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Solving the absolute value equation (AVE) is a nondifferentiable NP-hard and continuous optimization problem with a wide
range of applications. Because its solutions have different forms, it is challenging to design the most efficient algorithm that
can solve different AVEs without using overcomplicated technical improvement and problem-dependent objectives. Hence, this
paper proposed an improved glowworm swarm optimization (GSO) algorithm with an adaptive step size strategy based on the
sigmoid function (SIGGSO) that solves the AVEs. Seven test AVEs, including multisolution and high-dimensional AVEs, are
selected for testing and compared with seven metaheuristic algorithms. The experimental results show that the proposed
SIGGSO algorithm has higher solution accuracy and stability when seeking multiple solution of AVEs compared to the basic
GSO. Moreover, it obtains competitive advantages on multisolution and high-dimensional AVEs compared with other
metaheuristic algorithms and provides an effective method for engineering and scientific calculations.

1. Introduction

The absolute value equation (AVE) is a nondifferentiable,
NP-hard optimization problem in a continuous solution
space. Many practical problems such as the site selection
problem [1] and knapsack feasibility problem [2], which
are nonlinear, nondifferentiable, multivariable, and
multiparameter-complex optimization problems, are closely
related to AVEs. AVEs are not only equivalent to standard
and generalized linear complementarity problems but also
to bilinear programming problems, which are typical math-
ematical programming problems with a wide range of appli-
cations in several disciplines. Compared to the other
problems, the AVE has a simpler structure and easy to
implement. Therefore, an in-depth study of AVEs is a good
step towards solving the related problems as well.

Many algorithms have been proposed to solve the AVE.
The results of traditional algorithms, such as the generalized
Newton method [3], bilinear programming method [4],
multivariate spectral gradient algorithm [5], and artificial
neural networks (ANN) [6], have been reported. However,

the traditional algorithms struggle to deal with the objective
functions which lack good analytical properties, e.g., conti-
nuity, differentiability, and smoothness.

With the vigorous development of metaheuristic algo-
rithms, many scholars have attempted to utilize metaheuris-
tic algorithms for practical problems. We refer to the
following literatures for a few examples of applications. [7]
improved the traditional particle swarm optimization
(PSO) algorithm through introducing into the sharing infor-
mation mechanism and the competition strategy called
information sharing based PSO (IPSO). The novel algorithm
IPSO has the similar rapid convergence speed and enhanced
global search capability to the traditional PSO. The experi-
mental results show that IPSO has better performance than
the traditional PSO and the GA algorithm on benchmark
functions, especially for difficult functions. [8] presented a
chaotic monarch butterfly optimization (CMBO) algorithm
to solve large-scale 0–1 knapsack problem. They introduce
twelve well-known one-dimensional chaotic maps to tune
the parameters of CMBO. Additionally, Gaussian mutation
is used to perturb small part of solutions with worse fitness.
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The proposed CMBO can outperform the standard MBO
and other eight state-of-the-art canonical algorithms. [9]
presents two binary variants of a Hunger Games Search
Optimization (HGSO) algorithm based on V- and S-
shaped transfer functions (BHGSO-V and BHGSO-S)
within a wrapper FS model for choosing the best features
from a large dataset. The experimental results demonstrate
that the BHGSO-V algorithm can reduce dimensionality
and choose the most helpful features for classification prob-
lems. For feature selection problem, [10] proposed the island
algorithm (IA) with a Gaussian mutation strategy (IAGM)
to find the optimal feature subset in the set of feature sub-
sets. The new variant of IA can efficiently address the prob-
lem that as the number of iterations increasing, the island
algorithm tends to local optimization. Colony predation
algorithm (CPA) is a recently proposed algorithm which
already is applied in some areas. For example, [11] proposed
a framework within CPA called colony predation algorithm
(CPA) with a kernel extreme learning machine (KELM),
abbreviated as ECPA-KELM. The framework leads an effi-
cient intelligence method for the diagnosis of COVID-19
from the perspective of biochemical indexes. The statistical
analysis results show that ECPA-KELM can be used to dis-
criminate and classify the severity of the COVID-19 as a
possible computer-aided method and provide early warning
for the treatment and diagnosis of COVID-19, effectively.
[12] first proposed a novel metaheuristic algorithm called
Harris hawks optimization (HHO) algorithm. The main
inspiration of HHO is the cooperative behavior and chasing
style of Harris’ hawks in nature called surprise pounce. The
founders do extensive experiments, and the statistical results
and comparisons show that the HHO algorithm provides very
promising and occasionally competitive results compared to
well-established metaheuristic techniques. Since HHO came
up to us, it has been widely used in many areas among which
[13] proposed a novel satellite image segmentation technique
based on dynamic HHO with a mutation mechanism
(DHHO/M) and thresholding technique. Compared with the
original Harris hawks optimization (HHO), the dynamic con-
trol parameter strategy and mutation operator used in
DHHO/M can avoid falling into the local optimum and effi-
ciently enhance the search capability. Experiments on various
satellite images illustrate that the DHHO/M is superior to
others in the following three aspects: fitness function evalua-
tion, image segmentation effect, and statistical tests.

