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With the rapid growth of open-source software, code cloning has become increasingly prevalent. If there are security
vulnerabilities in a cloned code segment, those vulnerabilities may spread in the related software to potentially lead to security
incidents. The existing methods of vulnerable code detection are performed on the condition that the source code is converted
into an intermediate representation. However, these methods do not fully consider the rich semantic knowledge and patch
information available for vulnerable codes, which can induce a high false positive rate (FPR). To address this problem, this
paper proposes a vulnerable code clone detection method based on code fingerprints, named the Context-enhanced and Patch-
validation-based Vulnerable code clone Detector (CPVDetector). A fingerprint database is built for functions, code snippets,
and patches derived from preprocessed vulnerable source code. The target code to be detected is firstly transformed into
function-level fingerprints. If clone detection fails at this coarse granularity, the detector is then applied at the finer line-level
granularity. When fingerprint matching is successful between the target code and the vulnerable code segments, the detector
will proceed to verify the context of vulnerable codes. Finally, CPVDetector can verify the fingerprints of patches
corresponding to vulnerable codes to further reduce the FPR. Based on the generally accepted classification of code clones,
CPVDetector can identify Type 1 and Type 2 vulnerable code clones at the coarse-grained level and offers significantly
improved detection sensitivity for Type 3 and Type 4 code clones at the fine-grained level. Experimental results show that the
proposed method can achieve high accuracy with a fast detection speed, and the FPR is as low as 2.35%, which is less than
one-third of that of other existing methods. In view of its competitive performance and efficiency, CPVDetector can be applied
in large-scale vulnerable code detection scenarios.

1. Introduction

The number of open-source software projects has increased
rapidly in recent years [1, 2]. There were 170 million code
repositories in GitHub [3] in 2020, of which 54.21 million
were active code repositories, an increase of 36.4% compared
to 2019. In the software development stage, programmers
need to complete their tasks within a given time frame [4].
Therefore, copying and pasting of code often occur, either
without any modifications or with only some simple modifica-
tions in the copied code segments, such as identifier replace-
ment, sequence adjustment, or annotation modification. It is
evident that such frequent copy-and-paste operations may
be detrimental to software quality and maintenance [5–9].
The process of copying code snippets is called code cloning.

Cloning vulnerable codes may cause the same vulnerabilities
to be propagated in the development process, which can lead
to security incidents [6].

Developers usually modify cloned code to meet software
requirements by performing operations such as deleting
unnecessary statements or adding some assertion statements
for debugging. These operations may modify cloned vulnera-
ble code, making vulnerability detection more difficult. Never-
theless, even if the structure of vulnerable code is modified,
vulnerabilities may still exist in the cloned code segment [10,
11]. This kind of vulnerability is known as restructured clone
vulnerability. Deckard, ReDeBug, and VUDDY can detect
restructured clone vulnerabilities with extremely limited
semantic information on the vulnerable code [12–15]. How-
ever, existing tools for restructured clone detection cannot
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validate associated patch files, which results in a high false pos-
itive rate [16–20].

This paper proposes the Context-enhanced and Patch-
validation-based Vulnerable code clone Detector (CPVDe-
tector) as a tool for vulnerable code clone detection based
on code fingerprints, which can effectively identify common
types of code clones. The target code is detected at function-
level and line-level granularity. A code fingerprint consists of
a series of MD5 hash bits with a length of 32 that is simple
and unique. In addition, the proposed method can leverage
the context of vulnerable code snippets to reduce false posi-
tives caused by context-sensitive vulnerability. Through
patch validation, CPVDetector can effectively locate patch
codes in the target segments; thus, it can further reduce the
false positive rate. Accordingly, CPVDetector can effectively
identify vulnerabilities in practical software projects that
cannot be detected by other state-of-the-art methods. More
importantly, the proposed method can reduce the FPR to
as low as 2.35% while improving the F-measure by approxi-
mately 30% when compared to existing methods.

The main contributions of this paper are as follows:

(1) We collect 983 vulnerabilities in common C/C++
open-source software projects from 2010 to 2020
and build a scalable fingerprint database for vulnera-
ble code

(2) We propose a 2-level vulnerable code clone detection
tool based on the source code fingerprints of functions
and statements. To further reduce false positives, the
context and patch information of vulnerable code is
considered in line-level detection

(3) CPVDetector can detect four different types of vulner-
able code clones. Compared to existing code clone
detection methods, the proposed detection method
can achieve the best balance in terms of accuracy and
speed

The rest of this paper is organized as follows. Section 2
describes the classification of code clones and the existing
code clone detection methods. Section 3 describes the collec-
tion and processing of vulnerability data and fingerprint
generation. Section 4 presents how CPVDetector performs
vulnerable code clone detection. In Section 5, we evaluate
the proposed CPVDetector in comparison with other vul-
nerable code clone detection methods. Finally, Section 6 pre-
sents the conclusion and future work.

