionality reduc-
tion, Eps-neighborhood hit algorithm, and DBSCAN clus-
tering algorithm are jointly employed.

3.1. Preprocessing Module

3.1.1. Feature Dimension Selection. According to [20], the
DBSCAN algorithm needs to traverse the target point and
perform Euclidean distance calculation with other points,
such that the performance of the algorithm is very high in
large-scale multidimensional data operations. In order to
reduce the performance consumption of the DBSCAN algo-
rithm, this paper uses principal component analysis to
reduce the multidimensional features of the original data
to two dimensions for classification. In the following, “Main

Table 1: Common binary encoding protocol part message table.

Protocol Feature1 Feature2 Feature3 Feature4 Feature5 Feature6

MC3E 0x50 0x00 0x00 0xFF 0xFF 0x03

MC4E 0x54 0x00 0x01 0x00 0x00 0x00

MC4C 0x10 0x02 0x12 0x00 0xF8 0x00

COTP 0x03 0x00 0x00 0x19 0x17 0x0E

S7comm 0x03 0x00 0x00 0x19 0x17 0x0F

USS 0x02 0x0F 0x0F Request data 0x43

Profibus-DP 0x68 0x05 0x05 0x68 0x83 0x81

MPI 0x68 0x1F 0x1F 0x68 0x83 0x81

PPI 0x68 0x1B 0x1B 0x68 0x02 0x00

Modbud RTU 0x01 0x03 0x0F Data 0x32 0x43

Modbus TCP 0x00 0x0F 0x00 0x00 0x00 0x06

DF-1 0x10 0x01 0x01 0x10 0x02 0x01

2 Wireless Communications and Mobile Computing



component 1” and “Main component 2” are the two main
features of the data after dimensionality reduction.

(1) Binary Encoding Protocol Raw Dimension Selection.
From [21], binary encoding protocols are transmitted in
binary data streams. Table 1 includes 12 common binary
encoding protocols and their corresponding protocol clus-
ters, and the hexadecimal sample packets are divided into
6 main features. Based on Table 1, it can be seen that all
binary encoding protocols use eight binary bits as a data link
layer encoding unit and show obvious protocol characteris-
tics in the converted hexadecimal value. For example, each
protocol in the Profibus protocol family uses 0x68 as the first

bit of the protocol message and the hexadecimal code of the
message length as the protocol two or three bits, while each
protocol in the S7 protocol family uses 0x03, 0x00, and 0x00
as the protocol, the first three digits of the protocol packet.
Therefore, in this paper, these hexadecimal message bits
with protocol features are used as the original feature dimen-
sion of PCA dimensionality reduction to realize the classifi-
cation of different protocols.

Select the message data sets of several known binary
encoding protocols in the table to perform principal compo-
nent analysis and reduce the dimension of features 1 to 6 of
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Schematic diagram of binary encoding 5D feature
dimensionality reduction
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Figure 3: 5D schematic.
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Schematic diagram of binary encoding 6D feature
dimensionality reduction
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Figure 4: 6D schematic.
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Schematic diagram of binary encoding 3D feature
dimensionality reduction

0 0.2 0.4 0.6 0.8 1 1.2

Feature 2

Feature 1

Feature 3

Feature 1
Feature 2

Featururururuuruuuuuuruuuuuruuururruuururrrrrrrrrrrrrrrrrrrrre 2eeeeeeeeF

Feature 1t

Feature 3

F

Feature 3
Feature point

Figure 1: 3D schematic.

3Wireless Communications and Mobile Computing



each protocol in the table to two dimensions. The protocol
packet data test set for determining the original dimension
of PCA includes 12,000 samples of 12 protocols. Figures 1–
4 are the two-dimensional distribution diagrams of the prin-
cipal component analysis feature dimensionality reduction
of the three-dimensional, four-dimensional, five-dimen-
sional, and six-dimensional original features, respectively.

It can be seen from the feature dimensionality reduction
diagram that the six-dimensional original feature has good
convergence for some protocol packet data, but no obvious
principal components are extracted for the feature points
of other protocols. The four-dimensional original features
and the five-dimensional original features conform to the
feature point density distribution of different protocols, but

due to the transformation of the principal component coor-
dinate system, the distribution of the two-dimensional prin-
cipal components is not clearly distinguished. The three-
dimensional original features have good convergence after
dimensionality reduction by PCA, and the principal compo-
nents are also relatively obvious.

Figure 5 shows the principal component contribution
value of the two-dimensional feature obtained by the binary
encoding of the original feature of the three-dimensional
protocol after the PCA feature dimensionality reduction
[22]. The original features contributed 44.1030% of the
information, and when the dimensionality reduction of the
three-dimensional original features was reduced to two-
dimensional, the principal components 1 and 2 contributed
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Figure 5: Contribution value of 2D feature after binary encoding dimensionality reduction.
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95.8779% of the information of the original features. There-
fore, this paper selects the binary-coded protocol dataset of
the original features of the 3D protocol as the input of PCA.