For solving AVEs, several metaheuristic algorithms
including the genetic algorithm (GA), particle swarm opti-
mization (PSO) algorithm, differential evolution (DE) algo-
rithm, and harmony search (HS) algorithm are applied.
The authors have studied the optimum correction of the
absolute value equation by using GA [14] and obtained some
computational results which prove the effectiveness of the
algorithm. They did not give sufficient examples, instead
only verifying the case of high-dimensional AVEs. PSO with
exponentially decreasing inertia weight (EDIW) [15] has
been deeply discussed. By employing dynamic changes of
the inertia weight, PSO can easily escape from a local opti-
mum and progress towards a global optimum. The authors
gave a series of test AVEs with a unique solution or multiple

solutions to verify the effectiveness of EDIWPSO. However,
a few test examples without high-dimensional AVEs are
contained in the numerical experiments section. Despite this
fact, the problem is that even for AVEs with multiple solu-
tions, the EDIWPSO can only capture the multiple solutions
of the AVE by running the algorithm several times. An
improved adaptive differential evolution (IADE) algorithm
[16] was proposed for solving AVEs. The algorithm com-
bined global search ability and local search ability, using a
quadratic adaptive mutation operation and crossover opera-
tion. Numerical results show that the improved algorithm
can quickly find solutions of the test AVEs. However, it faces
the same issue of insufficient test examples and comparisons.
An improved harmony search algorithm with chaos (HSCH)
[17] has been applied for solving AVEs, and this improved
algorithm has a better optimization capability than the basic
harmony search algorithm (HS) and the improved harmony
search algorithm with differential mutation operator
(HSDE). The authors verified the performance of HSCH
by using three test AVEs, but their test still lacks any
higher-dimensional AVEs, AVEs with multiple solutions,
and comparisons with other metaheuristic algorithms.

Although many metaheuristic algorithms have been
employed to solve optimization problems containing AVEs,
existing metaheuristic algorithms still provide low precision
solutions to AVEs and lack the ability to straightforwardly
attain multiple solutions of AVEs. Therefore, the above algo-
rithms constructed to solve AVEs lack the strong generaliza-
tion ability required to work well. Hence, to address different
forms of AVEs effectively, finding and optimizing an efficient
algorithm possessing powerful universality is a critical issue.

Compared to the above algorithms for solving AVEs, the
glowworm swarm optimization (GSO) algorithm has a natural
advantage when solving multimodal optimization problems.
Although the GSO algorithm shares certain characteristics
with other metaheuristic algorithms compared in this study,
there are several differences. GSO can simultaneously detect
the multiple peaks of multimodal functions in parallel. This
problem cannot be solved directly by the original version of
the compared metaheuristic algorithms. Generally, the com-
pared metaheuristic algorithms are used to find one global
optima of the optimization problem. However, for solving
AVEs, multiple solutions are generally obtained because of
the existence of the absolute value vector jxj, and one impor-
tant consideration of the algorithms solving AVEs is to locate
as many solutions as possible. This capability is what separates
GSO from the other metaheuristic intelligent algorithms. This
is the motivation of improving the basic GSO and designing
SIGGSO to solve AVE problems. Furthermore, GSO is not
subject to conditions such as individual failures, the addition
of noise, and the limitation of differentiable functions and
multimodal functions, which may cause GSO to lose its
searchability [18]. These advantages render GSO more adapt-
able to practical application problems, and practical optimiza-
tion problems such as AVEs, which are multimodal functions
under certain conditions, can be solved. However, because the
basic GSO has troubles leaving local optima, we need to mod-
ify it to improve its ability to solve multisolution and high-
dimensional AVEs. We illustrate this in Section 5.
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Notably, the present scrutiny attempts to address a clear
scientific gap with the following contributions:

(i) Based on that sigmoid function can show a good
balance between linear and nonlinear, an adaptive
step size strategy derived from sigmoid function is
designed and applied to GSO in this paper

(ii) The introduction of this adaptive step size strategy
can make GSO possess a strong ability to jump
out local optima, compared with the basic GSO with
fixed step size strategy

(iii) The proposed improved GSO outperforms basic
GSO in solving several test AVEs and obtains com-
petitive advantages on multisolution and high-
dimensional AVEs compared with other metaheur-
istic algorithms like PSO, GA, HHO, DE, and HS.
This improved GSO can provide an effective
method for engineering and scientific calculations

The rest of the paper is organized as follows: in Section 2,
background information and the existence and uniqueness
theory of AVE’s solutions are provided. Section 3 describes
the basic GSO. Section 4 describes the proposed SIGGSO in
detail. The experimental design is presented in Section 5. In
Section 6, conclusions and future research work are provided.