2. Background

2.1. Code Clone Classification. The original codes in cloned
code segments are usually modified through operations such
as variable renaming, redundant code insertion, annotation
modification, data type modification, operator modification,
statement order modification, code block order modifica-
tion, and equivalent conversion of control structures [21,
22]. A set of widely accepted definitions for the classification
of code clones is given as follows [5, 6]:

Type 1: exact clone. The code layout may be modified by
modifying spaces and tabs, and the annotations may be edited;
however, the code part is copied without any modifications.

Type 2: renamed clone. In addition to the modifications of
Type 1, only the data types of variables and function return
values are modified, or identifiers and variables are renamed.

Type 3: restructured clone. In addition to the modifica-
tions of Type 1 and Type 2, structural modification opera-
tions such as deletion, insertion, and rearrangement of
statements are performed to generate restructured clones.

Type 4: semantic clone. In addition to the modifications
of Type 1, Type 2, and Type 3, although the semantics of
the code do not change, the syntax is adjusted.

2.2. Related Works. The existing code clone detection methods
can be divided into five types: text-based, token-based, graph-
based, abstract-syntax-tree-based, and metric-based methods.

(1) Text-Based Methods. Text-based methods convert
source codes into sequences of lines or segments.
To find a similar sequence, a given code segment is
compared with other segments. To improve the
detection accuracy, it is necessary to perform a series
of preprocessing steps on the source code, such as
standardization and normalization [23]. With gran-
ularity at the level of lines of code, ReDeBug lever-
ages the sliding window method on the source code
to detect files by means of a Bloom filter. ReDeBug
can effectively detect Type 3 code clones, but it can-
not effectively detect Type 1 or Type 2 code clones;
as a result, a large number of clones of vulnerable
code are missed. In addition, the false positive rate
is high for methods based on line-level detection that
do not consider code context or patch knowledge.
With granularity at the level of functions, VUDDY
can effectively detect clones of vulnerable code by
detecting the fingerprint of the code for each func-
tion. However, VUDDY has difficulty detecting some
common methods of code modification, such as code
word order changes or additions and deletions of
redundant code. Based on the sequences obtained via
compilation and decompilation of Java source code,
a tree-based clone detector has been proposed that
can effectively recognize Type 1, Type 2, and Type 3
clones [24, 25]. Jadon proposed a technique for detect-
ing Type 3 clones and quantifying their similarity [26].
This method can identify Type 3 clones for the C lan-
guage bymeans of intermediate representation vectors
and a support vector machine classifier

(2) Token-Based Methods. The source code is parsed into
a token sequence that is easy to compute. Taking
CCFinder [27] as an example, the similarity between
two token sequences is calculated using a suffix tree
algorithm. However, CCFinder has a rather high false
positive rate because of its abstraction and filtering
heuristics. SourcererCC can detect Type 3 code clones
by using token package technology [28]. If the similar-
ity between two functions exceeds a predetermined
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threshold, then a clone is detected. However, if a state-
ment is inserted into vulnerable code to make a simple
modification, for example, adding an if statement,
then SourcererCC will not be able to accurately detect
the code clone. Moreover, Nishi and Damevski
applied adaptive prefix filtering heuristics in a clone
detection method [29] that could find Type 1, Type
2, and Type 3 clones.Wang et al. proposed CCAligner,
which is a token-based clone detection tool [30] that
uses C and Java files as data sets and can detect Type
1, Type 2, and Type 3 clones

(3) Tree-Based Methods. The source code is represented
as an abstract syntax tree, in which nodes represent
program entities and edges represent the connec-
tions between these entities. A heuristic tree search
algorithm is used to identify clone pairs in similar
subtrees. For example, Deckard constructs abstract
syntax trees for files and then extracts feature vectors
from the tree. After the feature vectors are clustered
based on the Euclidean distance, vectors that are suf-
ficiently close to each other in the Euclidean space
are identified as code clones. This method based on
a tree structure incurs a considerable time overhead
because the subgraph isomorphism problem is an
NP-complete problem. In addition, Deckard has a
relatively high false positive rate, which indicates
that cloning is not necessarily present in vulnerable
codes with similar abstract syntax trees. Yang et al.
proposed an automatic code clone detection method
[31] that generates an abstract syntax tree with
function-level units and uses the Smith–Waterman
algorithm to calculate the score for each function

(4) Graph-Based Methods. In these methods, a program
is converted into a graph such as a program depen-
dence graph (PDG). These methods can achieve a
higher level of abstraction of their code representations
than othermethods because they consider the semantic
information of the source code. Crussell et al. proposed
a detection tool based on the PDGs of C-language
source code [32]. This tool uses the locality-sensitive
hashing (LSH) algorithm to search for vectors that
approximate nearest neighbors and the Min-Hash
algorithm to calculate the similarity [33].

