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This paper considers transmit beamforming in dual-function radar-communication (DFRC) system, where a DFRC transmitter
simultaneously communicates with a communication user and detects a malicious target with the same waveform. Since the
waveform is embedded with information, the information is risked to be intercepted by the target. To address this problem,
physical-layer security technique is exploited. By using secrecy rate and estimation rate as performance measure for
communication and radar, respectively, three secrecy rate maximization (SRM) problems are formulated, including the SRM
with and without artificial noise (AN) and robust SRM. For the SRM beamforming, we prove that the optimal beamformer can
be computed in closed form. For the AN-aided SRM, by leveraging alternating optimization, similar closed-form solution is
obtained for the beamformer and the AN covariance matrix. Finally, the imperfect CSI of the target is also considered under
the premise of a moment-based random phase-error model on the direction of arrival at the target. Simulation results
demonstrate the efficacy and robustness of the proposed designs.

1. Introduction

Traditionally, communication and radar are developed
independently due to different objectives and application
scenarios. However, recently, there is growing interest in
integrating communication and radar functions within
one platform [1, 2], which results in joint communication
and radar (JCR). The research of JCR is motivated by at
least the following two folds. Firstly, the ever-increasing
demand of high-speed communication has driven the
communication to higher frequency, e.g., mmWave, which
overlaps with the conventional radar frequency; the con-
vergence trend of the communication and radar frequency
makes it possible to process both signals within one plat-
form. Secondly, there are emerging applications, e.g.,
autonomous vehicle system and flying wireless mesh net-
works, involving both sensing and communication. By
merging the two functions as a whole, one can achieve a

more efficient system design—communication can better
adapt to the environment with sensing, and meanwhile,
sensing accuracy can be improved with information
exchange from communication.

The development of JCR roughly consists of three
stages, namely, partial hardware sharing, coexistence of
radar and communication (CRC), and dual-function
radar-communication (DFRC) system. Back to the 1980s,
the U.S. Air Force had launched the “Pave Pillar” pro-
gram, whose goal is to integrate radar, communication,
and electronic warfare functions by sharing part of the
hardware, so that the size, weight, and power consumption
of the system can be reduced as compared with the sepa-
rate architecture. However, this integration is largely at the
hardware-reuse level, and the cochannel interference
between radar and communication still exists. Later, with
the advances of signal processing, the concept of CRC is
developed in order to alleviate the interference between
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radar and communication. The idea of CRC is similar to
cognitive radio—the communication and the radar cooper-
atively share the spectrum with controllable interference
management strategies, e.g., spatial nulling [3]. The CRC
allows to use the spectrum in a more efficient way, but
the communication and radar functions are still isolated,
at least at the waveform level. More recently, DFRC is
seen as the most advanced stage of JCR, which deeply
integrates the communication and radar functions with
the same hardware and software, and both functions can
be simultaneously realized with a single waveform [2].
Due to the unified architecture and high spectral effi-
ciency, DFRC has gained considerable attention [1–11]
and is also seen as one of the promising technologies in
6G communications to realize integration of communica-
tion and sensing (ISAC) applications [12, 13].

In this work, we will focus on the transmit signal optimi-
zation for DFRC, with an emphasis on the information secu-
rity. In the existing literature, there have been a pile of works
investigating DFRC from different perspective, including the
waveform design, resource allocation, joint beamforming,
and capacity characterization, to name a few; see the recent
survey papers [1, 2] for the details. However, the informa-
tion security aspect of DFRC is relatively less investigated,
except for a few recent works [4, 6, 7, 11, 14, 15]. Since
DFRC employs a single waveform to simultaneously detect
the target and send information to the communication user
(CU), the information embedded in the waveform has a risk
to leak to the malicious target. This information leakage
could be more serious in the DFRC applications. Specifically,
consider the target is also an eavesdropper and intends to
intercept the information. For the radar purpose, it requires
the DFRC transmitter to focus the energy of the transmit
signal on the target, say by transmit beamforming, in order
to improve the estimation accuracy. However, this in turn
exposes the waveform to and favors interception at the mali-
cious target. To circumvent the above difficulty, physical-
layer security (PLS) technique [16] has recently been
employed to secure DFRC [13]. PLS is an information-
theoretic approach to achieve confidentiality at the physical
layer. The origin of PLS is due to Wyner’s seminal work
[17] in the 1970s, where the author showed that perfect
secrecy can be achieved at the physical layer for degraded
wiretap channel. Later, the idea of PLS was generalized to
nondegraded channel by Csiszár and Körner [18] and, more
recently, the multi-input multioutput (MIMO) Gaussian
channel [19]. Unlike the upper layer encryption approach,
PLS guarantees that the legitimate receiver can correctly
decode the information, and meanwhile, the eavesdropper
cannot retrieve any useful information from his observation.
Back to the DFRC application, with the aid of PLS, even if
the malicious target intercepts the DFRC waveform, he still
cannot obtain any information encoded in the waveform.

Following the idea of PLS, we consider a transmit beam-
forming optimization for DFRC, where a multiantenna
DFRC transmitter aims to send information to a CU and
meanwhile measure the distance parameter of a malicious
target from echo. For the communication aspect, we model
the DFRC transmitter, the CU, and the target as three node

wiretap channels and leverage on the secrecy rate (the max-
imum information rate at which perfect secrecy can be
attained [16]) to measure the communication performance,
while for the radar aspect, we adopt the estimation rate
(the minimum number of bits that need to be used to encode
the Kalman residual [20]) to measure the radar perfor-
mance. We should mention that estimation rate was origi-
nally introduced by Bliss in [9] to unify the performance
measure of communication and radar from the view of
information theory. Upon the above model and perfor-
mance measures, we aim at maximizing the secrecy rate at
the CU and meanwhile satisfying a prespecified estimation
rate for the target and the average transmit power budget
at the DFRC transmitter. This secrecy rate maximization
(SRM) problem is nonconvex by nature, due to the noncon-
vex secrecy rate function. Nevertheless, we first show that
the nonconvex SRM problem is actually hidden convex
and can be optimally solved via semidefinite relaxation
(SDR) and rank reduction [21]. Then, by inspecting the opti-
mal structure of the beamformer, we show that the SRM
problem can be reformulated as a single-variable optimiza-
tion problem with box constraint, whose optimal solution
can be obtained in closed form via computing the roots of
a quadratic equation.

In the traditional PLS context, it is well-known that arti-
ficial noise (AN) is effective in improving security by proac-
tively sending noise to jam the eavesdropper [22, 23]. As for
DFRC, it is envisioned that AN is not only beneficial for
securing information, it is also helpful for radar because
for the DFRC transmitter the AN is deterministically known
as a prior, and its echo can be further exploited by the DFRC
transmitter for the radar purpose [4, 6, 7]. In light of this, we
also consider an AN-aided DFRC beamforming for the SRM
problem. The resultant problem is more challenging, owing
to the coupled AN and beamformer. We employ an alternat-
ing optimization (AO) approach to alternately optimize the
beamformer and the AN. For the beamformer, the previ-
ously established closed-form solution can be directly
applied. For the AN, we again show that it can be solved
with a close-form solution via computing the roots of a qua-
dratic equation.

It should be noted that in the above SRM problems, we
have implicitly assumed that the channel, more specifically
the direction under the planar array model, of the target is
accurately known. However, in practice, there could be some
uncertainty on the direction due to inaccurate estimation.
To account for this, we further consider a robust AN-aided
SRM problem by assuming that the direction of the target
is randomly distributed. The exact distribution of the direc-
tion is not known, except for its first- and second-order
moments. The reason for considering the moment-based
random model is due to the fact that in practice it is rela-
tively easy to estimate the mean and covariance of the direc-
tion rather than the complete distribution from initial radar
searching stage. Under this moment-based uncertainty
model, we formulate a distributionally robust SRM (DR-
SRM) problem to maximize the outage secrecy rate subject
to the outage probability constraint, which is evaluated with
respect to (w.r.t.) any distribution fulfilling the given first-
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and second-order moments, on the target’s estimation rate
and the total power budget. We should mention that this
DR-SRM is different from the conventional worst-case
robust model [6] or the Gaussian random error model
[24]. Without assuming specific distribution on the direc-
tion, the resultant robust design is able to provide maximum
robustness to the mismatch of the distribution, which is
particularly important for secrecy applications due to non-
cooperation of the eavesdropper. The DR-SRM is in essence
a semi-infinite chance-constraint problem. By exploiting
recent advances on distributionally robust optimization
[25, 26], we show that after some approximation, the DR-
SRM problem can be recast as a conic optimization problem,
which can be tackled by the SDR technique and the
Charnes-Cooper transformation [27].