2. Absolute Value Equation

The general form of the AVE is Ax − jxj = b, where A ∈ Rn×n,
x, b ∈ Rn, and jxj denote the absolute value of each component
of x. It is an important subclass of the absolute value matrix
equation Ax + Bjxj = b [19]. Subsequently, Mangasarian and
Meyer [4] reported certain theoretical results on the existence
and uniqueness of AVE solutions, which are listed below:

Lemma 1. If A ∈ Rn×n and all the singular values of A exceed
one, then there exists a unique solution for the AVE for any
b ∈ Rn.

Lemma 2. For A ∈ Rn×n, if kA−1k ≤ 1, for any b ∈ Rn, then
there exists a unique solution for the AVE.

Lemma 3. If b < 0 and kAk∞ ≤ κ/2, where κ =minijbij/ma
xijbij, then there exist 2n nonidentical solutions for the
AVE; these solutions have a different sign pattern and no zero
component.

For example, when n = 2, there are four solutions for the

AVE with sign patterns of
+
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 !
+
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 !
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 !
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 !
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respectively.
Since the GSO we consider is generally suitable for solving

unconstrained optimization problems, we transform the AVE
into an unconstrained optimization problem as follows:

Theorem 4. The AVE can be equivalently transformed into
the following unconstrained optimization problem:

min Ψ xð Þ
x∈ℝn

= 1
2

f , xð Þk k2, ð1Þ

where f ðxÞ = Ax − jxj − b, kxk represents the Euclidean
norm, Ψ : ℝn ⟶ℝ+, and if the optimal value of ΨðxÞ is
zero, then x is the solution of AVE.

Proof. Suppose that x∗ is the optimal solution of ΨðxÞ = 1/
2k f , ðxÞk2; according to the positive definiteness of the
Euclidean norm,

Ψ xð Þ = 1
2 f , x∗ð Þk k2 = 0⇔ f x∗ð Þ = 0⇔ Ax∗ − x∗j j − b = 0:

ð2Þ

Hence, the solution x∗ of the AVE is equivalent to the
optimal solution x∗ of ΨðxÞ = 1/2k f , ðxÞk2 when ΨðxÞ reach
the optimal value zero.

3. Basic GSO

3.1. Basic Concepts of GSO. In 2005, Krishnanand and Ghose
[20] proposed a new swarm intelligence optimization algo-
rithm called the artificial glowworm swarm optimization
(GSO) algorithm. After several years of development, the
GSO has good prospects for application to optimization in
the scheduling of certain tasks, vehicle routing problems,
and building design [21–23].

Each iteration of the GSO execution process includes five
phases: the glowworm deployment phase, luciferin update
phase, movement probability calculation phase, location
update phase, and neighborhood range update phase, which
are described below.

3.2. Mathematical Model of GSO. In this section, we intro-
duce the mathematical model of GSO proposed by Krish-
nanand and Ghose [20]. For the reader’s convenience, we
first provide a list of the notation we will use, shown in
Table 1.

3.2.1. Glowworm Deployment Phase. n glowworms (solution
vectors) are randomly placed in the feasible domain of the
problem and labeled x1, x2,⋯, xn, respectively, where each
glowworm is considered to be an m-dimensional vector xi
= ðxi1, ; ;xi2, ; ;⋯ , ximÞT , i = 1, 2,⋯, n. Each glowworm is
initialized with luciferin level l0, local decision radius r0, step
size s, threshold value of the number of glowworms con-
tained in the local decision domain nt , luciferin decay factor
ρ, fitness enhancement factor γ, domain change rate β, sen-
sor range of the glowworms rs (threshold of the local deci-
sion domain), and iteration number M.

3.2.2. Luciferin Update Phase. The luciferin level of each
glowworm is equal to that of the previous iteration plus a
certain extracted proportion of the glowworm’s current
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fitness, minus a certain proportion of the luciferin level that
varies with time, as described by the following equation:

li t,+,1ð Þ = 1,−,ρð Þli tð Þ + γJ xi, t,+,1ð Þð Þ, ð3Þ

where liðtÞ is the luciferin level at iteration t and Jðxi, ð
tÞÞ indicates the fitness of glowworm i at iteration t, i.e.,
the corresponding value of the objective function.

3.2.3. Movement Probability-Calculating Phase. Each glow-
worm decides its movement direction according to the lucif-
erin level of the glowworms in its local decision domain. For
each glowworm i, the probability of moving toward a neigh-
bor j is given by

Pij tð Þ =
l j tð Þ − li tð Þ

∑k∈Ni tð Þlk tð Þ − li tð Þ
, ð4Þ

where j ∈NiðtÞ, NiðtÞ = fj, : ,kxj, ðtÞ,−,xi, ðtÞk,<,rid , ðtÞ,;,
li, ðtÞ,<,li, ðtÞg denotes the set of all neighboring glowworms
of glowworm i at iteration t, ridðtÞ denotes the adaptive local
decision domain of glowworm i at iteration t, and 0 ≤ ridðtÞ
≤ rs.