(5) Metric-Based Methods. Various metrics of the source
code are calculated, such as the number of lines of
code, the number of operators, and the cyclomatic
complexity. Then, these metrics are compared to
detect clone pairs that have the same metrics. Svaj-
lenko and Roy summarized the concept of Clone-
Works [34], which is a Type 3 clone detection tool
that uses the IJaDataset and the Jaccard similarity
measure for clone detection

The code clone detection methods introduced above all
have relatively high detection capabilities for Type 1 code
clones. Text-based or token-basedmethods are better for Type
2 code clone detection. Tree-based or metric-based methods

are suitable for detecting Type 3 code clones. Graph-based
methods can detect some Type 4 code clones, but graph gen-
eration and subsequent detection are time-consuming pro-
cesses. Singh proposed a hybrid method based on code
metrics and PDGs to convert Java source code into abstract
syntax trees and PDGs [35], which can detect Type 1, Type
2, and Type 3 code clones. VulPecker uses a variety of source
code representation methods and similarity calculations for
code clone detection [36]. However, due to the poor efficiency
of this method, it is not suitable for code clone detection for
large open-source projects.

3. Vulnerability Fingerprint Database

A series of preprocessing steps is performed on obtained
sample data of vulnerable source code, and fingerprints are
generated in accordance with granularities at the code line
and function levels. Thus, a fingerprint database for code
clone detection is constructed.

3.1. Data Collection. Samples of vulnerable source code are
obtained from open-source projects in GitHub, including
the Linux kernel, FFmpeg, and OpenSSL. Corresponding
patch information is obtained from the submission histories.
Vulnerable code segments are extracted from the diff files in
the patches. A diff file is composed of one or more code seg-
ments that are used as the characteristic fingerprint of the
corresponding vulnerable code. In a diff file, there are code
statements identified by special notations. Statements begin-
ning with “+” are statements added by the patch, and state-
ments beginning with “-” are statements deleted by the
patch. Finally, the vulnerable functions, the vulnerable code
segments, and the statements added and deleted by each vul-
nerability patch for vulnerable source codes are saved in a
local file library for subsequent fingerprint generation and
clone detection of vulnerable codes.

3.2. Preprocessing. The vulnerable code segments in a patch
cannot completely represent the context of the vulnerable code.
To better obtain the semantic information of vulnerable code,
the vulnerable functions are converted into code flow graphs,
and vulnerability patch code control statements with contex-
tual information are notated for subsequent code clone detec-
tion. The Code2flow tool can convert vulnerable functions
into flow graphs to determine and notate the control state-
ments corresponding to patch codes [37]. Figure 1 shows an
example of a simple vulnerable function and its generated flow
diagram.

It is necessary to preprocess the source code before gener-
ating fingerprints. The first step of preprocessing the source
code is to normalize the vulnerable source code by deleting
annotations, spaces, tabs, and line breaks and converting all
characters into lowercase letters to eliminate the influence of
factors unrelated to syntax on the detection results. The steps
of abstract replacement in the source code are as follows.

Step 1. Formal parameter replacement. Replace the formal
parameters of functions in the code with FPARAM symbols.
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Step 2. Local variable replacement. Replace local variables in
the code with LVAR symbols.

Step 3. Data type replacement. Replace the data types in the
code with DTYPE symbols. These data types include C-
language data types and custom data types. Modifiers such
as unsigned will not be replaced because they have a significant
impact on some vulnerabilities, such as integer overflow.

Step 4. Function replacement. Replace the function calls in
the code with FUNCCALL symbols. Function calls are an
important source of vulnerability.

Figure 2 shows the transformation of a vulnerable func-
tion before and after preprocessing. Figure 2(a) shows the vul-
nerable function code before preprocessing, and Figure 2(b)
shows the vulnerable function code after preprocessing.

3.3. Granularity Selection. For Type 1 and Type 2 code clones,
clone detection is performed on the preprocessed vulnerable
code with function-level granularity, which takes less time
than detection with line-of-code-level granularity. However,
in the face of Type 3 and Type 4 code clones, it is difficult
for detection with function-level granularity to succeed
because it ignores the possible methods of internal modifica-
tion of vulnerable functions, such as modification of the code
statement sequence or the insertion of redundant code. Thus,
to detect multiple types of clones, the proposed method com-
bines line-level granularity and function-level granularity for
detection. First, fingerprints of vulnerable codes are generated
to detect Type 1 and Type 2 code clones with the vulnerable
functions as the units for detection, and then, fingerprints
are generated to detect Type 3 and Type 4 code clones with
code lines as the units. If only the vulnerable code segments
themselves are used to generate the fingerprints, contextual
information may be omitted. Thus, the control statements

corresponding to vulnerability patch codes are also selected
for fingerprint generation. Finally, the added and deleted state-
ments in each patch file are also used to generate fingerprints
for subsequent patch verification.

Figure 3 shows the process of generating fingerprints of
vulnerable code in detail. The preprocessed vulnerable
source code is divided into a vulnerable function code set
and a vulnerable line-level code set for the vulnerable code
segments, the vulnerability patch codes, and the control
statements corresponding to the vulnerability patch codes.
Fingerprints of vulnerable functions are generated at the
function level and stored in the fingerprint database. Then,
fingerprints of the vulnerable code segments, vulnerability
patch codes, and control statements corresponding to vul-
nerability patch codes in the vulnerable line-level code set
are generated at the line-of-code level of granularity. The
line-level code fingerprints are associated with the corre-
sponding vulnerable function fingerprints to complete the
construction of the whole fingerprint database.