There are some related works worth mentioning. In [4],
the authors first considered the PLS in DFRC with a DFRC
transmitter, a communication user, and a target. Both SRM
at the communication user and signal-to-interference-plus-
noise ratio (SINR) maximization at the target are consid-
ered. By exploiting the Taylor series approximation, iterative
methods are proposed to solve both problems. In [6], Su
et al. considered AN-aided eavesdropper’s SNR minimiza-
tion with desired beampattern and SINR at the legitimate
receiver. Both perfect CSI and imperfect CSI are considered.
By exploiting SDR and S-procedure, the authors proposed
various iterative methods to optimize the beamformer and
the AN. We should mention that the robust model in [6]
is the worst-case error model, which is different from the
chance-constrained model in our work. In [11], a bistatic
DFRC is considered. Different from [4, 6], the authors con-
sidered that the DFRC transmitter simultaneously sends the
radar waveform and the information signal in overlapping
or nonoverlapping manner. The radar receiver, instead of
the target, is treated as potential eavesdropper. Under such
setting, they aim at maximizing the SINR at the radar
receiver while providing prespecified secrecy rate for the
communication user. AO with iterative SDP method is
proposed to handle the SINR maximization problem. In
[7], the authors considered joint AN and precoding matrix
design for DFRC when there are multiple targets. A max-
min SRM problem is considered with SNR threshold at the
target. By exploiting a conjugate reformulation of the log-
det function, a three block-coordinate ascent (BCA) algo-
rithm is proposed. In [15], the authors considered using a
directional modulation approach to secure DFRC and pro-
posed a fractional programming algorithm to solve the radar
SINR maximization problem. In [14], the authors consid-
ered a covert communication under the radar probing wave-
forms; a joint design of the target detection beamformer and
communication beamformer was proposed. It should also be
noted that besides PLS, there are also some other works
investigating privacy in DFRC, e.g., [8, 28]. To summarize,
compared with the existing works, the contribution of this
work is summarized as follows.

(1) The existing works on secure DFRC mainly adopt
the secrecy rate and the SINR as performance mea-
sure, whereas this work studies the secure DFRC

problem from an information-theoretic perspective
by proposing a new secrecy-estimation rate-based
design formulation

(2) Under the premise of perfect channel state informa-
tion (CSI), the secure DFRC beamformer designs
with and without AN are developed. By analyzing
the problem structure, we identify the optimal
beamformer and AN covariance structure and
establish both closed-form and semi-closed-form
solutions for the secure DFRC design problems.
Thanks to the closed-form solution, the proposed
designs can be efficiently computed without calling
a general optimization solver as most existing works
did

(3) This work further develops a robust solution for the
secure DFRC design problem under imperfect CSI
case. A distributionally robust chance-constrained
model is proposed to make the resultant design
robust to any random channel error with prespeci-
fied first- and second-order moments. The distribu-
tionally robust DFRC model is new and different
from the existing robust model, e.g., [6]

The remainder of this paper is organized as follows. Sec-
tion 2 introduces the system model and problem formula-
tion. Sections 3 and 4 develop closed-form solutions to the
SRM problem and the AN-aided SRM problem, respectively.
Section 5 considers the imperfect estimate of the target’s
direction and proposes a robust solution to the SRM prob-
lem. The simulation results are provided in Section 6.
Finally, Section 7 concludes the paper.

Our notations are as follows. Upper (lower) bold face let-
ters are used for matrices (vectors); ð·ÞT and ð·ÞH denote
transpose and Hermitian transpose, respectively. ð·Þ∗ is the
conjugate operator. IN denotes the N ×N identity matrix.
For a complex-valued vector x, kxk denotes the Euclidean
norm. ℍN and ℝ denote the space of N ×N Hermitian
matrices and one-dimensional space of real numbers,
respectively. Trð·Þ denotes a trace operation and A ≽ 0
means that A is Hermitian-positive semidefinite. The distri-
bution of a circularly symmetric complex Gaussian (CSCG)
random vector with mean vector x and covariance matrix Σ
is denoted by CN ðx, ΣÞ.

2. System Model and Problem Formulation

Consider a joint communication and radar system in
Figure 1, which consists of a DFRC transmitter, a target,
and a CU. The DFRC is aimed at transmitting information
to the CU and meanwhile exploiting the information-
embedded signal to estimate the distance of the target from
the echo. We assume that the target is quasistatic within
each slow time and that the target could potentially be an
eavesdropper; i.e., the target could also intercept the com-
munication information from the received waveform. To
prevent eavesdropping, the PLS technology is employed at
the DFRC transmitter. Specifically, we assume that the
DFRC transmitter has multiple antennas and the CU and
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the target have a single antenna to receive information. The
transmit signal xðtÞ ∈ℂN at the DFRC is given by

x tð Þ =
ffiffiffi
P

p
ws tð Þ, ð1Þ

where w ∈ℂN is the transmit beamformer satisfying kwk = 1
, N is the number of transmit antennas at the DFRC trans-
mitter, sðtÞ with E½jsðtÞj2� = 1 is the information encoded
pulse waveform, and P > 0 is the transmit power.

The received signal at the target is given by

y1 tð Þ = β1h θ1ð ÞHx tð Þ + n1 tð Þ, ð2Þ

where hðθÞ ≜ ½1, eȷð2π/λÞd sin ðθÞ,⋯, eȷð2π/λÞðN−1Þd sin ðθÞ� ∈ℂN

denotes the steering vector of the transmit antenna array
with d being the interantenna spacing and λ > 0 being the
carrier wavelength, β1 ∈ℂ is the complex path-loss coeffi-
cient, θ1 ∈ ½−π/2, π/2� is the angle of departure from the
DFRC transmitter to the target, and n1ðtÞ ~ CNð0, σ2Þ is
additive white Gaussian noise.

Similarly, the received signal at the CU is given by

y2 tð Þ = β2h θ2ð ÞHx tð Þ + n2 tð Þ, ð3Þ

where β2 ∈ℂ is the complex path-loss coefficient from the
DFRC transmitter to the CU, θ2 ∈ ½−π/2, π/2� is the angle
of departure from the DFRC transmitter to the CU, and n2
ðtÞ ~ CNð0, σ2Þ is additive white Gaussian noise at the CU.

At the DFRC, the received echo signal after receive
beamforming is expressed as

y3 tð Þ = fH β3h θ1ð Þh θ1ð ÞHx t − τð Þ + n3 tð Þ
� �

, ð4Þ

where f ∈ℂN is the receive beamformer, satisfying kfk = 1, τ
is the round-trip delay, β3 ∈ℂ represents the combined path
loss (including antenna gain, cross-section, and propagation
loss), and n3ðtÞ ~ CNð0, σ2IÞ.

Traditionally, target detection and secure communica-
tion are studied in different context with different perfor-
mance measures. For the DFRC system, we need a unified
and tractable performance metric to describe the two tasks
within one theme. To this end, inspired by [9], we adopt
the estimation rate and the secrecy rate as the performance
measure of DFRC for secure communication and radar,

respectively. Let us first give a brief introduction of the two
measures in the following.

2.1. Estimation Rate. The concept of estimation rate was first
introduced by Bliss in [9]. It characterizes the detection per-
formance from an information-theoretic point of view. Spe-
cifically, according to the estimation theory, the Cramér-Rao
bound gives the minimum variance that an unbiased estima-
tor can achieve. If the variance is regarded as the uncertainty
of the parameter estimation, then similar to mutual informa-
tion in communication, the “elimination of target parameter
uncertainty” by radar can be defined as the mutual informa-
tion or the estimation rate (normalized by pulse repetition
interval (PRI)) between the radar and the target. In a nut-
shell, the estimation rate reflects the target parameter
entropy change before and after the estimation of that
parameter; readers are referred to [9, 20] for a more detailed
explanation. For multiple independent detection targets,
each estimated target can be regarded as an independent
information channel. Therefore, the radar estimation rate
Rest (bit/pulse repetition interval) of multiple detection tar-
gets is defined as [9]

Rest ≤ 〠
M

m=1

hτm ,rr − hτm ,est
Tpri

, ð5Þ

whereM is the number of targets, Tpri is the pulse repetition
interval, τm is the estimation parameter for the mth target,
hτm ,est is the entropy of the estimation (error), and hτm ,rr is
the entropy of the parameter itself. We should mention that
hτm ,rr and hτm ,est characterize the uncertainty of the parame-
ter τm before and after estimation, respectively.