3.1.2. ASCII Encoding Protocol Original Dimension Selection.
Since the ASCII protocol encoding [23] format is transmit-
ted through single characters 0-9, a-z, A-Z encoded as ASCII
codes, corresponding to ASCII codes 48 to 57, 65 to 90, and
97 to 122, the data link layer is converted to hexadecimal. In
the form of 0x30 to 0x39, 0x41 to 0x5A, and 0x61 to 0x7A,
each characteristic bit of the protocol is expressed as a den-
sity distribution that follows the ASCII code range.

Figure 6 shows the relationship between the four-
dimensional original features of the ASCII encoding proto-
col reduced to two-dimensional features. In this paper, sam-

ple data is added to the messages of the same protocol in
different formats. The principal component analysis uses
1000 sample data of each ASCII encoding protocol. The data
set includes a total of 10000 message sample data of 6 com-
mon ASCII encoding industrial protocol families. As can be
seen from Figure 6, the four-dimensional original feature
input accurately extracts the features of each ASCII-
encoded industrial protocol message, and the feature points
of the six different protocol family message samples are
clearly divided.

Figure 7 shows the three principal components and their
feature contribution values after dimensionality reduction. It
can be seen from the figure that the contribution value of the
principal component to the original feature is 69.0025%, the
contribution value of the principal component to the
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Figure 7: ASCII encoded 2D feature contribution value.

1 input: Known protocol feature set D, input message feature set P, neighborhood distance eps, minimum number of neighborhood
points minpts;
2: Output: Known protocol classification dataset;
3: If Pi ∈ V then
4: Check eps(Pi,D, P, eps);
5: If the number of Ei midpoints is greater than or equal to minpts then
6: Add point Pi to the set of visited points V ;
7: Add point Pi to known protocol classification dataset S;
8: Else
9: The number of midpoints in E is equal to 0;
10: End if
11: Else
12: Check eps(Tg,D, P, eps)
13: IfTg ∈D and the number of Eg midpoints is greater than or equal to minptsthen
14: Add point Pi to the set of visited points V ;
15: Add point Pi to known protocol classification dataset S;
16: Break;
17: End if
18: End if

Algorithm 1: Eps neighborhood hit algorithm.
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original feature is 26.2411%, and the principal component
contributes 26.2411%. The contribution value of the three
pairs of original features is 3.0297%, and the contribution
value of the two-dimensional target dimension, namely,
principal component one and principal component two, is
95.2436%. According to the contribution value of each fea-
ture in the figure, after denoising by principal component
analysis, when the target dimension is two-dimensional,
the information reflected by principal component one and
principal component two must be greater than 95.2436%
of the original sample. Here, the four-dimensional feature
input can be used as the second dimension.

3.1.3. Preprocessing Process. The principal component analy-
sis method is used to realize the message preprocessing pro-
cess [24]. First, the encoding format of the input message
data is judged according to the hexadecimal value range of
the message data bits. Select the corresponding binary code
or ASCII code known protocol database to obtain the corre-
sponding known protocol training data set. The obtained
known protocol training data set is submitted to the princi-
pal component analysis method together with the input
message data, the protocol features of the data are extracted,
and the feature dimension is reduced to two dimensions.
The training data set follows the industrial protocol specifi-
cation on the feature bits of each message and uses random
values for other nonfeature bits and data bits, so as to elim-
inate the interference of specific data on the training results.

3.2. Screening Module. In this section, we propose an Eps-
neighborhood hit algorithm to address the problems of high
training cost and slow recognition speed of traditional
supervised machine learning algorithms.

3.2.1. Eps-Neighborhood Hit Algorithm. The proposed Eps-
neighborhood hit algorithm is based on the given neighbor-
hood distance eps, and the minimum number of neighbor-
hood points minpts is used to determine the neighborhood
hit on the input packet feature set.

(i) If the point in the feature set of the input message is
the core point under the current neighborhood dis-
tance, it is determined that the feature point is in the
known protocol cluster, and the corresponding
message is determined as the message of the known
protocol

(ii) If the concentrated point has no neighbor point
under the current neighbor distance, it is deter-
mined to be an unknown protocol or a packet fea-
ture point with an interference signal

(iii) If the point in the feature set of the input message is
a boundary point under the current neighborhood
distance, then traverse other feature points in the
neighborhood of the point

(iv) If there are core points belonging to the known pro-
tocol feature set in these points, it indicates that the
input point in the cluster of the core point, the cor-

responding packet is determined to be the packet of
the known protocol

Formally, we summarize it in Algorithm 1. Note that this
algorithm simplifies the operation process of the DBSCAN
algorithm and distributes the feature points in the cluster
of the known protocol training data set. The corresponding
protocol packets are identified as known protocols, and the
unknown protocol packets and the interference signal noise
points are separated.