3.4. Fingerprint Generation. In the process of detecting Type 1
and Type 2 code clones, a triple t = ðl, h, f Þ represents a vul-
nerable function fingerprint. Here, l represents the length of
the vulnerable function, h is the Common Vulnerabilities
and Exposures (CVE) identification number of the vulnerabil-
ity corresponding to the vulnerable function, and f denotes
the hash value of the vulnerable function fingerprint. Vulner-
able function fingerprints of the same length are stored as one
data set. Thus, CPVDetector can locate vulnerable function
fingerprints based on the vulnerable function length and can
quickly search for any associated CVE number that may exist
in the target code to be detected. Table 1 presents the vulner-
able function fingerprints of the vulnerabilities numbered
CVE-2017-13012 and CVE-2015-1308, with a vulnerable
function length of 143.

static f loat sum=0 

unsigned int i

int i=0

i<len i++

sum+=arr

void avg(f loat
arr,int len)

F

T

printf(“%f%d”,
sum/len,validate(sum))

Figure 1: An instance of Code2flow for vulnerable function.
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The vulnerable line-level code fingerprints for Type 3
and Type 4 code clones can be divided into three types: (i)
fingerprints of vulnerable code segments, generated by rows;
(ii) fingerprints of the control statements corresponding to
vulnerability patch codes, used to further verify the context
of cloned code when detecting code clones; and (iii) finger-
prints of vulnerability patch codes, including fingerprints

of patch-deleted statements marked with “-” and finger-
prints of patch-added statements marked with “+.” The spe-
cific operations are as follows. Fingerprints of the vulnerable
code segments in the vulnerable line-level code set are gener-
ated, followed by the fingerprints of the corresponding vul-
nerability patch code control statements and vulnerability
patch codes at line-level granularity, and the above three

Step 1: Formal
parameter
replacement

DumpStyleGeneaology(nsIFrame⁎ fparam, const char⁎ fparam)
nsFrame::ListTag(fparam, fparam);
nsStyleContext⁎ sc = aFrame->GetStyleContext();
printf(‶%p″, fparam);
psc = sc->GetParent();
sc = psc;
printf(‶%p ″, fparam);

Step 2: Local
variable
replacement.

DumpStyleGeneaology(nsIFrame⁎ fparam, const char⁎ fparam)
nsFrame::ListTag(fparam, fparam);
nsStyleContext⁎ lvar = aFrame->GetStyleContext();
printf(‶%p ″, fparam);
lvar = sc->GetParent();
lvar = lvar;
printf(‶%p ″, fparam);

Step 3: Data
type
replacement.

DumpStyleGeneaology(dtype⁎ fparam, const dtype⁎ fparam)
nsFrame::ListTag(fparam, fparam);
dtype⁎ lvar = aFrame->GetStyleContext();
printf(‶%p ″, fparam);
lvar = sc->GetParent();
lvar = lvar;
printf(‶%p ″, fparam);

Step 4: Function
replacement.

DumpStyleGeneaology(dtype⁎ fparam, const dtype⁎ fparam)
nsFrame::funccall(fparam, fparam);
dtype⁎ lvar = aFrame->funccall();
funccall(‶%p ″, fparam);
lvar = sc->funccall();
lvar = lvar;
funccall(‶%p ″, fparam);

Figure 2: Example of line-by-line abstract replacement.

Vulnerable
Code segments

Vulnerable
patch code

Vulnerable
context code

Vulnerable code
extraction

Vulnerable code
fingerprint
generation

Vulnerable
functions Function-based

fingerprint database

Line‐based
fingerprint database

Temp
line-level

vulnerable
code set

Pr
e-

pr
oc

es
sin

g

Temp
function-level

vulnerable
code set

int main()

}
strcmp ...
{

Source code

Figure 3: Construction of the fingerprint database.
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types of fingerprints are stored in a table space as the finger-
prints of the vulnerable line-level codes. Finally, each vulner-
able line-level code fingerprint is linked to the corresponding
vulnerable function fingerprint to allow the corresponding
vulnerability CVE number to be output in the results of code
clone detection. Table 2 presents the preprocessed vulnera-
ble code and vulnerable line-level code fingerprints of the
vulnerable code segments, patch code control statements,
and vulnerability patch code for CVE-2017-13012.

4. Code Clone Detection

CPVDetector first eliminates the influence of operations
such as renaming in the target code on the clone detection
results. Second, each function in the target code is converted
into a fingerprint to detect Type 1 and Type 2 code clones.
Once any matching vulnerable function fingerprint is dis-
covered, detection is terminated, and the CVE number cor-
responding to the vulnerable function fingerprint will be
output to end the detection process. If no corresponding vul-
nerable function fingerprint is discovered, the target code
should be processed with lines of code as the units. Then,
Type 3 and Type 4 code clones should be detected in the fin-
gerprint database of vulnerable line-level codes, and the con-
text of the vulnerable codes and any corresponding patches
should be further verified in the process of detecting target
line-level code clones. Finally, the detection results are out-
put. The process of detecting code clones with CPVDetector
is shown in Figure 4.