3.2.4. Location Update Phase. Glowworm i select a glow-
worm j ∈NiðtÞ with PijðtÞ given by (4) and perform a loca-
tion update. Glowworm i moves with a certain step size
toward glowworm j with the maximum luciferin level in its

local decision domain; then, the movement process can be
represented as

xi t,+,1ð Þ = xi tð Þ + s
xj tð Þ − xi tð Þ
xj, tð Þ,−,xi, tð Þ  : ð5Þ

3.2.5. Neighborhood Range Update Phase. Each glowworm
uses an adaptive local decision radius, which changes at each
iteration according to the number of neighboring glow-
worms (the local decision radius increases when the number
of neighbors is smaller, and vice versa). At each iteration, the
following rule is applied:

rid t,+,1ð Þ =min rs, ; ;m, a, x, 0, ; ;rid , tð Þ,+,β, nt ,−, Ni, tð Þj jð ÞÈ ÉÈ É
:

ð6Þ

A variant of neighborhood range update rule was first
introduced in [18]. Its mathematical model is as follows:

rid t,+,1ð Þ = rs
1 + βDi tð Þ

, ð7Þ

where DiðtÞ =NiðtÞ/πr2s is the glowworm density in the
local decision domain of glowworm i at iteration t and β is
a constant representing the domain change rate.

The GSO flowchart is shown in Figure 1.

Table 1: Symbolic description.

Symbol Description

xi tð Þ The location of glowworm i at iteration t (solution
vectors)

n The number of glowworms

m Dimension of solution

l0 Initial luciferin level

li tð Þ The luciferin level of glowworm i at iteration t

r0 Local decision radius

s Fixed step size

s0 Initial step size of adaptive step size model

nt Threshold value of the number of glowworms

ρ Luciferin decay factor

γ Fitness enhancement factor

β Domain change rate

rs Sensor range of the glowworms

J xi, tð Þð Þ The fitness of glowworm i at iteration t

Ni tð Þ The set of all neighboring glowworms of glowworm i at
iteration t

rid tð Þ Local decision domain of glowworm i at iteration t

M Iteration number

Initialization related parameters

Luciferin update by model (2)

Adopt a fixed step size to move
the location by model (4)

Neighborhood range update
by model (5)

Calculate the probability by model (3)
and use the roulette method for selection

Figure 1: Flowchart of the GSO algorithm.
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4. Improved GSO Based on the
Sigmoid Function

4.1. Basic Idea for GSO Improvement. In a neural network
(NN), the sigmoid function is derived from the activation
function used for limiting the output amplitude of a neuron.
As it suppresses the output signal to a permissible range, it is
also known as the suppression function. We refer to [24–26]
for some application examples of sigmoid function. In gen-
eral, the normal output range of a neuron can be expressed
as a unit closed interval ½0, ; ;1�. The value range of the sig-
moid function is a continuous interval from 0-1 and is dif-
ferentiable. It is for this reason that the sigmoid function
has a wide range of applications in neural networks as a sup-
pression function.

The sigmoid function is a strictly increasing function
which shows better balance between linear and nonlinear

functions. An example of the sigmoid function is the logistic
function:

φ xð Þ = 1
1 + e−ax

, ð8Þ

where a is the tilt parameter, which can be modified to
change the degree of tilt.

To utilize the sigmoid function to construct an adap-
tively decreasing step size, we need to modify the sigmoid
function such that it is strictly monotonically decreasing,
and the function value remains within the ½0, ; ;1� range.
Therefore, we set an initial large step size s0 during GSO
execution and then multiply s0 by the constructed func-
tion. Based on this analytical approach, we make the fol-
lowing changes to the sigmoid function:

Table 2: Experimental results for AVE1 at various γ and ε setting.

Metrics λ = 3 λ = 15 λ = 30 λ = 40 λ = 50

ε = 0:1 Mean 2.09E-01 1.84E-10 7.96E-22 0 0

Std 2.20E-02 2.21E-20 3.14E-43 0 0

ε = 0:3 Mean 5.16E-01 1.24E-07 1.39E-16 1.23E-22 4.54E-29

Std 8.89E-02 4.74E-15 8.31E-33 8.18E-45 1.55E-56

ε = 0:5 Mean 1.54E+00 3.13E-05 1.97E-11 8.23E-16 6.50E-20

Std 1.19E+00 5.95E-10 2.13E-22 2.56E-31 1.77E-39

ϵ = 0:7 Mean 3.27E+00 1.92E-02 3.31E-06 7.26E-09 3.28E-11

Std 4.75E+00 1.38E-04 6.06E-12 2.19E-17 7.07E-22

ε = 1 Mean 1.08E+01 1.94E+01 2.34E+01 2.28E+01 2.54E+01

Std 3.98E+01 1.25E+02 3.32E+02 3.88E+02 3.22E+02
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(a) λ = 40, ε = 0:1, 0:3, 0:5, 0:7, 1
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(b) ε = 0:1, λ = 3, 15, 30, 40, 50