The key idea of the algorithm is derived from the
DBSCAN algorithm [25]. We note that the conventional
DBSCAN algorithm uses the two parameters of Eps neigh-
borhood distance and the minimum number of domain
points to calculate the core points, boundary points, and
noise points in the data set. The advantage of the DBSCAN
algorithm is to use the density and distribution of feature
points for clustering instead of specifying the number of
clusters of feature points, which has a better clustering effect
for irregularly distributed feature points. In the clustering
process, the feature points are divided into core points,
boundary points, and noise points, which is convenient for
boundary division of clusters and removal of noise points.
This is in line with the characteristic distribution of
unknown industrial communication protocols and is helpful
to divide the unknown protocols by density clustering.

Here, in order to prove that the input message belongs to
a known protocol, it is necessary to prove the characteristic
points of the input message first. In the cluster of the known
protocol feature set, that is, the core point of the known pro-
tocol feature set exists in the neighborhood of the feature
point of the input message. If the input packet core point
and the core point in the known protocol feature set to form
a density reachable relationship, then the input packet fea-
ture point in the neighborhood of the core point also belongs

Begin

Feature
datasets

Core Point ?

In the feature
point neighborhood

Known
protocol

End

Unknown
protocol

No

Yes

NoYes

Figure 8: Flowchart of unknown packet screening method.
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to the known protocol feature cluster and can be classified as
a known protocol.

3.2.2. Screening Process. Next, we further propose a method
for filtering known industrial protocol packets and unknown
packets based on the Eps-neighborhood hit algorithm.
Figure 8 shows the flow chart of the known industrial proto-
col packet and unknown packet filtering method. The
screening method firstly inputs the two-dimensional feature
data set and uses the Eps-neighborhood hit algorithm to
detect whether the input message data is in the known pro-
tocol data set cluster in the two-dimensional feature dis-
tance. If the feature point of the input message is a core
point in the current two-dimensional feature data set, it is
identified as a known protocol message. While if the feature
point of the input message is not a core point, it is judged
whether there is a core point in the neighborhood of the fea-
ture point. When it does not exist, it is identified as an
unknown protocol packet or a packet with an interference
signal.

3.3. Identification of Unknown Protocols and
Interference Signals

3.3.1. Clustering Algorithm Selection. Table 2 shows the clus-
ter fitting rate and average cluster fitting rate of the
DBSCAN algorithm, K-means algorithm, and meanshift
algorithm for each protocol. The average cluster fitting rate
of the DBSCAN algorithm is 84.07%, the K-means algo-
rithm is 71.77%, and the meanshift algorithm is 71.39%.
The DBSCAN algorithm has the best fitting effect on the
known industrial communication protocols than the other
two algorithms. Therefore, we use the DBSCAN algorithm
to cluster the unknown protocols.

Case 1. There are different clusters in the protocol dataset.
Suppose there are n types of known protocols, the number

of protocol data feature points of known protocol i is ci,
the number of feature points belonging to protocol i in algo-
rithm cluster a is mia, and the number of feature points
belonging to protocol i in algorithm cluster b is mib. Then,
the formula for calculating the cluster fitting rate Pi is
expressed as

Pi =
max mia,mibð Þ

ci
× 100%: ð1Þ

Case 2. The feature points of the protocol dataset all belong
to a certain cluster. Assuming that there are n types of
known protocols, the number of protocol data feature points
of known protocol i is ci, and the number of feature points in
algorithm cluster a is ma, then, the calculation formula of
cluster fitting rate Pi is as follows:

Pi =
ma − ci

ci
× 100%: ð2Þ

As shown in formulas (1) and (2), the cluster fitting rate
Pi of a protocol is equal to the proportion of feature points of
algorithm clusters with the largest number in the data set of
the protocol. The average protocol fitting rate P is expressed
as

P = 1
n
〠
n

i=1
Pi: ð3Þ

3.3.2. Identification Process. According to the characteristics
of the unknown packets and the characteristics of the inter-
ference signals mentioned above, this paper combines the
principal component analysis method and the DBSCAN
clustering algorithm to identify unknown industrial protocol
packets and interference signals. The unknown protocol

Table 2: Algorithm clustering fitting rate statistics table.