For the delay estimation under circularly symmetric
Gaussian noise, the hτm ,est is given by [9]

hτm ,est = log2 πeσ2τm ,est
� �

, ð6Þ

where σ2τm ,est is the variance of the estimate. Particularly, for
an unbiased estimator, the minimum variance is given by the
Cramér-Rao bound:

σ2τm ,est =
σ2

γ2TB3 βj j2P
, ð7Þ

where β ∈ℂ is the combined gain, B is the bandwidth, and
γ > 0 is a scaling constant, depending on the shape of the
radar waveform’s power spectral density.

For the hτm ,rr, assuming Gaussian process variation on
the underlying estimation parameter within each PRI, the
entropy of the parameter τm can be calculated as

hτm ,rr = log2 πe σ2τm ,proc + σ2τm ,est

� �� �
, ð8Þ

where σ2
τm ,proc is the variance of the Gaussian process. By

substituting (7) and (8) into (5), we have

Radar target/eavesdropper

Communication user (CU) 

DFRC transmitter

Figure 1: Joint communication and radar system.
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Rest ≤
1

Tpri
〠
M

m=1
log2 1 +

σ2τm ,proc
σ2τm ,est

 !

= δ

T
〠
M

m=1
log2 1 +

σ2τm ,procγ
2TB3 βj j2P
σ2

 !
,

ð9Þ

where T = δTpri is the pulse duration and δ ∈ ð0, 1Þ is the
duty factor.

2.2. Secrecy Rate. Secrecy rate measures the maximum trans-
mission rate at which the confidential information can be
securely sent from the transmitter to the legitimate receiver
in the presence of eavesdropper. For the Gaussian wiretap
channels, assuming Gaussian random modulation, the
secrecy rate is given by [16]

Rsec = B log2 1 + SNRcuð Þ − B log2 1 + SNReveð Þ½ �+, ð10Þ

where ½·�+ = max f0, ·g and SNRcu and SNReve denote the
received SNR at the CU and the eavesdropper, respectively.
When specifying Rsec to the model in (1)-(3), we have

Rsec = B log2
σ2 + P β2j j2 h θ2ð ÞHw�� ��2
σ2 + P β1j j2 h θ1ð ÞHw�� ��2

 !" #+
: ð11Þ

2.3. Problem Formulation. We consider the following SRM
problem:

max
w,f

Rsec

s:t: Rest ≥ ζ, wk k = 1, fk k = 1,
ð12Þ

where ζ > 0 specifies the minimum estimation rate. In
words, we aim to maximize the secrecy rate for the CU
and meanwhile guarantee estimation rate above prespecified
threshold to satisfy estimation performance for the target.

Notice that the receive beamformer f appears only in Rest
. It is easy to see that the optimal f⋆ is the matched filter f⋆
= hðθ1Þ/

ffiffiffiffi
N

p
. By substituting f⋆ into Rest, problem (12) can

be rewritten as

max
w

wHAw
wHBw

s:t: wHCw ≥ 1,

wHw = 1,

ð13Þ

where A = σ2I + Pjβ2j2hðθ2Þhðθ2ÞH , B = σ2I + Pjβ1j2hðθ1Þh
ðθ1ÞH , and C = ðNσ2

τ,procjβ3j2γ2B3TPÞ/ðσ2ð2Tζ/δ − 1ÞÞhðθ1Þh
ðθ1ÞH . Problem (13) is a nonconvex fractional quadratic
optimization problem. In the next section, we will exploit
the problem structure and develop an optimal solution to it.

3. A Closed-Form Solution to Problem (13)

In the first subsection, we show that (13) can be optimally
solved with SDR. In the second subsection, we will further
exploit the problem structure to obtain a closed-form solu-
tion to problem (13).

3.1. An SDR Approach to Problem (13). We first employ the
SDR approach to solve problem (13). Let W = wwH and
drop the rank-one constraint on W to get the SDR of prob-
lem (13):

max
W

Tr AWð Þ
Tr BWð Þ

s:t: Tr CWð Þ ≥ 1, Tr Wð Þ = 1,W ≽ 0:
ð14Þ

Problem (14) is a fractional SDP, which can be further
reformulated as a standard SDP by applying the Charnes-
Cooper transformation [27]. Specifically, by making a
change of variables X = κW with κ ≥ 0, problem (14) can
be equivalently written as

max
X,κ

Tr AXð Þ

s:t: Tr BXð Þ = 1, Tr CXð Þ ≥ κ,

Tr Xð Þ = κ,X ≽ 0, κ ≥ 0:

ð15Þ

The equivalence between problems (14) and (15) can be
established by using a similar proof in [29]. Denote ðX⋆, κ⋆Þ
as the optimal solution. The optimal W⋆ for problem (14)
can be obtained as W⋆ =X⋆/κ⋆. In general, solving the
SDR may yield a high-rank optimalW⋆, and there is a relax-
ation gap between problems (14) and (12). However, for
problem (14), it can be shown that we must have a rank-
one optimal W⋆.

Claim 1. Suppose that problem (15) is feasible. Then, there
must exist a rank-one W⋆ for problem (15).

Claim 1 can be easily shown by using the rank-reduction
theorem [21] for SDP; herein, we just give a sketched proof.
Suppose ðX⋆, κ⋆Þ is an optimal solution of problem (15)
with rank ðX⋆Þ > 1. Then, by fixing κ = κ⋆ in problem (15)
and considering the resultant SDP problem w.r.t. X, one
can see that there are in total three linear constraints w.r.t.
X. It follows from Theorem 3.2 of [21] that we can construct
another optimal X for problem (15), say X̂, such that rank
ðX̂Þ ≤ ffiffiffi

3
p

. Clearly, the rank of X̂ can either be one or zero.
Since X̂ = 0 is infeasible, we must have rank ðX̂Þ = 1. We
should mention that while Claim 1 says the existence of
the rank-oneW⋆, such a rank-oneW⋆ can be efficiently con-
structed (with polynomial complexity) by following the
proof procedure of the rank-reduction theorem; readers are
referred to [21] for the detailed construction procedure.

Claim 1 reveals that the nonconvex SRM problem (13) is
actually hidden convex and thus optimally solvable. How-
ever, from the computation perspective, solving the SDP
(15) is still costly with a numerical solver. Moreover, it is
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generally hard to interpret the physical meaning of the solu-
tion returned by the solver. In view of that, we will develop a
more efficient, closed-form solution to problem (12) by
exploiting the problem structure in the next subsection.

3.2. A Closed-Form Solution to Problem (13). For ease of
exposition, let us denote

h1 =
ffiffiffiffiffiffiffiffiffiffiffiffi
P β1j j2
σ2

r
h θ1ð Þ,

h2 =
ffiffiffiffiffiffiffiffiffiffiffiffi
P β2j j2
σ2

r
h θ2ð Þ,

α =
β1j j2 2Tζ/δ − 1

À Á
Nσ2

τ,proc β3j j2γ2B3T
,

ð16Þ

and rewrite problem (13) as

max
w

1 +wHh2hH2 w
1 +wHh1hH1 w

s:t: wHh1hH1 w ≥ α,wHw = 1:

ð17Þ

Let us first characterize the structure of the optimal w⋆.

Claim 2. The optimal w⋆ of problem (17) takes the following
form:

w⋆ = λ⋆1u1 + λ⋆2u2, ð18Þ

for some λ⋆1 , λ
⋆
2 ∈ℂ, where u1 = h1/kh1k and u2 = ðI −

u1uH1 Þh2/kðI − u1uH1 Þh2k.