Figure 2: Curve of strategy (8).
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φ tð Þ = 1 − 1
1+ exp −,λ, t/tmaxð Þ,−,εð Þð Þ , ð9Þ

where λ and ε are undetermined parameters. There-
fore, the fixed step size location update model (5) is chan-
ged into an adaptive variable step size model, as shown
below:

xi t,+,1ð Þ = xi tð Þ + s0 · φ tð Þ · xj tð Þ − xi tð Þ
xj, tð Þ,−,xi, tð Þ  : ð10Þ

As detailed in the numerical experiments (Section 5),
we establish that performance of the GSO, based on the
adaptively decreasing step size strategy (9), for solving
AVEs is good. We call this improved GSO with adaptive
variable step size model (10) SIGGSO, which comprises
models (3), (4), (10), and (7).

To ensure that the improved adaptively decreasing step
size model (10) can be better applied to the GSO for solving
AVEs, the selection of the values of parameters λ and ε is
critical.

Here, we consider AVE1 given in Section 5 for testing
the set values of λ and ε. The mean value and standard devi-
ation of the fitness when the optimal solution is obtained are
listed in Table 2 for different values of λ and ε: The curve
with different values of λ and ε of strategy (9) is displayed
in Figure 2.

Table 2 shows that when ε is fixed, the results improve
as λ is increased. When λ = 50, SIGGSO solves AVE1 with

Adaptive variable step-size GSO based on the Sigmoid function
Set the dimension of solution of AVE as m, number of glowworms as n, maximum iteration number as Tmax, l0, r0, rs, nt , ρ, γ, β, s0,
t = 1
Let xiðtÞ be the location of glowworm i at time t;
fori = 1 to n do

lið0Þ = l0
ridð0Þ = r0;

whileðt,≤,TmaxÞdo: %Main loop
{

fori = 1 to ndo: % Luciferin update phase
liðt,+,1Þ =max f0, ; ;ð1,−,ρÞ, li, ðtÞ,+,γ, J , ðxi, ðt,+,1ÞÞg;

fori = 1 to ndo: %Move phase
{

NiðtÞ = fj, : ,kxj, ðtÞ,−,xi, ðtÞk,<,rid , ðtÞ,;,li, ðtÞ,<,li, ðtÞg;
for each glowworm j ∈NiðtÞdo:
PijðtÞ = l jðtÞ − liðtÞ/∑k∈NiðtÞlkðtÞ − liðtÞ;

j = select glowwormðP!Þ; % Use the roulette method
sðtÞ = s0ð1,−,1/ð1,+,e, x, p,ð−,50, ðt/tmax,−,0,:,1ÞÞÞÞ;
xiðt,+,1Þ = xiðtÞ + sðtÞðxjðtÞ − xiðtÞ/kxj, ðtÞ,−,xi, ðtÞkÞ ;
ridðt,+,1Þ = rs/1 + βDiðtÞ;

}
t⟵ t + 1

}

Pseudocode 1: The pseudocode of SIGGSO algorithm.

Intialization SIGGSO parameters

Luciferin update by model (2)

Move the location by model (9)

Neighborhood range update
by model (6)

Update step size by using
s (t) = s(0) • (1–1/(1+exp(–50(t/tmax–0.1))))

Calculate the probability by model (3)
and use the roulette method for selection

Figure 3: Flowchart of the SIGGSO algorithm.
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very high accuracy, the minimum fitness is zero, and the
algorithm is stable. When λ is fixed, the experimental
results improve as ε is decreased. When ε = 0:1, SIGGSO
solves AVE1 with very high accuracy, the minimum fitness
is zero, and the algorithm is stable. From Figures 2(a) and
2(b), as λ increases, ε decreases, and the change trend of
φðtÞ with t is first rapid decline and then gradual stabiliza-
tion. This is also in line with our basic idea for adaptive
step size improvement, namely, that during the early the
iterations, the step size can exhibit a relatively large
change, such that the glowworms can rapidly converge
near the solutions, whereas in the later stages, the step size
can exhibit a relatively small change, such that the glow-
worms can be fine-tuned near the solutions, thus render-
ing the solution more accurate. Based on this analysis,
we fix λ = 50 and ε = 1 for the SIGGSO in the numerical
experiments. We use the following model to update the
locations of the glowworms:

xi t,+,1ð Þ = xi tð Þ + s0 · φ tð Þ · xj tð Þ − xi tð Þ
xj, tð Þ,−,xi, tð Þ  ,

s tð Þ = 1 − 1
1,+,e, x, p, −,50, t/tmax,−,0,:,1ð Þð Þð Þ :

8>>><
>>>:

ð11Þ

The pseudocode of SIGGSO algorithm is depicted in
Pseudocode 1, and the flowchart of SIGGSO is shown in
Figure 3.