Algorithm Ps 1 Ps 2 Ps 3 Ps 4 Ps 5 Ps 6

DBSCAN 65.45% 67.95% 99.91% 99.33% 72.22% 99.54%

K-means 66.34% 64.77% 55.86% 74.82% 78.61% 90.19%

Meanshift 64.26% 65.63% 99.43% 51.65% 93.84% 53.52%

Table 3: Binary code unknown protocol recognition accuracy table.

Algorithm Group 1 Group 2 Group 3 Group 4 Group 5 Group 6 Group 7 Group 8 Group 9 Group 10 Mean

DBSCAN 96.80% 94.96% 94.79% 96.03% 92.12% 96.55% 94.23% 95.79% 93.56% 91.92% 94.67%

K-means 90.84% 89.99% 85.49% 85.25% 84.65% 84.52% 85.77% 90.43% 85.75% 89.11% 87.18%

Meanshift 84.72% 83.92% 85.12% 79.31% 85.05% 80.20% 80.44% 85.15% 77.08% 82.62% 82.36%

Table 4: ASCII encoding unknown protocol recognition accuracy table.

Algorithm Group 1 Group 2 Group 3 Group 4 Group 5 Group 6 Group 7 Group 8 Group 9 Group 10 Mean

DBSCAN 97.02% 94.71% 97.36% 94.06% 95.32% 92.06% 95.89% 96.86% 92.46% 95.87% 95.16%

K-means 91.05% 89.13% 90.67% 84.04% 86.40% 90.80% 87.44% 84.94% 86.62% 87.47% 87.86%

Meanshift 93.57% 92.77% 91.83% 91.73% 87.45% 93.62% 90.37% 88.10% 93.08% 91.24% 91.38%
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packets and the packets with interference signals screened
out by the known industrial protocol packets and the
unknown packet screening method are passed into the
DBSCAN clustering algorithm. First, the two-dimensional
characteristics of the unknown protocol packets and the
interference signal packets are obtained. The data set is
passed into the DBSCAN clustering algorithm, and then,
DBSCAN clustering is performed on the two-dimensional
feature data set. According to the characteristics of the
unknown protocol clustering and distribution in a specific
dimension and the principle of DBSCAN clustering, the fea-

ture clusters obtained by clustering correspond to these fea-
tures. Therefore, the feature points of core points and
boundary points are the feature points of unknown protocol
packets, and the noise points can be regarded as the feature
points of packets with interference signals (Tables 3 and 4).

4. Results and Discussions

4.1. Settings. The hardware verification in this paper uses a
total of seven industrial programmable logic controllers
(PLCs) from Siemens, Mitsubishi, Omron, and other brands
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and one industrial Internet access gateway with independent
intellectual property rights to simulate PLC communication
in actual industrial scenarios. A laptop is used to connect the
RS485 communication network through the USB to RS485
converter, and the RJ45 Ethernet interface is used to connect
to the PLC’s Enternet LAN, to realize the PLC’s host com-
puter communication and to simulate unknown protocol
messages and interference signal messages. Combined with
the mixing of unknown protocol packets, interference signal
packets and known protocol packets in the actual communi-
cation link, we test the software and hardware access func-
tion and unknown protocol separation function of
industrial equipments.

In this section, the metric of the average screening accu-
racy is used to measure the performance of the proposed
method. Note that the average screening accuracy rate repre-
sents the average hit rate of the algorithm for different
known protocols. As an algorithm that uses the DBSCAN
clustering principle as the judgment criterion, the neighbor-

hood hit rate can intuitively reflect the recognition effect of
the known protocol packets under the current parameters.

4.2. Experimental Results. Figure 9 shows the operation
results of the first test group among the ten test groups of
the binary coding protocol. Here, 1000 pieces of sample data
for each binary coding protocol and a total of 12,000 pieces
of sample data for 12 protocols are used as the known pro-
tocol training samples. A total of 1000 mixed data sets are
used as the test set, and the number of each message is ran-
dom, the eps is 0.02, and the number of minpts is 3. Assume
that the number of input known packets is m0, the number
of input unknown packets is n0, the number of misrecogni-
tion of known packets is m1, the number of misrecognition
of unknown packets is n1, the calculation formula of the
known packet recognition rate Pm is as the following for-
mula, and the formula of the unknown packet recognition
rate Pn is the same.

Pm = n1 +m1
m0

× 100%: ð4Þ

The binary coding protocol test group includes 512
known packets collected and 488 unknown protocol/inter-
ference signal packets. The input screening method identifies
533 known packets and 467 unknown packets. There are 4
unknown packets that are misidentified known packets,
and 25 unknown packets are misidentified as known
packets. The known packet recognition rate is 94.336%,
and the unknown packet recognition rate is 94.057%.