4.1. Function-Level Vulnerable Code Clone Detection. Vul-
nerable function fingerprints are employed to detect Type
1 and Type 2 code clones. In the detection process for the
target code, the length of the vulnerable function is first used
as an index to search for any vulnerable function of the same
length. If any vulnerable function fingerprint with the same
length is discovered, hash lookup will be used to match hash
values with the given length, which may help reduce the
search space and improve the detection efficiency. As a
result, the CVE number corresponding to the vulnerable
function fingerprint will be output. Fingerprints of vulnera-
ble functions that may have been cloned can be quickly
located with an average time complexity of Oð1Þ and a
worst-case time complexity of OðnÞ.
4.2. Line-Level Vulnerable Code Clone Detection. Line-level
clone detection is mainly used for the detection of Type 3
and Type 4 code clones. Detection based on the fingerprint
of the vulnerable code segment is performed first. In general,
there will be a vulnerability in target code that includes an
entire vulnerable code segment. In other words, fingerprint
detection for vulnerable code segments can be regarded as

a problem of finding whether a given subsequence is present.
Therefore, we introduce a greedy algorithm to handle this
problem. The fingerprints in the vulnerable line-level code
fingerprint database are used as the input to match against
the target code. If a vulnerable code segment associated with
a vulnerability is found, it can be judged that the target code
may contain this vulnerability. Algorithm 1 describes the
detection algorithm for vulnerable line-level code clones.

In Algorithm 1, T represents the set of line-level finger-
prints of the target code, and F represents the set of line-
level fingerprints of a given vulnerable code segment. t and
f represent the MD5 fingerprints at the line-of-code level
in T and F, respectively. The symbol |•| denotes the size of
the set •. If the size of T is smaller than the size of F, then
the vulnerable code cannot appear as a subsequence in the
destination code, which means that there is no successful
match. After this conditional judgment, the corresponding
vulnerable code fingerprints are matched in the destination
code, and the number of matches is recorded by the counter
j. When the value of the counter j is equal to the length of
the vulnerable code fingerprint, this indicates that the com-
plete sequence of the vulnerable code exists in the destina-
tion code, which means that the match is successful. As is
clearly seen from Algorithm 1, the complexity of Algorithm 1
is Oð∣T∣ × ∣F ∣ Þ in the worst case, depending on the number
of lines in the target code and the number of fingerprints of
the vulnerable code segment.

4.3. Vulnerability Context and Patch Validation. If the target
code is matched only with the fingerprints of the vulnerable
code segment, the following two problemsmay affect the detec-
tion result. (i) The context of the vulnerable code is difficult to
completely express. When the context of the vulnerable code
has changed, the detection method may fail to recognize it.
(ii) Even if the vulnerable code segment in the target code has
been patched, the detectionmethodmay still indicate that there
is a vulnerability in the target code. To address these two prob-
lems, the proposed method verifies the vulnerability context of
the target code. Because a vulnerability patch is designed to fix a
specific vulnerability and the patch code can only work if it acts
on the corresponding vulnerable code, the contextual relation-
ship is the same for the patch code and the corresponding
vulnerable code. Therefore, before patch verification, the con-
textual relationship is first verified to ensure that the contextual
relationship of the vulnerable code has not changed and to
guarantee that the patch code can be successfully applied to
the corresponding vulnerable code. If the target code success-
fully passes the vulnerable code segment detection process,
the previously introduced line-level vulnerable code clone
detection algorithm will be used to verify the vulnerability con-
text, and the target code and the fingerprints of corresponding

Table 1: Examples of vulnerable function fingerprints.

Vulnerable function length CVE number of the vulnerability Vulnerable function fingerprint

143
CVE-2017-13012 08345519ec358d8af82812efab5051f6

CVE-2015-1308 78675ef39f395a7d95076b3354f0e48e
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patch code control statements will jointly serve as the input to
the detection algorithm.

To lower the false positive rate caused by the neglect of
patch information, a method proposed in this paper uses the
target code passing the context verification as the input for
the vulnerable patch validation. This method is different from
the previous detection method. The package of vulnerability
patch codes can be divided into patch-added statements and
patch-deleted statements. Based on this premise, for vulnera-
bility patch validation, the fingerprints of statements identified
by “-” as patch deletions in the patch code will firstly be
detected in the target code. If these deleted patch code finger-
prints are not detected, the fingerprints of statements identi-
fied by “+” as patch additions will be detected in the target
code. If no fingerprints of the deleted statements are detected
and the fingerprints of the added statements are detected in

the target code, it is identified that the vulnerabilities in the
code have been patched, and the false positives caused by
patching are thus eliminated.

5. Experiment

To evaluate the effectiveness of the proposed method, it is
compared with VUDDY, ReDeBug, and Deckard in this sec-
tion. In the experiment, common C/C++ open-source soft-
ware projects obtained from GitHub, such as the Linux
kernel and FFmpeg, and their vulnerability information and
patch files were obtained from the Common Weakness Enu-
meration (CWE) website to establish a complete vulnerability
code fingerprint database. Moreover, many test cases for dif-
ferent vulnerabilities have been posted in the Software Assur-
ance Reference Dataset (SARD) [38], including vulnerable

Table 2: Examples of vulnerable line-level code fingerprints.