4.2. Time Complexity Analysis of SIGGSO. In this section, we
will use big O notation for time complexity analysis.

4.2.1. Time Complexity Analysis for Population Size n. Pseu-
docode 1 shows that the SIGGSO algorithm has an outer
loop and two inner loops, and the second inner loop has
another inner loop.

Table 3: Time complexity analysis for population size n.

Phase Time complexity Max iteration number

Initialization O nð Þ n

Luciferin update phase O Tmax, ·, nð Þ Tmax · n
Move phase O Tmax, ·, n, ·, l, e, n, g, t, h, Ni, tð Þð Þð Þ Tmax · n · length Ni, tð Þð Þ

Table 4: Time complexity analysis for m-dimensional AVEs.

Phase Time complexity Max iteration number

Initialize population locations O n, ·,mð Þ n ·m
Luciferin update phase O Tmax, ·, nð Þ Tmax · n
Move phase O Tmax, ·, n, ·,mð Þ Tmax · n ·m

Table 5: Compared metaheuristic algorithms.

Algorithm Description

GSO Basic glowworm swarm optimization algorithm [20].

SIGGSO Improved glowworm swarm optimization algorithm proposed in this study for solving AVEs.

IADE Improved adaptive differential evolution algorithm [16].

EDIWPSO Particle swarm optimization algorithm with exponentially decreasing inertia weight [15].

HSCH Improved harmony search algorithm with chaos [17].

GA Genetic algorithm [14].

HHO Harris hawks optimization algorithm [12].

Table 6: Fixed parameter setting for the improved GSOs.

l0 nt ρ γ β s0
5 5 0.4 0.6 0.08 0.2

Table 7: Variable parameter setting for the improved GSOs.

AVE r0 rs
Low-dimensional AVEs 5 5

High-dimensional AVEs 20 20
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Remark 5. a · brepresents the product of two scalar a and b.

Table 3 shows that the total time complexity of
SIGGSO is

T nð Þ =O nð Þ +O Tmax, ·, nð Þ
+O Tmax, ·, n, ·, l, e, n, g, t, h, Ni, tð Þð Þð Þ: ð12Þ

According to the addition rule, only the highest order of
the time complexity is considered, and according to the multi-
plication rule, Oðc, nÞ is equivalent to OðnÞ (c is constant).
Therefore, the time complexity of SIGGSO is Oðn, ·, l, e, n, g,
t, h, ðNi, ðtÞÞÞ. As lengthðNi, ðtÞÞ changes for each glowworm
at each t, its range is constant ≤ lengthðNi, ðtÞÞ ≤ n. Finally,
TðnÞ is between OðnÞ and Oðn2Þ.
4.2.2. Time Complexity Analysis for m-Dimensional AVEs.
We assume that both the maximum iteration number n

and Tmax are constants that are set when analyzing the time
complexity for the AVE dimension.

From Table 4, we obtain TðnÞ =Oðn, ·,mÞ +OðTmax, ·,
nÞ +OðTmax, ·, n, ·,mÞ, as per the addition and multiplica-
tion rules, and TðnÞ =OðmÞ.

5. Numerical Experiments

In this section, we first give seven test AVEs containing mul-
tisolution and high-dimensional ones and have analyzed the
solution characteristics of the test AVEs. Parameter setting
details is depicted in Section 5.3. The primary objective that
shows the comparing the results of SIGGSO, basic GSO and
other metaheuristic algorithms are described in Sections 5.4
and 5.5. On the compared results, we mainly consider the
mean and standard deviation of fitness value as comparing
metrics. Furthermore, the well-known Wilcoxon signed-
rank test method performs the significance difference test
on the comparing results.
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Figure 4: Process of capturing the multiple peaks of AVE2 through (a) GSO and (b) SIGGSO.
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5.1. Test AVEs.
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Figure 5: Process of capturing the multiple peaks of AVE3 through (a) GSO and (b) SIGGSO.

AVE1 : A =

10 1 2 0

1 11 3 1

0 2 12 1

1 7 0 13

0
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1
CCCCCCA
, b =

12

15

14

20

0
BBBBBB@

1
CCCCCCA
,

AVE2 : A =
0:1 0:02

0:2 0:01

 !
, b =

−1

−2

 !
,

AVE3 : A =

0:01 0:02 0:03

0:02 0:03 0:01

0:03 0:02 0:01

0
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1
CCCA, b =
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0
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1
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AVE4 : A = aij
Â Ã

m×m, when i = j, aij = 500, when i ≠ j, aij = aji = 1 + rand, b = A,−,Ið Þe,

AVE5 : A = RTR +mI, b = A,−,Ið Þe, R = rand mð Þ,

AVE6 : A = RTR +mI, b = A,−,Ið Þe, R = 10 rand mð Þ,
AVE7 : A = aij

Â Ã
m×m, aii = 4m, ai+1,i = ai,i+1 =m i,⩽,m,−,1ð Þ, the rest aij = 0:5, b = A,−,Ið Þe:

ð13Þ
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In AVE4, AVE5, AVE6, and AVE7, m is the size of the
problem, i.e., the dimension of the solution. rand is a ran-
dom number that follows a uniform distribution in [0,1],
rand ðmÞ is an m-order square matrix whose elements are
generated by rand, ðr, a, n, dÞm×1 is m-dimensional column
vector whose elements are generated by rand, I is an m
-order identity matrix, and e is an m-dimensional column
vector whose elements are all unity. RT represents the trans-
pose matrix of R.

The above AVEs were employed to test and compare
the performances of SIGGSO with other metaheuristic algo-
rithms which were programmed using MATLAB 2018a. All
the experiments were performed on a PC configured with
an Intel Core i5-7400 processor and 8-GB RAM. For a

quick impression, the compared algorithms are listed in
Table 5.

5.2. Characteristics of the Test AVEs. For AVE1, AVE4,
AVE5, and AVE6, we can easily obtain the singular
values of the matrix A, which all exceed one. Hence,
Lemma 1 tells us that both AVEs have unique solutions.
The condition of Lemma 2, i.e., kA−1k ≤ 1, applies to A
in AVE7; hence, a unique solution to AVE7 exists. A
and b in AVE2 and AVE3 satisfy Lemma 3; hence, there
exist 2n solutions for these three AVEs. Furthermore, as
AVE2 is a two-dimensional AVE, it has four solutions.
The dimension of AVE3 is three; hence, it has eight solu-
tions. Based on Lemma 3, the sign pattern of AVE2 is
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Figure 6: Process of capturing the single peak of AVE4 through (a) GSO and (b) SIGGSO.
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5.3. Parameter Setting. Here are the parameter setting
details of the compared algorithms:

(a) For SIGGSO, the fixed parameter settings which are
not specifically tuned for every AVEs are the same as
those in Krishnanand and Ghose [27, 28]. We list
them in Table 6. A full factorial analysis is carried
out in Krishnanand and Ghose [18] to show that
the choice of rs has some influence on the perfor-
mance of the algorithm, in terms of the total number
of peaks captured, and they suggested that rs is equal
to r0. Based on extensive numerical experiments on
test AVEs, we determined the appropriate values of
rs and r0, as shown in Table 7

(b) For IADE, EDIWPSO, HSCH, HHO, and GA, all the
parameter settings were the same as those in their
referred papers (discussed in Section 1)
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Figure 7: Process of capturing multiple peaks of AVE5 through (a) GSO and (b) SIGGSO.
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Remark 6. The low-dimensional AVEs are AVE1, AVE2,
and AVE3. The high-dimensional AVEs are AVE4,
AVE5, AVE6, and AVE7 whose dimension equal or
exceed 100.

Remark 7. For all the algorithms compared in this study, the
initial population was generated randomly in the solution
space, the maximum number of iterations was 1000, and
the population size was 50.

Remark 8. To give distinct expressions, AVE4, AVE5, AVE6,
and AVE7 are denoted as “AVE name_dimension of
solution.”

Remark 9.We consider ΨðxÞ = 1/2k f , ðxÞk2 in Theorem 1 to
be the fitness function of all test AVEs. The theoretical opti-
mal values of the unconstrained optimization problem min
ΨðxÞ = 1/2k f , ðxÞk2 are all zero.
5.4. Advantage of SIGGSO in Solving Multisolution AVEs.
Through the analysis of the solution characteristics of
AVE2 and AVE3 in Section 5.2, we obtained four solutions
of AVE2 and eight solutions of AVE3 by executing SIGGSO.
The four solutions of AVE2 are

1:1612
2:2548

 !
1:0624
−2:1906

 !
−0:8762
−1:8067

 !
−0:9424
1:8298

 !
: ð15Þ
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Figure 8: Process of capturing single peak of AVE6 through (a) GSO and (b) SIGGSO.
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The eight solutions of AVE3 are

The following figures show the process of capturing the
AVE solutions directly obtained by GSO and SIGGSO. To
clearly demonstrate the location changing process of the
glowworms, we adjusted certain parameters in this subsec-
tion. For all the AVEs used in the simulation, we set n =

100, Tmax = 1000. For AVE4, AVE5, AVE6, and AVE7, we
set m = 2.

Figures 4–9 indicate that under the same number of iter-
ations, for solving AVE2-AVE7, SIGGSO has a strong ability
to leave the local optima and then converge to the global
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Figure 9: Process of capturing single peak of AVE7 through (a) GSO and (b) SIGGSO.
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optima, compared to GSO. Furthermore, Figures 4 and 5
reflect that SIGGSO possesses the ability in simultaneously
locating as many solutions of AVE as possible which cannot
be achieved directly by the original version of the compared
metaheuristic algorithms.