Figure 10 shows the running results of the first test group
among the ten test groups of the ASCII protocol. Similarly,
1,000 pieces of sample data for each ASCII protocol and
10,000 pieces of sample data for 6 protocol families and sub-
protocols are used as the known protocol training samples.
The known protocol packets, unknown protocol packets,
and interference signals are collected. A total of 1000 mixed
data sets of packets are used as the test set, the number of
each packet is random, the eps is 0.02, and the number of
minpts is 3.

Table 5: Binary coding protocol screening result recognition rate statistics table.

Group
Number of known

packets
Number of unknown

packets
Misidentification

Known packet
recognition rate

Unknown packet
recognition rate

1 512 488 29 94.336% 94.057%

2 475 525 33 93.053% 93.714%

3 448 552 19 95.759% 96.558%

4 454 546 31 93.172% 94.322%

5 491 509 38 92.261% 92.534%

6 475 525 32 93.263% 93.905%

7 531 469 32 93.974% 93.177%

8 453 547 24 94.702% 95.612%

9 478 522 21 95.607% 95.977%

10 540 460 20 96.296% 95.652%

Mean 485.7 514.3 27.9 94.242% 94.551%

–0.4 –0.2 0 0.2 0.4 0.6 0.8 1.0

Main component 1

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

1.0

M
ai

n 
co

m
po

ne
nt

 2

Binary encoded message DBSCAN screening results

Sample known protocols
Known message
Unknown message

Figure 11: Binary encoded packet filtering results.
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The ASCII encoding protocol test group includes 519
known packets collected and 481 unknown protocol/inter-
ference signal packets. The input screening method identifies
547 known packets and 453 unknown packets. Therein, 1
unknown packet is misidentified known packets, and 29
unknown packets are misidentified as known packets. The
known packet identification rate is 94.220%, and the
unknown packet identification rate is 93.763%.

From the test results of binary-coded protocol packets
and ASCII-coded protocol packets, it can be concluded that
the feature recognition rate of known protocol packets of the
proposed Eps-neighborhood hit algorithm is above 94%,
which performs well to identify known protocol packets
(Table 5).

4.2.1. Verification of Unknown Protocols and Interference
Signal Identification Method. In this subsection, ten groups
of unknown industrial protocol messages in binary and
ASCII codes are screened out by the screening method,
and the DBSCAN algorithm, K-means algorithm, and
meanshift algorithm are used to perform clustering and
identification fitting rate comparisons. Due to the different
quantity and density of unknown protocol packets screened
by the screening method, we use the protocol identification
accuracy rate to measure the accuracy rate of unknown pro-
tocol and interference signal identification. The protocol
identification accuracy rate of the algorithm is expressed as
the ratio of the difference between the number of unknown
protocol packets in a certain unknown protocol packet data
set and the sum of the algorithm clustering misidentified
packets and the number of unknown protocol packets in
the protocol packet data set. Suppose the unknown protocol
packet data set t has a total of at messages, n algorithm clus-
ters in the unknown protocol data set, and qi misidentified
packets in each cluster, then the identification accuracy can
be expressed as

R tð Þ = at −∑n
i=1qi

at
× 100%: ð5Þ

Table 3 is a statistical table of the accuracy rate of binary-
coded unknown protocol recognition for the three clustering
algorithms. The binary-coded unknown protocol/interfer-
ence signal mixed message data set screened by the input
screening method is 4978 in ten groups. The average recog-
nition accuracy of the DBSACN algorithm is 94.67%, the
average recognition accuracy of the K-means algorithm is
87.18%, and the average recognition accuracy of the mean-
shift algorithm is 82.36%.

Table 3 is the ASCII code unknown protocol recognition
accuracy statistics table of the three clustering algorithms.
The input screening method selects ASCII code unknown
protocol/interference signal mixed message data sets in ten
groups with a total of 4834 pieces. The average recognition
accuracy of the DBSCAN algorithm is 95.16%, the average

Table 6: Binary coding protocol clustering results recognition rate statistics table.

Group
Number of total

packets
Number of unknown

packets
Misidentification

Location packet
clusters

Unknown protocol
recognition rate

1 467 437 14 4 96.796%

2 512 496 25 6 94.960%

3 543 518 27 7 94.788%

4 529 504 20 9 96.032%

5 485 457 36 11 92.123%

6 497 464 16 5 96.552%

7 457 433 25 7 94.226%

8 527 499 21 12 95.792%

9 507 481 31 9 93.555%

10 454 421 34 10 91.924%

Mean 497.8 471 24.9 8 94.675%
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Figure 12: Clustering diagram of binary coded unknown packets.
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recognition accuracy of the K-means algorithm is 87.86%,
and the average recognition accuracy of the meanshift algo-
rithm is 91.38%.