Proof. See Appendix.
By substituting (18) into (12) and noticing u1⊥u2, ku1k

= ku2k = 1, problem (17) is simplified as

max
λ1,λ2

1 + λ1hH2 u1 + λ2hH2 u2
�� ��2
1 + λ1j j2 hH1 u1

�� ��2 ð19aÞ

s:t: λ1j j2 hH1 u1
�� ��2 ≥ α ð19bÞ

λ1j j2 + λ2j j2 = 1: ð19cÞ
The numerator in (19a) is expanded as

1 + λ1j j2 hH2 u1
�� ��2 + λ2j j2 hH2 u2

�� ��2 + 2R λ1λ
∗
2hH2 u1uH2 h2

È É
≤ 1 + λ1j j2 hH2 u1

�� ��2 + λ2j j2 hH2 u2
�� ��2 + 2 λ1j j λ2j j hH2 u1

�� �� uH2 h2�� ��,
ð20Þ

where the equality holds if

∠λ1 = −∠ hH2 u1
À Á

,

∠λ2 = −∠ hH2 u2
À Á

:
ð21Þ

Notice that for any given λ1 and λ2, we can always rotate
the phases of λ1 and λ2 such that (21) holds without chang-
ing the denominator in (19a) and the constraints (19b) and
(19c). Therefore, without loss of optimality, we can assume
that the optimal λ⋆1 and λ⋆2 take the following form:

λ⋆1 = λ1e
−j∠ hH2 u1ð Þ,

λ⋆2 = λ2e
−j∠ hH2 u2ð Þ,

ð22Þ

for some λi ∈ℝ, i = 1, 2. We make a change of variables

θ = λ1j j2,

μ1 = hH2 u1
�� ��,

μ2 = hH2 u2
�� ��,

μ3 = hH1 u1
�� ��:

ð23Þ

Using the upper bound in (20), problem (19a)–(19c) is
simplified as

max
θ

f θð Þ ≜
1 +

ffiffiffi
θ

p
μ1 +

ffiffiffiffiffiffiffiffiffiffi
1 − θ

p
μ2

� �2
1 + μ23θ

ð24aÞ

s:t:
α

μ23
≤ θ ≤ 1: ð24bÞ

Since problem (24a) and (24b) is a one-dimensional
problem with box constraint. The optimal θ attains either
at the points with vanishing gradient or at the boundary,
i.e., θ = 1 or θ = α/μ23. Let us first check the points with van-
ishing gradient, i.e.,

∇θ f θð Þ = 0⇔ κ1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
θ 1 − θð Þp

− κ2θ + κ3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
θ 1 − θð Þp

1 + μ23θ
À Á2 = 0⇒ θ1

=
κ21 + 2κ2κ3
À Á

+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ41 + 4κ21κ2κ3 − 4κ21κ23

p
2 κ21 + κ22
À Á ,

θ2 =
κ21 + 2κ2κ3
À Á

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ41 + 4κ21κ2κ3 − 4κ21κ23

p
2 κ21 + κ22
À Á ,

ð25Þ

where κ1 = μ21 − ðμ23 + 1Þμ22 − μ23, κ2 = μ1μ2ðμ23 + 2Þ, κ3 = μ1μ2
. Since θ1 + θ2 = ðκ21 + 2κ2κ3Þ/ðκ21 + κ22Þ ≥ 0 and θ1θ2 = κ23/ðκ21
+ κ22Þ ≥ 0, we have θ1 ≥ 0 and θ2 ≥ 0. Moreover, since κ2 ≥
κ3, θ1 + θ2 = ðκ21 + 2κ2κ3Þ/ðκ21 + κ22Þ ≤ 1, which implies 0 ≤ θ2
≤ θ1 ≤ 1. Therefore, the optimal θ⋆ is given by

θ⋆ = argmaxθ∈ α/μ23,1,θ1,θ2f g∩ α/μ23≤θ≤1f g f θð Þ: ð26Þ

With the optimal θ⋆, the optimal w⋆ can be obtained as

w⋆ =
ffiffiffiffiffi
θ⋆

p
e−j∠ hH2 u1ð Þu1 +

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − θ⋆

p
e−j∠ hH2 u2ð Þu2: ð27Þ
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4. Artificial Noise-Aided DFRC Beamforming

In this section, we consider incorporating AN into the trans-
mission. With AN, the DFRC transmit signal (1) is modified as

x tð Þ = ffiffiffiffiffi
p1

p ws tð Þ + ffiffiffiffiffi
p2

p z tð Þ, ð28Þ

where p1 + p2 = P and zðtÞ ∈ℂN is the random distortional
waveform following complex Gaussian distribution with mean
zero and covariance Φ ≽ 0 and TrðΦÞ = 1.

Following a similar derivation in the last section, the cor-
responding estimation rate and the secrecy rate are respec-
tively given by (29) on the top of the next page, and the
secrecy rate is given by

Rest =
δ

T
log2 1 +

σ2
τ,procγ

2TB3N β3j j2 p1 h θ1ð ÞHw�� ��2 + p2h θ1ð ÞHΦh θ1ð Þ
� �

σ2

0@ 1A,

ð29Þ

Rsec = B log2 1 + SINRcuð Þ − B log2 1 + SINReveð Þ½ �+, ð30Þ
where

SINRcu =
p1 β2j j2 h θ2ð ÞHw�� ��2

σ2 + p2 β2j j2h θ2ð ÞHΦh θ2ð Þ
, ð31aÞ

SINReve =
p1 β1j j2 h θ1ð ÞHw�� ��2

σ2 + p2 β1j j2h θ1ð ÞHΦh θ1ð Þ
: ð31bÞ

The AN-aided SRM problem (13) is formulated as

max
p1,p2,w,Φ

g p1, p2,w,Φð Þ ð32aÞ

s:t: p1 h θ1ð ÞHw�� ��2 + p2h θ1ð ÞHΦh θ1ð Þ ≥ �ζ, ð32bÞ

p1 + p2 = P, ð32cÞ

wk k = 1, Tr Φð Þ = 1, ð32dÞ

p1 ≥ 0, p2 ≥ 0, Φ ≽ 0, ð32eÞ

where �ζ = ðσ2ð2Tζ/δ − 1ÞÞ/ðσ2τ,procγ2TB3Njβ3j2Þ, gðp1, p2,w,
ΦÞ = ðg1ðp1, p2,w,ΦÞÞ/ðg2ðp1, p2,w,ΦÞÞ, and

g1 p1, p2,w,Φð Þ = σ2 + p2 β2j j2h θ2ð ÞHΦh θ2ð Þ + p1 β2j j2 h θ2ð ÞHw�� ��2� �
Á σ2 + p2 β1j j2h θ1ð ÞHΦh θ1ð Þ
� �

,

g2 p1, p2,w,Φð Þ = σ2 + p2 β2j j2h θ2ð ÞHΦh θ2ð Þ
� �
× σ2 + p2 β1j j2h θ1ð ÞHΦh θ1ð Þ + p1 β1j j2 h θ1ð ÞHw�� ��2� �

:

ð33Þ

Let us first analyze the structure of the AN’s covariance
matrix Φ. We have the following claim.

Claim 3. Let Φ⋆ = u1uH1 . Then, Φ⋆ is optimal for problem
(32a)–(32e), i.e., the optimal AN can be generated by trans-
mit beamforming.

Proof. See Appendix.
Upon Claim 3, problem (32a)–(32e) is simplified as

max
p1,p2,w

P + p2μ
2
3

À Á
P + μ21p2 + p1 hH2 w

�� ��2� �
P + p2μ

2
1

À Á
P + μ23p2 + p1 hH1 w

�� ��2� � ð34aÞ

s:t:p1 h θ1ð ÞHw�� ��2 +Np2 ≥ �ζ, ð34bÞ

p1 + p2 = P, ð34cÞ
wk k = 1, p1 ≥ 0, p2 ≥ 0, ð34dÞ

where h1, h2, μ1, and μ3 are defined in (16) and (23), respec-
tively. Problem (34a)–(34d) is still difficult to deal with.
Below, we will develop an alternating optimization algo-
rithm to iteratively update p1, p2, and w.

4.1. Optimizing w for Fixed ðp1, p2Þ. For fixed p1 (also p2),
optimizing problem (34a)–(34d) w.r.t. w amounts to

max
w

1 +wH~h2~h
H
2 w

1 +wH~h1~h
H
1 w

s:t: wH~h1~h
H
1 w ≥ ~α, wHw = 1,

ð35Þ

where ~h1 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p1/ðP + μ23p2Þ

p
h1, ~h2 =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p1/ðP + μ21p2Þ

p
h2, ~α = ð

Pjβ1j2ð�ζ −Np2ÞÞ/ðσ2ðP + μ23p2ÞÞ. Clearly, problem (35) has
the same form as problem (17), which can be optimally
solved with the method developed in the last section; we skip
the details for brevity.