Type Preprocessed vulnerable code Vulnerable line-level code fingerprint

Vulnerable code segments

FPARAM+=8;
FUNCCALL((FPARAM, "\n\t"));

FPARAM=(const struct FPARAM ∗ )LVAR;
FPARAM=FPARAM;

LVAR=FPARAM->FPARAM;
FUNCCALL(FPARAM,LVAR,FUNCCALL(&FPARAM));

FPARAM=FPARAM;

62e857215c2c8b10a1ebe99046b1b463
04a27a8b584e00db088f18a16ddc1ac6
c3250b774d4bd8bbeea848ae8e091777
4830812a7240fa89419da5ef1e440566
01689c59d66b453ae92f59560a0a430f
d1f3dbd2ab6d7e6199391bb86d1d343a
57e012af713ea16d25ed7bd54a216887

Vulnerability patch code
FUNCCALL(&FPARAM);

FUNCCALL(&FPARAM->FPARAM);
+90b650dba71b052ca2a85608a2447c1c

-e58a03ee48a74c4d50af5bee1ba18d08

Vulnerability context code if(FPARAM>=1&&FUNCCALL(FPARAM)) 8fddbc554a5ad97e8805a956a8ab5968

Preprocessing

Function‐level
fingerprint
generation

Fingerprint-
based detection

Check
whether the
detection is
successful

Line‐level
fingerprint
generation

Vulnerable
code segments

matching

Context
recognition

Patch
recognition

Fu
nc

tio
n‐

le
ve

l

Function‐based
fingerprint database

Detection
report

Y

Line‐based
fingerprint database

Li
ne

‐le
ve

l

N

<∙∙∙

>
be tested
Codes to

Figure 4: Framework of code clone detection in CPVDetector.

7Wireless Communications and Mobile Computing



cases, nonvulnerable cases, and patched cases, to build a set of
test cases for experimentation.

5.1. Evaluation Indicators. To verify the effectiveness of each
model, the precision (P), accuracy (A), false positive rate
(FPR), false negative rate (FNR), and F-measure were used
as the performance indicators in this study. In the expres-
sions for these indicators, TP represents the number of sam-
ples correctly detected as vulnerabilities, FP is the number of
samples incorrectly detected as vulnerabilities, TN repre-
sents the number of samples correctly detected as nonvul-
nerabilities, and FN is the number of samples incorrectly
detected as nonvulnerabilities. The specific calculation for-
mulas for the 5 abovementioned indicators are shown in
Table 3.

5.2. Accuracy Evaluation. In the comparative test, the size of
the ReDeBug sliding window was set to 4, and the length of
the extracted code segment was set to 10. In Deckard, the min-
imal number of tokens required for clones was 30, the size of
the sliding window was set to 2, and the similarity value was
set to 0.95. The computer used to run the experiment was con-
figured with an AMD Ryzen 5 3600 CPU, an Nvidia RTX
2060S 8 GB GPU, 16GB of memory, and a 500GB SSD.

The experimental results are shown in Table 4. Com-
pared with the results of the other three methods, the F-
measure of the proposed method is increased by at least
33%. Meanwhile, the proposed CPVDetector has higher
precision and accuracy, indicating that more vulnerabilities
can be detected without incurring more false positives.
CPVDetector preserves the context information of vulnera-
ble code, generates more accurate code fingerprints, and
thus achieves a higher accuracy of detection. Furthermore,
it is low for the FNR of CPVDetector, reaching approxi-
mately 10%, i.e., a quarter of that of the other methods,
which suggests that false positives can be reduced by means
of context and patch validation. VUDDY and ReDeBug use
code fingerprinting to characterize code, but due to the
choice of granularity, incomplete analysis of semantic infor-
mation, and incomplete consideration of specific situations,
they result in high FPRs and an inability to effectively deal
with different types of code clones. Meanwhile, Deckard is
an abstract-syntax-tree-based code clone detection method,
and syntax tree generation and subtree finding are relatively
inefficient processes. This results in low overall efficiency of
the method, and the fact that detection is performed only on
the basis of structural similarities can also lead to false pos-
itives due to the neglect of changes in internal details, which
is also the reason for the relatively low detection precision
and accuracy. An experimental analysis of different types
of code cloning and the corresponding detection efficiency
is as follow.

Input:T, F
Output:r
Initialize:r←False
1.if |T|<|F| then
2. returnr
3.end if
4.for eachtinT do
5. j←0
6. for eachfinFdo
7. ift = fthen
8. goto 14
9. end if
10. j←j+1
11. if j=|F| then
12. returnr
13. end if
14. end for
15.end for
16. r←True
17.returnr

Algorithm 1: Line-level vulnerable code clone detection algorithm.

Table 3: Evaluation metrics.

Evaluate indicator Formula

Precision P = TP/ TP + FPð Þ
Accuracy A = TP + TNð Þ/ TP + FP + TN + FNð Þ
False positive rate FPR = FP/ FP + TNð Þ
False negative rate FNR = FN/ FN + TPð Þ
F-measure F‐Measure = 2 ∗ P ∗ 1‐FNRð Þð Þ/ P + 1‐FNRð Þð Þ

Table 4: Experimental results of different methods on the test set.