Note that the DBSCAN algorithm is used as a clustering
algorithm for identifying unknown protocols and interfer-
ence signals, which meets the needs of identifying unknown
protocols. The accuracy rate is higher than that of K-means
algorithm and meanshift algorithm.

4.3. Performance Analysis in Real Industrial Environment

4.3.1. Binary Encoding Mixed Packet Test. Figure 11 shows
the experimental verification of binary-coded unknown/
known industrial protocol message screening. According to
the distribution of known packets and unknown packets,
some random interference signal packets or unknown proto-
col packets with characteristic points near known protocol
samples may be identified as known packets. Therefore,
known packets are tested in the test. The number of misre-
cognition is generally less than the recognition rate of
unknown packets.

The sixth test group of the binary coding protocol ran-
domly generated 475 known packets and 525 unknown pro-
tocol packets plus interference signal packets. The input
screening method identified 503 known packets and 497
unknown packets. Therein, 2 unknown packets are misiden-
tified as unknown packets, and 30 unknown packets are mis-
identified as known packets. The recognition rate of known
packets is 93.263%, and the recognition rate of unknown
packets is 93.905%.

Table 5 shows the screening results of ten groups of
binary-coded known packets. The accuracy evaluation cri-
teria of the screening algorithm of the paper is the recogni-
tion rate of known packets, the recognition rate of
unknown packets, and the number of misidentified packets.

The average number of misidentified packets in the ten
groups of test data is 27.9 per thousand, the average recogni-
tion rate of known packets is 94.242%, and the average rec-
ognition rate of unknown packets is 94.551%.

Table 6 is a statistical table of the recognition rate of the
clustering results of the ten groups of binary coding protocol
test groups. The algorithm accuracy evaluation criteria of the
unknown industrial protocol packet/interference signal
identification method are the unknown protocol packet rec-
ognition rate and the number of misidentified packets. The
binary-coded unknown packets are screened out by each
group of input packets in the test group, the average number
of misidentified packets in the ten groups of test data is 24.9
per 497.8, and the average recognition rate of unknown pro-
tocol packets is 94.675%.

Figure 12 shows the clustering of unknown packets in
the first test group. The first test group inputs 467 unknown
packets, including 437 unknown protocol packets of 4 types
and 30 interference signal packets. After clustering opera-
tion, 4 unknown protocol clusters are obtained, and 22 inter-
ference signal packets are identified. Therein, 11 interference
signal packets are mistakenly identified as unknown proto-
col packets, 3 unknown protocol packets are mistakenly
identified as interference signal packets, and the unknown
protocol recognition rate is 96.796%.

4.3.2. ASCII Encoding Mixed Packet Test. Figure 13 shows
the results of the first test group of the ASCII encoding pro-
tocol, in which 519 known packets and 481 unknown proto-
col packets plus interference signal packets are randomly
generated. It is not difficult to see from the figure that the
eps algorithm has a good clustering effect on ASCII packets
and can effectively distinguish known protocols from
unknown protocols, giving full play to the advantages of
supervised learning and clustering algorithms. The
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Figure 14: ASCII-encoded location message clustering diagram.

Table 8: Statistical table of recognition rate of ASCII encoding protocol clustering results.

Group
Number of total

packets
Number of unknown

packets
Misidentification

Location packet
clusters

Unknown protocol
recognition rate

1 453 436 13 7 97.018%

2 523 491 26 6 94.705%

3 483 454 12 11 97.357%

4 498 471 28 9 94.055%

5 468 449 21 12 95.323%

6 493 466 37 14 92.060%

7 531 511 21 18 95.890%

8 440 414 13 13 96.860%

9 431 411 31 16 92.457%

10 514 484 20 12 95.868%

Mean 483.4 458.7 22.2 11.8 95.159%

Table 7: ASCII encoding protocol screening result recognition rate statistics table.

Group
Number of known

packets
Number of unknown

packets
Misidentification

Known packet
recognition rate

Unknown packet
recognition rate

1 519 481 30 94.220% 93.763%

2 450 550 33 92.667% 94.000%

3 509 491 18 96.464% 96.334%

4 476 524 44 90.756% 91.603%

5 527 473 19 96.395% 95.983%

6 498 502 27 94.578% 94.622%

7 462 538 25 94.589% 95.353%

8 538 462 36 93.309% 92.208%

9 544 456 27 95.037% 94.079%

10 468 532 34 92.735% 93.609%

Mean 499.1 500.9 29.3 94.075% 94.155%
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experimental results show that the model identifies 547
known packets and 453 unknown packets, while 1 known
packet is misidentified as an unknown packets and 29
unknown packets are misidentified as known packets. The
text recognition rate is 94.220%, and the unknown message
recognition rate is 93.763%.