4.2. Optimizing ðp1, p2Þ for Fixed w. Next, we consider opti-
mizing the power allocation for fixed w in problem
(34a)–(34d), viz.,

max
p1,p2

P + p2μ
2
3

À Á
P + μ21p2 + p1ψ

2
2

À Á
P + p2μ

2
1

À Á
P + μ23p2 + p1ψ

2
1

À Á
s:t: p1ψ

2
3 +Np2 ≥ �ζ,

p1 + p2 = P, p1 ≥ 0, p2 ≥ 0,

ð36Þ

where ψ1 = jhH1 wj, ψ2 = jhH2 wj, and ψ3 = jhðθ1ÞHwj. Make
use of (34c) to eliminate p1 and simplify problem (36) as

max
p2

g p2ð Þ ≜ a1x
2 + b1x + c1

a2x2 + b2x + c2

s:t: bζ ≤ p2 ≤ P,

ð37Þ

where bζ =max f0, ð�ζ − Pψ2
3Þ/ðN − ψ2

3Þg, a1 = μ23ðμ21 − ψ2
2Þ,

b1 = Pðμ21 − ψ2
2 + μ23 + μ23ψ

2
2Þ, c1 = ð1 + ψ2

2ÞP2, a2 = μ21ðμ23 −
ψ2
1Þ, b2 = Pðμ23 − ψ2

1 + μ21 + μ21ψ
2
1Þ, and c2 = ð1 + ψ2

1ÞP2.
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Problem (37) is a fractional quadratic program with a box
constraint. Similar to problem (24a) and (24b), the opti-
mal p⋆2 should be attained either at the points with vanish-
ing gradient, i.e., ∇p2

gðp⋆2 Þ = 0, or at the boundary, i.e.,

p⋆2 = bζ or p⋆2 = 1. Let us calculate the points with vanishing
gradient: ∇p2

gðp2Þ = 0, and the solution is given by (38a)
and (38b). Therefore, the optimal p⋆2 is given by

and the optimal p⋆1 = P − p⋆2 .
Algorithm 1 summarizes the AO procedure for problem

(32a)–(32e). Since each AO update yields a nondecreasing
objective value, and moreover the objective value in (32a)
is upper bounded due to the boundedness of the feasible
set of problem (32a)–(32e), it follows from the Bolzano–
Weierstrass theorem that the AO Algorithm 1 is convergent.

5. Robust DFRC Transmit Beamforming

In previous sections, we have assumed that the direction θ1
of the target is known exactly. In practice, this may not be
possible due to estimation error. In this section, we consider
robust AN-aided DFRC beamforming by taking into
account the direction error on the target. Specifically, we
consider the following phase error model [24, 30]:

h θ1ð Þ = h θ1
� �

⨀ ejΔθ, ð40Þ

where ⨀ is the entry-wise product, θ1 is the estimate of the
target’s direction, and ejΔθ = ½ejΔθ0 ,⋯, ejΔθN−1 �. Here,Δθ is ran-
dom phase error, following Δθ ~ P ∈Dð�μ, ΣÞ where Dð�μ, ΣÞ
denotes a probability distribution set with mean �μ and covari-
ance Σ. That is, we know only the mean �μ and covariance
matrix Σ, but the exact distribution P is unknown.

Upon (40), the robust AN-aided DFRC beamforming
problem is formulated as follows.

max
w,Φ,ξ

ξ ð41aÞ

s:t: inf
P∈D �μ,Σð Þ

PrΔθ~P Rsec ≥ ξf g ≥ 1 − εsec, ð41bÞ

inf
P∈D �μ,Σð Þ

PrΔθ~P Rest ≥ ζf g ≥ 1 − εest, ð41cÞ

wk k2 + Tr Φð Þ ≤ P, ð41dÞ
where 0 < εsec < 0:5 and 0 < εest < 0:5 specify the outage
probabilities (evaluated w.r.t. Δθ) of secrecy rate and estima-

tion rate, respectively. In words, the robust DFRC beam-
forming problem (41a)–(41d) aims at maximizing the
secrecy rate (with outage probability less than εsec), and
meanwhile guarantee estimation rate no smaller than ζ with
probability at least 1 − εest.

To begin with, let us recast problem (41a)–(41d) into a
more amenable form. Since Δθ appears only in hðθ1Þ, prob-
lem (41a)–(41d) can be rewritten as

max
w,Φ,η

B log2 1 + SINRcuð Þ − B log2 1 + ηð Þ ð42aÞ

s:t: inf
P∈D �μ,Σð Þ

PrΔθ~P SINReve ≤ ηf g ≥ 1 − εsec, ð42bÞ

inf
P∈D �μ,Σð Þ

PrΔθ~P Rest ≥ ζf g ≥ 1 − εest, ð42cÞ

wk k2 + Tr Φð Þ ≤ P: ð42dÞ

Let W =wwH . Notice that

42að Þ⇔max
1 + SINRcu

1 + η
⇔max

σ2 + β2j j2h θ2ð ÞH W +Φð Þh θ2ð Þ
1 + ηð Þ σ2 + β2j j2h θ2ð ÞHΦh θ2ð Þ

� � ,
ð43Þ

42bð Þ = PrΔθ~P h θ1ð ÞH W − ηΦð Þh θ1ð Þ ≤ ησ2

β1j j2
( )

= PrΔθ~P ejΔθ
� �H

M W − ηΦð Þ ejΔθ
� �

≤
ησ2

β1j j2
( )

≥ 1 − εsec,

ð44Þ
where Mð·Þ is the operator on the space of Hermitian matri-
ces given by

M Xð Þ =X⨀ h θ1
� �

h θ1
� �H� �T

, ð45Þ

p+2 =
a2c1 − a1c2 +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a21c

2
2 − 2a1a2c1c2 − a1b1b2c2 + a1b

2
2c1 + a22c

2
1 + a2b

2
1c2 − a2b1b2c1

q
a1b2 − a2b1

, ð38aÞ

p−2 =
a2c1 − a1c2 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a21c

2
2 − 2a1a2c1c2 − a1b1b2c2 + a1b

2
2c1 + a22c

2
1 + a2b

2
1c2 − a2b1b2c1

q
a1b2 − a2b1

: ð38bÞ

p⋆2 = argmax
p2∈ bζ ,P,p−2 ,p+2n o

∩ bζ≤p2≤Pn og p2ð Þ, ð39Þ
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42cð Þ = PrΔθ~P h θ1ð ÞH W +Φð Þh θ1ð Þ ≥ �ζ
n o

= PrΔθ~P ejΔθ
� �H

M W +Φð Þ ejΔθ
� �

≥ �ζ

� �
≥ 1 − εest:

ð46Þ
The outage probability constraints in (44) and (46) gen-

erally cannot be expressed in an explicit form. In the follow-
ing, we take a safe approximation approach to convert the
outage probability constraints into a more tractable form.
We need the following lemma:

Lemma 4 ([24]). Let θ ∈ℝN , ejθ = ½ejθ1 ,⋯, ejθN �T , and X =
XR + j ·XI be an N ×N Hermitian matrix with XR and
XI being the real and the imaginary part, respectively. Then,

the second-order Taylor approximation of ðejθÞHXðejθÞ is
given by

ejθ
� �H

X ejθ
� �

≈〠
k,ℓ
Xkℓ + θTL XR

� �
θ + F XI

� �T
θ, ð47Þ

where L : ℝN×N ⟶ℝN×N denotes a linear mapping given by

L Að Þ½ �kℓ =
Akk −〠

j

Akj for k = ℓ,

Akℓ for k ≠ ℓ,

8<: ð48Þ

and F : ℝN×N ⟶ℝN denotes a linear mapping given by

F Bð Þ½ �k = 2〠
j

Bkj: ð49Þ

Now, by using Lemma 4, we can approximate the outage
probability constraint (44) as

Pr ejΔθ
� �H

M W − ηΦð Þ ejΔθ
� �

≤
ησ2

β1j j2
( )
≈ Pr ΔθTL MR W − ηΦð Þ

� �
Δθ +

n
〠
k,ℓ

M W − ηΦð Þ½ �kℓ

+ F MI W − ηΦð Þ
� �T

Δθ≤
ησ2

β1j j2
)

≥ 1 − εsec,

ð50Þ

where MRð·Þ and MIð·Þ denote the real and the imaginary
part of Mð·Þ, respectively. The inequality inside the bracket
of (50) is quadratic w.r.t. the random vector Δθ. To turn
(50) into a more tractable form, we introduce the following
theorem.