Method P (%) A (%) FPR (%) FNR (%) F-measure (%)

CPVDetector 96.47 92.94 2.35 10.09 93.07

VUDDY 94.11 75.29 7.06 56.47 59.52

ReDeBug 91.76 67.05 8.23 57.64 57.96

Deckard 57.65 50.59 47.05 55.29 50.36
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To study the detection effect of the proposed method for
different types of code clones, the cases were divided into 4
test sets, i.e., Type 2 code clones, Type 3 code clones, mixed
Type 2 and Type 3 code clones, and Type 4 code clones.
CPVDetector, VUDDY, ReDeBug, and Deckard were all
tested on each of these 4 test sets individually.

Figure 5 depicts the experimental results of the 4
methods for detecting different types of code clones. As
shown in Figure 5, the F-measure of the method presented
herein was increased by at least 7%, 19%, and 17% compared
with the other three methods in terms of detecting Type 2,
Type 3, and Type 4 code clones, respectively, and can effec-
tively detect different types of code clones. VUDDY has
good performance in detecting Type 2 code clones, but for
Type 3, its F-measure was 13.6%, and it also could not detect
Type 4 code clones. The F-measure of ReDeBug was only
27.3% in detecting Type 2 code clones, and it could not
detect Type 4 code clones either. Although Deckard works
for all different types of code clones, its F-measure for the
detection of Type 2 code clones was only 52%. In summary,
the experimental results of the other three types of detection
methods were not ideal; accordingly, the main problems of
VUDDY, ReDeBug, and Deckard are analyzed as follows.
Because function-level granularity is used for detection in
VUDDY, it cannot effectively detect clones in cases of inser-
tion of redundant code or deletion of irrelevant code. There-
fore, VUDDY does not have an ideal effect in detecting Type
3 and Type 4 code clones. For ReDeBug, it is difficult to
detect cloned codes whose data types have been changed
or whose variables and functions have been renamed, which
leads to a serious problem of false negatives in the detection

of Type 2 code clones. Deckard converts code into an
abstract syntax tree and detects code clones by searching
for similar subtrees; consequently, target code with subtrees
similar to existing vulnerabilities and without actual code
clones will be falsely determined as vulnerable one because
of the lack of patch validation.

For experiments to evaluate the detection efficiency of the
proposed method, the test cases were divided into sets of dif-
ferent sizes, ranging from 1k LoC to 300k LoC. Table 4 lists
the run times of the different methods on the test case sets of
different sizes. As seen in Table 5, the proposed method shows
significantly higher efficiency than ReDeBug and Deckard. In
these experiments, Deckard required considerably more time
as the data scale increased because this detection method is
based on abstract syntax trees. VUDDY consumed less time
than the other methods because it performs detection at the
function level granularity; however, as a result, it cannot effec-
tively detect Type 3 and Type 4 code clones, so a high FPR is
generated. Compared with VUDDY, the proposed method

Vuddy
CPV Detector

Detect m
ethods

ReDebug

Deckard Type-4

Type-2+type-3

Type-3

Type-2

Clone types

100

F-measure (%)

80

60

40

20

0

Figure 5: F-measure comparisons for different clone types and detection methods.

Table 5: Time overhead comparisons.

LoC CPVDetector VUDDY ReDeBug Deckard

1k 0.62 0.44 11.6 1.12

10k 1.45 0.81 27.6 3.63

50k 6.47 4.86 38.5 14.27

100k 17.63 10.34 42.92 34.67

200k 38.44 24.81 103.43 185.69

300k 65.12 47.43 195.24 332.42
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shows improved efficiency in detecting different types of code
clones at the expense of a small increase in run time. In addi-
tion, the time overhead of CPVDetector exhibits roughly lin-
ear growth as the size of the test case set increases, indicating
that it can be feasibly applied in large-scale code detection
scenarios.

5.3. Case Analysis of Vulnerable Code Clone Detection. In this
section, three specific cases are analyzed for vulnerable code
clone detection. Taken the vulnerability CVE-2017-13012 as
an example, the proposed method could successfully detect
the vulnerability, whereas VUDDY, ReDeBug, and Deckard
all failed. CVE-2017-13012, a high-risk vulnerability with a
Common Vulnerability Scoring System (CVSS) risk score of
9.8, is generated when the ICMP parser in tcpdump suffers
from buffer overreading. Figure 6 shows three versions of the
vulnerability CVE-2017-13012. Figure 6(a) presents the origi-
nal source code that led to this vulnerability. The calls of ip_
print and EXTRACT_16BITS (&ip->ip len) lead to the occur-
rence of this vulnerability. Therefore, it is meaningful to check
the value of ip->ip_len before using it. Figure 6(b) presents the
patched code in which this vulnerability is corrected, with the
addition of the call to the statement of ND_TCHECK 16BIT-
S(&ip->ip_len). A test case of the constructed test set is shown
in Figure 6(c). It can be seen that the callee function is not
present, which suggests that this code has not been repaired
by the vulnerability patch and that consequently, the vulnera-
bility may still exist. Moreover, the statement ndo->ndo_sna-
plen=ndo->ndo_snapend-bp has been added in Figure 6(c);
this statement does not affect the vulnerable code because it
cannot prevent buffer overreading caused by ip_print and
EXTRACT_16BITS (&ip->ip len).