Table 7 shows the statistical table of the running results
of ten groups of ASCII encoding protocol test groups. The
average number of falsely identified packets in the test data
is 29.3 per thousand, the average known packet identifica-
tion rate is 94.075%, and the average unknown packet iden-
tification rate is 94.075%. Table 8 shows the statistical table
of clustering results for groups 1 to 10 in the test group of
ASCII-encoded unknown packets. We can see that the
unknown protocol recognition rate is 95.159%.

Figure 14 shows the clustering of ASCII-encoded
unknown packets in the first test group. The first test group
entered 453 unknown packets, including 437 unknown pro-
tocol packets of 5 types and 30 interference signal packets.
After clustering with the same algorithm, 7 unknown proto-
col clusters with a total of 449 packets are obtained. 4 inter-
ference signal packets are identified, while 13 interference
signal packets are misidentified as unknown protocol
packets. The unknown protocol recognition rate is 97.018%.

5. Conclusion

This paper proposed an Eps-neighborhood hit algorithm to
separate known industrial protocol packets from unknown
packets based on the classical DBSCAN algorithm. The
application of the DBSCAN clustering algorithm in the area
of the industrial internet protocol detection was also investi-
gated. With the help of the proposed algorithm, we designed
an industrial internet adaptive access system, where adaptive
protocols for industrial hardware equipment access are iden-
tified and classified effectively. It indicates that the proposed
method has an average screening accuracy of 94.675% and
95.159% for unknown protocols encoded in binary and
ASCII, respectively, while the average screening accuracy of
known protocols in binary and ASCII encoding is 94.242%
and 94.075%, which has the potential to be implemented
in actual industrial scenarios.

Data Availability

The data used to support the findings of this study are
included within the article.

Conflicts of Interest

The authors declare that there are no conflicts of interest.

Acknowledgments

This work was supported in part by the National Key R&D
Program of China (Grant no. 2018YFE0207600), in part by
the Natural Science Foundation of China (NSFC) under
Grant 61972308 and in part by Natural Science Basic
Research Program of Shaanxi (Program no. 2019JC-17).

References

[1] A. Amjad, F. Azam, M. W. Anwar, andW. H. Butt, “A system-
atic review on the data interoperability of application layer
protocols in industrial IoT,” Access, vol. 9, pp. 96528–96545,
2021.

[2] M. Aazam, S. Zeadally, and K. A. Harras, “Deploying fog com-
puting in industrial internet of things and industry 4.0,” IEEE
Transactions on Industrial Informatics, vol. 14, no. 10,
pp. 4674–4682, 2018.

[3] L. Liu, M. Zhao, M. Yu, M. A. Jan, D. Lan, and A. Taherkordi,
“Mobility-aware multi-hop task offloading for autonomous
driving in vehicular edge computing and networks,” IEEE
Transactions on Intelligent Transportation Systems, pp. 1–14,
2022.

[4] J. Feng, L. Liu, Q. Pei, and K. Li, “Minmax cost optimization
for efficient hierarchical federated learning in wireless edge
networks,” IEEE Transactions on Parallel and Distributed Sys-
tems, vol. 33, no. 11, pp. 2687–2700, 2021.

[5] J. Q. Li, F. R. Yu, G. Deng, C. Luo, Z. Ming, and Q. Yan,
“Industrial internet: a survey on the enabling technologies,
applications, and challenges,” IEEE Commun. Surveys Tuts.,
vol. 19, no. 3, pp. 1504–1526, 2017.

[6] E. Sisinni, A. Saifullah, S. Han, U. Jennehag, and M. Gidlund,
“Industrial internet of things: challenges, opportunities, and
directions,” IEEE Transactions on Industrial Informatics,
vol. 14, no. 11, pp. 4724–4734, 2018.

[7] I. Bedhief, L. Foschini, P. Bellavista, M. Kassar, and T. Aguili,
“Toward selfadaptive software defined fog networking archi-
tecture for IIoT and industry 4.0,” Proc. 2019 IEEE 24th Int.
Workshop Comput. Aided Model. Design Commun. Links
Netw.(CAMAD), pp. 1–5, 2019.

[8] J. Yue, M. Xiao, and Z. Pang, “Distributed BATS-based
schemes for uplink of industrial internet of things,” Proc.
ICC 2019-2019 IEEE International Conference on Communica-
tions (ICC), pp. 1–6, 2019.

[9] J. Lin and L. Liu, “Research on security detection and data
analysis for industrial internet,” Proc. 2019 IEEE 19th Int.
Conf. Softw. Qual. Rel. Secur. Companion (QRS-C), pp. 466–
470, 2019.