Theorem 5. Let x ∈ℂN be a random vector, following x ~ P
∈Dð�μ, ΣÞ. Consider the quadratic function f ðxÞ = xHAx +
2RðbHxÞ + c, where A ∈ℍN , b ∈ℂN , and c ∈ℝ. Then,

inf
P∈D �μ,Σð Þ

Prx~P f xð Þ ≤ 0f g ≥ 1 − ε ð51Þ

holds if and only if there exists Q ∈ℍN+1 and ν ∈ℝ such
that

0 ≥ min
ν∈ℝ,Q∈ℍN+1

ν + ε−1Tr ΩQð Þ, ð52aÞ

   s:t:Q ≽
A b
bH c − ν

" #
, ð52bÞ

Q ≽ 0, ð52cÞ
where

Ω =
Σ + �μ�μH �μ

�μH 1

" #
: ð53Þ

By Theorem 5, the outage constraint (50) is satisfied if
and only if

0 ≥ min
ν1∈ℝ,Q1∈ℍN+1

ν1 + ε−1secTr ΩQ1ð Þ, ð54aÞ

    s:t:Q1 ≽G W − ηΦ, c1 − ν1ð Þ, ð54bÞ

Q1 ≽ 0, ð54cÞ

where c1 =∑k,ℓ½MðW − ηΦÞ�kℓ − σ2η/jβ1j2 and

G X, xð Þ ≜
L MR Xð Þ
� �

F MI Xð Þ
� �

/2

F MI Xð Þ
� �T

/2 x

264
375: ð55Þ

1: Input: an initial power allocation ðp01, p02Þ, iteration index ℓ = 0, threshold ε > 0;
2: repeat
3: Compute wℓ+1 from Equation (27) for ðp1, p2Þ = ðpℓ1, pℓ2Þ;
4: Compute ðpℓ+11 , pℓ+12 Þ from Equation (39) for w = wℓ+1;
5: ℓ = ℓ + 1;
6: Until jgðpℓ1, pℓ2,wℓ,Φ⋆Þ − gðpℓ−11 , pℓ−12 ,wℓ−1,Φ⋆Þj < ε
7. Output pℓ1, pℓ2, wℓ

Algorithm 1: AO algorithm for problem (32a)–(32e).
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Similarly, the outage constraint (46) is satisfied if

0 ≥ min
ν2∈ℝ,Q2∈ℍN+1

ν2 + ε−1estTr ΩQ2ð Þ, ð56aÞ

       s:t:Q2 ≽ −G W +Φ, c2 + ν2ð Þ, ð56bÞ
Q2 ≽ 0, ð56cÞ

where c2 =∑k,ℓ½MðW +ΦÞ�kℓ − �ζ.
Putting all the above pieces together, we can recast the

robust SRM problem (41a)–(41d) as

max
W,Φ,Q1,Q2,ν1,ν2,η

σ2 + β2j j2h θ2ð ÞH W +Φð Þh θ2ð Þ
1 + ηð Þ σ2 + β2j j2h θ2ð ÞHΦh θ2ð Þ

� � ð57aÞ

s:t:ν1 + ε−1secTr ΩQ1ð Þ ≤ 0, ð57bÞ
ν2 + ε−1estTr ΩQ2ð Þ ≤ 0, ð57cÞ

54bð Þ, 54cð Þ, 56bð Þ, 56cð Þ, ð57dÞ
Tr W +Φð Þ ≤ P, ð57eÞ
W ≽ 0, Φ ≽ 0, ð57fÞ

0 ≤ η ≤
N β1j j2P

σ2
, ð57gÞ

rank Wð Þ ≤ 1, ð57hÞ
where the upper bound in (57g) is deduced from (31b) as
follows:

SINReve =
p1 β1j j2 h θ1ð ÞHw�� ��2

σ2 + p2 β1j j2h θ1ð ÞHΦ h θ1ð Þ

≤
P β1j j2 h θ1ð ÞHw�� ��2

σ2
≤
N β1j j2P

σ2 ,

ð58Þ

where the inequality is achieved when p1 = P, p2 = 0, and w
= hðθ1Þ/khðθ1Þk. By dropping the rank-one constraint on
W and applying the Charnes-Cooper transformation, prob-
lem (57a)–(57h) can be relaxed as

max
~W,~Φ,~Q1,

~Q2,
~ν1,~ν2,η,κ

σ2κ + β2j j2h θ2ð ÞH ~W + ~Φ
� �

h θ2ð Þ ð59aÞ

s:t:σ2κ + β2j j2h θ2ð ÞH ~Φh θ2ð Þ = 1
1 + η

, ð59bÞ

~ν1 + ε−1secTr Ω~Q1

� �
≤ 0, ð59cÞ

~ν2 + ε−1estTr Ω~Q2

� �
≤ 0, ð59dÞ

~Q1 ≽G ~W − η~Φ,~c1 − ~ν1
� �

, ð59eÞ

~Q2 ≽ −G ~W + ~Φ,~c2 + ~ν2
� �

, ð59fÞ

Tr ~W + ~Φ
� �

≤ κP, ð59gÞ

~W ≽ 0, ~Φ ≽ 0, ~Q1 ≽ 0, ~Q2 ≽ 0, ð59hÞ

0 ≤ η ≤
N β1j j2P

σ2 , κ ≥ 0, ð59iÞ

where ~c1 =∑k,ℓ½Mð ~W − η~ΦÞ�kℓ − σ2ηκ/jβ1j2 and ~c2 =∑k,ℓ
½Mð ~W + ~ΦÞ�kℓ − κ�ζ.

Notice that problem (59a)–(59i) is still nonconvex due to
the coupled variable η~Φ and the equality constraint (59b).
Nevertheless, for given η, problem (59a)–(59i) is an SDP
w.r.t. the remaining variables. Furthermore, since η is within
an interval (cf. (59i)), one can perform bisection over η to
iteratively solve problem (59a)–(59i). After solving problem
(59a)–(59i), we can recover W = ~W/κ and Φ = ~Φ/κ. If rank
ðWÞ = 1, then the beamformer w can be obtained by eigen-
decomposition; otherwise, Gaussian randomization may be
used to generate the beamformer. Interestingly, our numer-
ical experience suggests that solving problem (59a)–(59i)
always leads to a rank-one ~W, i.e., no relaxation gap between
problems (57a)–(57h) and (59a)–(59i). So far, we are not
able to give a rigorous proof for this observation and we
leave this as a future work.

6. Simulation Results

We use Monte-Carlo simulations to evaluate the perfor-
mance of the proposed designs. In our simulations, the com-
plex path-loss coefficient β1 at the target is given by
jβ1j2 = GtG1λ

2/ðð4πÞ2d21Þ, where d1 is the distance from
DFRC transmitter to the target and Gt and G1 denote the
transmit antenna gain at the DFRC transmitter and the
receive antenna gain at the target, respectively. The CU’s
β2 is defined similarly. The complex combined gain β3 is
given by jβ3j2 = G2

t λ
2S/ðð4πÞ3d41Þ, where S is radar cross-

section (RCS). The results to be presented in this section
are based on the following settings: the number of antennas
at the DFRC transmitter is N = 10, the noise’s variance σ2 is
0 dB relative to jβ1j2, the channel bandwidth B = 10MHz,
the pulse duration T = 10 μs, the duty factor δ = 0:5, the car-
rier wavelength λ = 0:1m, the interantenna spacing d = λ/4,
the variance of target process σ2τ,proc = 4:44 × 10−15, the scal-
ing constant γ2 = ð2πÞ2/12, Gt = 10 dB, G1 = G2 = 0 dB, S = 1,
d1 = 1Km, d2 = 0:5Km, the angle of departure from the
DFRC transmitter to the target θ1 = 30∘, and jθ2 − θ1j = Δθ.

6.1. The No-AN Case. Figures 2 and 3 compare the secrecy
rate performance of the closed-form solution (27) and the
SDR for different transmit power and estimation rate,
respectively. As seen, both schemes achieve the same secrecy
rate, which corroborates the SDR tightness in Claim 1. In
addition, larger transmit power or lower estimation rate
requirement gives rise to higher secrecy rate, because of the
enlarged feasible set of problem (12). Moreover, with the
increase of Δθ, the secrecy performance is improved. This
is because larger Δθ reduces the correlation between the
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CU’s channel and the eavesdropping channel or in other
words makes the two channels more distinguishable. Conse-
quently, it favors the DFRC transmitter to generate a dis-
criminative beampattern towards the direction of the CU
and the target, so that the reception of the CU is improved
whereas that of the target is crippled.

To demonstrate the superior performance of the proposed
design, we compare the proposed closed-form solution and a
simple benchmark transmit scheme—the maximum ratio
transmission (MRT), which beamforms towards the direction
of CU with full power. Figures 4 and 5 show the results. It is
seen from Figure 4 that with the increase of the transmit

power, the secrecy rate of MRT is almost flattened. This is
because as the power increases, MRT improves CU’s reception
and meanwhile also improves the target’s reception, thereby
leading to marginal increase of the secrecy rate, especially for
the considered high-power transmit region. Similarly,
Figure 5 shows that the MRT is almost invariant with the
change of ζ. This is because for the considered range of ζ,
the estimation rate is already over satisfied, and consequently,
the secrecy rate is invariant when MRT is used with full trans-
mit power.
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Figure 4: Comparison of closed-form solution and MRT under
different transmit power P (ζ = 1Kbps).
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6.2. The AN-Aided Case. Let us first compare the secrecy
performance with and without AN. Figure 6 shows the
secrecy rate against the transmit power for different esti-
mation rate threshold. From the figure, we see that AN-
aided transmit scheme outperforms the no-AN scheme.
Especially, when the estimation rate requirement becomes
more stringent, say from 1Kbps to 10Kbps, the perfor-
mance gain of using AN is more prominent. This demon-
strates the dual benefits of AN in securing information
and helping radar estimation. More specifically, as we
mentioned in Introduction, while the AN behaves like ran-
dom noise for the target, it is deterministically known for
the DFRC transmitter as a prior. Hence, the echo of the
AN can be further exploited for the radar purpose. Mean-
while, since AN is treated as interference at the target, it
also helps prevent interception and thus attains higher
secrecy rate than the no-AN case.