Second, the vulnerability CVE-2018-18314 is a buffer
overflow vulnerability that occurs via a crafted regular
expression that triggers invalid write operations. Its patch
fixes the vulnerability by adding multiple sets of conditional
validations to the regcomp.c file. A sample code for a version
of this vulnerability exists in the test set. Although this sam-

ple also adds conditional judgments to further validate the
input regular expressions, there are individual conditional
validation statements that are not added in the appropriate
places, and their contextual relationships are broken, causing
the patch code to fail to work. For example, an if (UCHAR-
AT(RExC_parse)! = ')') statement needs to be added in the S_
handle_regex_sets function, and RExC_parse needs to be
updated with switch judgment rather than if statement. This
vulnerability has a CVSS score of 9.8; it affects products such
as MySQL, Oracle, and Solaris and requires patching to be
completed as soon as possible.

Finally, the vulnerability CVE-2020-25643 was detected
in the Linux kernel. With a CVSS value of 7.5, it is also a
high-risk vulnerability. This vulnerability is generated when
incorrect input verification in the ppp_cp_parse_cr function
of the HDLC_PPP module of the Linux kernel causes mem-
ory corruption and read overflow, and it can lead to system
denial of service or direct breakdown. This vulnerability was
not patched in Fedora after it was repaired in the Linux ker-
nel, and consequently, the risk still exists. In addition, there
are vulnerabilities such as CVE-2016-9376, CVE-2018-
13014, CVE-2018-10937, and CVE-2019-12981, which are
not detected by the other three code clone detection
methods, while the method proposed in this paper can effec-
tively detect these vulnerabilities from source code by detect-
ing them at different granularities.

6. Conclusion

This paper presents a vulnerable code clone detection tool,
CPVDetector, based on code fingerprints with context and
patch validation. Vulnerable code can be located via the corre-
sponding diff file and is preprocessed to eliminate the impact
of extraneous elements of the code and the renaming opera-
tion on detection. First, code clone detection is carried out at
the function level for the target code. Then, context and patch
validation of the vulnerable code is implemented in line-level
code clone detection, which can obviously reduce the false

if (ndo‐>ndo_vflag >= 1 &&

ICMP_ERRTYPE(dp‐>icmp_type)){

bp += 8;

ND_PRINT((ndo, ‶\n\t″));

ip = (const struct ip ⁎)bp;

snapend_save = ndo‐>ndo_snapend;

ip_print(ndo, bp, EXTRACT_16BITS

(&ip‐>ip_len));

ndo‐>ndo_snapend = snapend_save;

}

(a) Vulnerability source code of CVE‐2017−

13012 

if (ndo‐>ndo_vflag >= 1 &&

ICMP_ERRTYPE(dp‐>icmp_type)){

bp += 8;

ND_PRINT((ndo, ‶\n\t″));

ip = (const struct ip⁎)bp;

snapend_save = ndo‐>ndo_snapend;

ND_TCHECK_16BITS(&ip‐>ip_len);

ip_print(ndo, bp, EXTRACT_16BITS

(&ip‐>ip_len));

ndo‐>ndo_snapend = snapend_save;

}

(b) Patched code of CVE‐2017−13012

if (ndo‐>ndo_vflag >= 1 &&

ICMP_ERRTYPE(dp‐>icmp_type)){

bp += 8;

ND_PRINT((ndo, ‶\n\t″));

ip = (const struct ip ⁎)bp;

ndo‐>ndo_snaplen = ndo‐>

ndo_snapend ‐ bp;

snapend_save = ndo‐>ndo_snapend;

ip_print(ndo, bp, EXTRACT_16BITS

(&ip‐>ip_len));

ndo‐>ndo_snapend = snapend_save;

}

(c) Test case of CVE‐2017−13012

Figure 6: Three versions of the vulnerability CVE-2017-13012.
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positive rate. CPVDetector can effectively detect vulnerable
code clones of Type 1, Type 2, Type 3, and Type 4. Experimen-
tal results show that the proposedmethod achieves an accuracy
of 92.94% and a precision of 96.47%, resulting in an improve-
ment in the F-measure by at least 7% compared with other
methods, and can discover vulnerable code clones that other
methods cannot detect. In terms of time overhead, CPVDetec-
tor is close to VUDDY, but CPVDetector outperforms
VUDDY in detection. Our future work is as follows. First, some
abstraction methods can be combined with vulnerable code
extraction to retain more semantic information in order to
verify the contextual relationships. Second, the vulnerable code
fingerprint database can be further complemented and
enriched by considering vulnerable codes written in different
languages to broaden the application scope of the method.
Finally, machine learning or deep learning can be considered
to improve the effectiveness of the detection approach.
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