[10] T. Cerquitelli, D. J. Pagliari, A. Calimera et al., “Manufacturing
as a data-driven practice: methodologies, technologies, and
tools,” Proceedings of the IEEE, vol. 109, no. 4, pp. 399–422,
2021.

[11] X. Cui, Y. Li, Y. Liu et al., “Analysis methodology for differen-
tial mode interference in energy supply system of hybrid DC
breaker,” IEEE Transactions on Electromagnetic Compatibility,
vol. 61, no. 6, pp. 1967–1978, 2019.

[12] T. J. Levy, U. Ahmed, T. Tsaava et al., “An impedance match-
ing algorithm for common-mode interference removal in
vagus nerve recordings,” Journal of Neuroscience Methods,
vol. 330, article 108467, 2020.

[13] Y. Liu, W. Li, and Y. Li, “Network traffic classification using k-
means clustering,” in Proc. 2nd Int. Multi-Symp. Comput.
Comput. Sci, pp. 360–365, IMSCCS, 2007.

[14] J. Zhang and C. Chen, “An effective network traffic classifica-
tion method with unknown flow detection,” Manage, vol. 10,
no. 2, pp. 133–147, 2013.

[15] H. Singh, “Performance analysis of unsupervised machine
learning techniques for network traffic classification,” Proc.
2015 5th Int. Conf. Adv. Comput. Commun. Technol., pp.
401–404, 2015.

13Wireless Communications and Mobile Computing



[16] R. Ma and S. Qin, “Identification of unknown protocol traf-
fic based on deep learning,” Proc. 2017 3rd IEEE International
Conference on Computer and Communications (ICCC),
pp. 1195–1198, 2017.

[17] W. Wang, B. Bai, Y. Wang, X. Hei, and L. Zhang, “Bitstream
protocol classification mechanism based on feature extrac-
tion,” Proc. 2019 International Conference on Networking
and Network Applications (NaNA), pp. 241–246, 2019.

[18] Y. G. Jung and C.-M. Jeong, “Deep neural network-based auto-
matic unknown protocol classification system using histogram
feature,” The Journal of Supercomputing, vol. 76, no. 7,
pp. 5425–5441, 2020.

[19] H. Liu and B. Lang, “Network traffic classification method sup-
porting unknown protocol detection,” Proc. 2021 IEEE 46th
Conference on Local Computer Networks (LCN), pp. 311–314,
2021.

[20] L. Liberti, C. Lavor, N. Maculan, and A. Mucherino, “Euclid-
ean distance geometry and applications,” SIAM Review,
vol. 56, no. 1, pp. 3–69, 2014.

[21] R. Hu, S. Huang, M. Wang, L. Zhou, X. Peng, and X. Luo,
“Binary thermal encoding by energy shielding and harvesting
units,” Physical Review Applied, vol. 10, no. 5, article 054032,
2018.

[22] G. T. Reddy, M. P. K. Reddy, K. Lakshmanna et al., “Analysis
of dimensionality reduction techniques on big data,” Access,
vol. 8, pp. 54776–54788, 2020.

[23] S. K. Mukhopadhyay, M. Omair Ahmad, and M. N. S. Swamy,
“ASCII-character-encoding based PPG compression for tele-
monitoring system,” Biomedical Signal Processing and Control,
vol. 31, pp. 470–482, 2017.

[24] J. Yang, D. Zhang, A. F. Frangi, and J. Yang, “Two-dimen-
sional pca: a new approach to appearance-based face represen-
tation and recognition,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 26, no. 1, pp. 131–137, 2004.

[25] M. Kryszkiewicz and Ł. Skonieczny, “Faster clustering with
dbscan,” in Intelligent Information Processing and Web Min-
ing, pp. 605–614, Springer, 2005.

14 Wireless Communications and Mobile Computing


	An Unknown Protocol Identification Method for Industrial Internet
	1. Introduction
	2. System Model
	3. The Unknown Protocol Identification Method
	3.1. Preprocessing Module
	3.1.1. Feature Dimension Selection
	3.1.2. ASCII Encoding Protocol Original Dimension Selection
	3.1.3. Preprocessing Process

	3.2. Screening Module
	3.2.1. Eps-Neighborhood Hit Algorithm
	3.2.2. Screening Process

	3.3. Identification of Unknown Protocols and Interference Signals
	3.3.1. Clustering Algorithm Selection
	3.3.2. Identification Process


	4. Results and Discussions
	4.1. Settings
	4.2. Experimental Results
	4.2.1. Verification of Unknown Protocols and Interference Signal Identification Method

	4.3. Performance Analysis in Real Industrial Environment
	4.3.1. Binary Encoding Mixed Packet Test
	4.3.2. ASCII Encoding Mixed Packet Test


	5. Conclusion
	Data Availability
	Conflicts of Interest
	Acknowledgments