Figure 7 shows the convergence behavior of the AO
Algorithm 1. It is seen that the AO algorithm converges fast
usually within three iterations for the considered scenarios.

Next, we investigate how the distance ratio d2/d1 and the
angle difference Δθ affect the secrecy rate and the power
allocation of the AN. The ratio d2/d1 and the Δθ reflect the
relative channel strength and the channel correlation
between the CU and the target, respectively. Figure 8 plots
the secrecy rate vs. the ratio d2/d1 with d1 fixed at 1Km.
As the CU moves away from the DFRC transmitter, the
secrecy rate is decreased because the path loss becomes
larger and the CU’s channel capacity is decreased. Also, for
the fixed ratio d2/d1, the secrecy rate is improved when the
Δθ is large. This is consistent with the no-AN case (cf.
Figures 2 and 3), since larger Δθ leads to less correlated
channels, which makes CU and the target more discrimina-
tive in the spatial domain; that is, the DFRC transmitter can

more easily generate discriminative beampattern to improve
the CU’s reception and suppress the target’s interception.

Figure 9 plots the ratio of the AN’s power to the total
transmit power against the distance ratio d2/d1 under the
same setting as Figure 8. From the figure, we have the fol-
lowing observations: firstly, as the ratio d2/d1 becomes larger
or the CU’s channel becomes weaker, we need to allocate
more power to AN. This can be explained as follows. Typi-
cally, there are two ways to improve the secrecy rate: one is
to degrade the eavesdropper’s reception, say by jamming,
and the other is to improve the CU’s reception with large
transmit power. However, when the CU’s channel is weak,
the former is more power efficient than the latter and vice
versa. Therefore, for large d2/d1, it prefers to exploit AN to
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Figure 6: Comparison of no-AN and AN-aided transmit schemes
(θ1 = 30∘ and θ2 = 60∘).
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improve the secrecy rate. Secondly, when Δθ increases, more
power should be allocated to the AN. This is because when
the spatial channels of the CU and the target become more
discriminative, it is hard to leverage only on a single beam-
former to cater for both the estimation task and the secret
communication task. Therefore, by allocating more power
on the AN, the estimation and the communication can be
addressed with AN and beamforming, respectively.

6.3. The Imperfect CSI Case. In this subsection, we consider
the imperfect CSI case. The simulation settings are basically
identical to the perfect CSI case. The outage probabilities of
secrecy rate and estimation rate threshold are set to εsec = εest
= 1%. As for the channel phase error model, we set the mean
�μ = 0N and the variance Σ = ð5π/180Þ2IN . Figure 10 plots the
secrecy rate against the transmit power P under various
designs. In the legend, “nonrobust” design represents the
AN-aided design based on the estimated θ1 without consider-
ing the phase error; “Bernstein” corresponds to the robust
design in [24], which assumes Gaussian distribution of the
phase error and makes use of the Bernstein-type inequality
to get a safe approximation of the outage probability con-
straints. We should mention that in [24], the Bernstein-type
inequality-based robust design is developed for multiuser mul-
ticast beamforming, not for the DFRC application. Neverthe-
less, one can easily adapt the method in [24] to the DFRC
case. “DRB (proposed)” represents the proposed distribution-
ally robust beamforming design in this paper. From the figure,
we see that “nonrobust” attains the best rate performance,
then followed by “Bernstein” and the “DRB.” This is natural,
since the “nonrobust” design does not consider phase error
and the “Bernstein” design assumes the distribution set Dð�μ
, ΣÞ which is a singleton of Gaussian distribution. In either
case, the resultant robust SRM problem can be regarded as a
relaxation of problem (41a)–(41d), thereby attaining higher
secrecy rate than “DRB.”

However, under the considered moment-based error
model, the distribution of the phase error is not limited to
Gaussian. Therefore, it is expected that the nonrobust design
and the Bernstein robust design based on Gaussian error
assumption may not satisfy the outage probability con-
straints (41b) and (41c). To verify this, we empirically eval-
uate the secrecy outage probability of the three designs by
generating random realizations of different error distribu-
tions. Since it is unlikely to generate all the distributions in
Dð�μ, ΣÞ, we consider three representative distributions,
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namely, Gaussian distribution, uniform distribution, and
Laplacian distribution. We randomly generate 105 phase
error realizations for each of the three distributions and cal-
culate the secrecy rate Rj,t

sec for the tth realization of the type
j = 1, 2, 3 distribution. After obtaining all Rj,t

sec for each j, we
plot the histograms of Rj,t

sec for j = 1, 2, 3. Figure 11 shows
the histograms of Rj,t

sec for the Bernstein design, where the
red circled line corresponds to the theoretically computed
secrecy rate from solving the robust SRM with the Bernstein
method. If the empirical secrecy rate falls below the value at
the red circled line, it means outage occurs. From the figure,
we see that for more than 1% error realizations, the empiri-

cal secrecy rate is below red circled line; that is, the “Bern-
stein” design cannot guarantee the required outage
probability requirement, and transmission security is com-
promised. Figure 12 shows the result for the nonrobust
design. It is seen that secrecy outage happens for all the error
realizations, due to ignoring the phase error. By contrast,
Figure 13 shows that all the empirical secrecy rates of the
“DRB” are above the theoretically computed secrecy rate
threshold, and thus, no secrecy outage happens under the
tested error distributions.

7. Conclusions

This paper has considered the joint communication and
radar beamforming for DFRC system, when the target is
potentially an eavesdropper. Three secrecy rate maximiza-
tion (SRM) problems are formulated under both perfect
and imperfect CSI of the target. For the perfect CSI case,
we develop a closed-form solution to the SRM problem
when only information beamforming is exploited. Upon
the closed-form solution, an alternating optimization (AO)
algorithm is proposed for the more challenging artificial-
noise-aided SRM problem. For the imperfect CSI case, we
considered a moment-based random phase error model
and formulated a distributionally robust SRM problem. By
leveraging on the semidefinite relaxation (SDR) and conic
representation of the robust chance constraints, a tractable
solution is obtained. Simulation results verify the efficacy
and robustness of the proposed designs. Finally, we should
mention that the focus of this work is on the secrecy-
estimation rate and aiming at developing some closed-form
and interpretable solutions to the DFRC beamforming by
considering a single communication user and target. Never-
theless, the SRM formulation and the approach developed in
this work can be extended to other cases. For example, one
may consider maximizing the estimation rate at the target
with prespecified secrecy rate, or maximizing weighted
sum of the estimation rate and the secrecy rate, or solving
the SRM problem under more complex scenarios, e.g., mul-
tiple communication users and targets. For the latter case,
the SDR tightness and the closed-form solution may not
exist and we leave this as a future work.

Appendix

A. Proof of Claim 2

Any optimal w⋆ can be represented as

w⋆ = λ⋆1u1 + λ⋆2u2 +U⊥x⋆, ðA:1Þ

for some λ⋆1 ∈ℂ, λ
⋆
2 ∈ℂ and x⋆ ∈ℂN−2, where U⊥ ∈ℂN×ðN−2Þ

is the orthogonal complement of ½u1u2�. Let us show x⋆ = 0
must hold at the optimal w⋆ by contradiction. Suppose x⋆
≠ 0. Then, 0 < ρ = kU⊥x⋆k2 < 1 due to kw⋆k2 = 1. Construct
w0 = λ⋆1u1 + λ⋆2u2 and ~w = ð1/ ffiffiffiffiffiffiffiffiffiffi

1 − ρ
p Þw0. It can be verified

that k~wk2 = 1. In addition, ~wHh1hH1 ~w = 1/ð1 − ρÞkwH
0 h1k2

= 1/ð1 − ρÞkðw⋆ÞHh1k
2
≥ α/ð1 − ρÞ > α, where the second
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equality is due to U⊥⊥h1. Hence, ~w is a feasible solution.
Next, we show that ~w can attain higher objective value than
w⋆, thereby contradicting the optimality of w⋆. Denote the
objective of problem (17) as f ðwÞ. It holds that

f w⋆ð Þ = f w0ð Þ < f
1ffiffiffiffiffiffiffiffiffiffi
1 − ρ

p w0

� �
= f ~wð Þ, ðA:2Þ

where the first equality is because U⊥ is the orthogonal com-
plement of ½u1u2� (or ½h1h2�), and the inequality is because
gðxÞ ≜ f ðxw0Þ is strictly increasing w.r.t. x ≥ 1, when f ðw0Þ
> 1; i.e., positive secrecy rate is attained at w0 (or w⋆). How-
ever, the above inequality contradicts with the optimality of
w⋆.

B. Proof of Claim 3

The proof consists of three steps.

Step B.1. Suppose that ðp̂1, p̂2, ŵ, bΦÞ is an optimal solution

of problem (32a)–(32e). Let bμ1 = hðθ1ÞH bΦhðθ1Þ and bμ2 =
hðθ2ÞH bΦhðθ2Þ. Now, consider the following problem:

min
Φ≽0

Tr Φð Þ ðB:1aÞ

s:t:h θ1ð ÞHΦh θ1ð Þ ≥ bμ1, ðB:1bÞ

h θ2ð ÞHΦh θ2ð Þ ≤ bμ2: ðB:1cÞ
We show that any optimal solution Φ⋆ of problem

(B.1a)–(B.1c), together with ðp̂1, p̂2, ŵÞ, is also optimal for
problem (32a)–(32e). It follows from (B.1b) and (B.1c) that

g p̂1, p̂2, ŵ,Φ⋆ð Þ ≥ g p̂1, p̂2, ŵ, bΦ� �
ðB:2Þ

holds and that the estimation rate constraint (32b) is sat-
isfied. The remaining is to show that TrðΦ⋆Þ = 1. Clearly, bΦ
is a feasible solution of problem (B.1a)–(B.1c). Hence,

Tr Φ⋆ð Þ ≤ Tr bΦ� �
= 1: ðB:3Þ

Suppose TrðΦ⋆Þ < 1. Then, we can construct another ~Φ
=Φ⋆ + γxxH for some γ > 0 and x ∈ℂN such that

xHh θ2ð Þ = 0,

xHh θ1ð Þ ≠ 0,

Tr ~Φ
� �

= 1,

ðB:4Þ

where we have used the assumption θ1 ≠ θ2. It is easy to see
that ~Φ is feasible for problem (B.1a)–(B.1c) and that gðp̂1,
p̂2, ŵ, ~ΦÞ > gðp̂1, p̂2, ŵ,Φ⋆Þ, which together with (B.2) and
(B.4) implies that ðp̂1, p̂2, ŵ, ~ΦÞ can attain higher objective

value for problem (32a)–(32e) than ðp̂1, p̂2, ŵ, bΦÞ; this con-

tradicts with the optimality of ðp̂1, p̂2, ŵ, bΦÞ. Therefore, we
must have TrðΦ⋆Þ = 1.

Step B.2. Next, we show that any optimal solution of prob-
lem (B.1a)–(B.1c) must be rank-one. Let ζ1 ≥ 0, ζ2 ≥ 0, and
Ω ≽ 0 are Lagrangian multipliers associated with (B.1b),
(B.1c), and Φ ≽ 0, respectively. Then, part of the KKT condi-
tions of problem (B.1a)–(B.1c) are listed below:

I + ζ2h θ2ð Þh θ2ð ÞH − ζ1h θ1ð Þh θ1ð ÞH =Ω, ðB:5aÞ

ΩΦ = 0: ðB:5bÞ
Multiply both sides of (B.5a) by Φ and make use of

(B.5b) to get

I + ζ2h θ2ð Þh θ2ð ÞH
� �

Φ = ζ1h θ1ð Þh θ1ð ÞHΦ, ðB:6Þ

which implies that

rank Φð Þ = rank I + ζ2h θ2ð Þh θ2ð ÞH
� �

Φ
� �

= rank ζ1h θ1ð Þh θ1ð ÞHΦ
� �

≤ 1,
ðB:7Þ

where the first equality is due to I + ζ2hðθ2Þhðθ2ÞH ≻ 0. Since
Φ = 0 is infeasible for problem (B.1a)–(B.1c), we must have
rank ðΦÞ = 1.

Step B.3.Without loss of optimality, we can express the opti-
mal Φ⋆ for problem (32a)–(32e) as

Φ⋆ = yyH ,
y = u1, u2,U⊥Â Ã

x,
ðB:8Þ

for some x ∈ℂN such that kyk = 1, where U⊥ ∈ℂN×ðN−2Þ is
the orthogonal complement of ½u1u2�. Notice that y affects
problem (32a)–(32e) through hHðθ1Þy, hHðθ2Þy and that ½
u1, u2� spans the same subspace as ½hðθ1Þ, hðθ2Þ�. Any com-
ponent of y in U⊥ has no contribution to problem
(32a)–(32e). Therefore, without loss of optimality, y can be
further expressed as

y = x1u1 + x2u2: ðB:9Þ

Since u2 is orthogonal to u1 (or hðθ1Þ), x2u2 affects only
the legitimate communication user’s SINR in an adversary
manner. Clearly, at the optimal y⋆, we should set x2 = 0 to
save the power, which leads to x1 = 1 because of ku1k = 1.

C. Proof of Theorem 5

The key to the proof of Theorem 5 is to relate the distribu-
tionally robust constraint with conditional value-at-risk
(CVaR) functional, which is given by

CVaRε f xð Þð Þ = inf
ν∈ℝ

ν + ε−1EP f xð Þ − νð Þ+Â ÃÈ É
: ðC:1Þ
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By noting that f ðxÞ is quadratic in x, it follows from
Theorem 2.2 of [22] that the distributionally robust con-
straint (51) is equivalent to

sup
P∈D �μ,Σð Þ

CVaRε f xð Þð Þ ≤ 0: ðC:2Þ

According to the definition of CVaRε, we have

sup
P∈D �μ,Σð Þ

CVaRε f xð Þð Þ ðC:3aÞ

= sup
P∈D �μ,Σð Þ

inf
ν∈ℝ

ν +
1
ε
EP f xð Þ − νð Þ+Â Ã� �

ðC:3bÞ

= inf
ν∈ℝ

ν + 1
ε

sup
P∈D �μ,Σð Þ

EP f xð Þ − νð Þ+Â Ã( )
: ðC:3cÞ

In (C.3c), we have interchanged the maximization and
minimization operations, which can be justified by a sto-
chastic saddle point theorem due to Shapiro and Kleywegt
[31]. To express the supremum in (C.3c) into a more tracta-
ble form, we need the following lemma:

Lemma C.1 ([25] Lemma A.1). Let g : ℂN ⟶ℝ be a mea-
surable function, and define the worst-case expectation θwc as

θwc = sup
P∈D �μ,Σð Þ

EP g xð Þð Þ+½ �: ðC:4Þ

Then,

θwc = inf
Q∈ℍN+1

Tr ΩQð Þ

s:t: xH1
Â Ã

Q xH1
Â ÃH ≥ g xð Þ,∀x ∈ℂN ,

Q ≽ 0,

ðC:5Þ

where Ω =
Σ + �μ�μH �μ

�μH 1

" #
:

It follows from Lemma C.1 that the supremum in
(C.3a)–(C.3c) is equal to

inf
Q∈ℍN+1,

Tr ΩQð Þ ðC:6aÞ

s:t: xH1
Â Ã

Q xH , 1
Â ÃH ≥ f xð Þ − ν,∀x, ðC:6bÞ

Q ≽ 0: ðC:6cÞ
Since f ðxÞ is quadratic in x, the quadratic constraint in

(C.6b) holds for all x if and only if

Q ≥
A b
bH c − ν

" #
: ðC:7Þ

By replacing (C.6b) with (C.7) and substituting
(C.6a)–(C.6c) into (C.3c), we can reexpress (C.2) equiva-
lently as

0 ≥ inf
ν∈ℝ,Q∈ℍN+1

ν + ε−1Tr ΩQð Þ ðC:8aÞ

 s:t: C:7ð Þ,Q ≽ 0: ðC:8bÞ

It is easy to see that (C.8a) holds if and only if there exists
a point ðν,QÞ satisfying (C.8b) such that ν + ε−1TrðΩQÞ ≤ 0
holds. This completes the proof.
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