5.5. Comparison of the Performances of GSO, SIGGSO, IADE,
EDIWPSO, HSCH, HHO, and GA in Solving AVEs. We exe-
cuted each of these algorithm 20 times independently and then
compared themean value and standard deviation of the fitness
value of different test AVEs, as shown in Table 8. Table 9
shows the statistical results for the data of Table 8 using left-
sided Wilcoxon signed-rank test. Table 10 shows the mean
value and standard deviation of the execution time generated
by the seven compared algorithms.

Table 8 indicates the following: (a) when solving low-
dimensional, multisolution AVEs, SIGGSO, IADE, and
EDIWPSO exhibit excellent solution accuracy and stability,
whereas the performance of HSCH and GA is unsatisfactory
the performance of GSO and HHO is the worst. As a matter

of fact, HSCH and GA did not perform well on the whole test
AVEs. Moreover, SIGGSO outperforms all the other algo-
rithms in the comparison on AVE2. (b) When solving high-
dimensional AVEs, EDIWPSO, HSCH, and GA are far infe-
rior to SIGGSO and IADE in all aspects of our comparison.
The performance of GSO is slightly inferior to SIGGSO on
all high-dimensional AVEs. Furthermore, IADE outperforms

Table 8: Mean and standard deviation of the fitness value obtained by the seven algorithms on the test AVEs.

AVE Metrics GSO SIGSO IADE EDIWPSO HSCH HHO GA

AVE1
Mean 3.82E-01 0 0 0 5.32E-04 3.77E-02 2.91E-03

Std 2.05E-01 0 0 0 1.79E-04 2.45E-02 2.20E-03

AVE2
Mean 1.13E-03 1.94E-17 2.78E-17 2.78E-17 5.68E-06 1.00E-06 2.20E-06

Std 6.66E-04 3.72E-17 2.85E-17 2.85E-17 3.33E-06 1.74E-06 4.02E-06

AVE3
Mean 1.14E-02 0 0 0 3.33E-05 1.63E-04 1.72E-05

Std 1.87E-02 0 0 0 1.53E-05 2.68E-04 3.31E-05

AVE4_100
Mean 3.02E+02 2.04E+02 6.47E-01 6.05E+02 1.11E+03 2.68E+01 5.16E+02

Std 1.83E+01 1.30E+01 4.65E-01 9.80E+01 1.93E+01 1.47E+01 6.23E+01

AVE4_200
Mean 4.18E+02 2.86E+02 5.98E+01 1.00E+03 1.77E+03 4.77E+01 1.26E+03

Std 2.47E+01 1.30E+01 1.42E+01 2.01E+02 1.99E+01 3.27E+01 5.56E+01

AVE4_500
Mean 6.00E+02 4.62E+02 5.40E+02 1.73E+03 3.06E+03 1.51E+02 2.64E+03

Std 2.46E+01 1.37E+01 3.58E+01 3.91E+02 2.92E+01 8.29E+01 4.19E+01

AVE5_100
Mean 7.90E+01 5.89E+01 1.24E+01 1.19E+02 2.62E+02 1.49E+02 1.89E+02

Std 4.44E+00 5.40E+00 3.38E+00 2.38E+01 8.97E+00 3.88E+01 1.15E+01

AVE5_200
Mean 2.33E+02 1.75E+02 1.78E+02 3.38E+02 8.19E+02 5.61E+02 7.23E+02

Std 1.80E+01 1.00E+01 1.19E+01 9.02E+01 1.40E+01 8.81E+01 2.35E+01

AVE5_500
Mean 9.58E+02 7.66E+02 1.50E+03 1.43E+03 3.48E+03 2.79E+03 3.27E+03

Std 5.28E+01 3.78E+01 8.62E+01 2.56E+02 4.20E+01 2.85E+02 4.65E+01

AVE6_100
Mean 1.10E+03 6.46E+02 9.77E+02 1.27E+03 2.81E+03 3.12E+03 2.74E+03

Std 1.61E+02 1.18E+02 7.18E+01 2.84E+02 1.15E+02 4.38E+02 2.17E+02

AVE6_200
Mean 2.92E+03 1.82E+03 3.82E+03 4.32E+03 8.85E+03 9.44E+03 8.79E+03

Std 3.21E+02 2.15E+02 3.32E+02 9.29E+02 3.69E+02 9.45E+02 6.29E+02

AVE6_500
Mean 1.13E+04 9.03E+03 1.80E+04 1.88E+04 3.85E+04 3.79E+04 3.78E+04

Std 8.74E+02 1.09E+03 1.02E+03 3.78E+03 1.00E+03 4.51E+03 1.69E+03

AVE7_100
Mean 2.38E+02 1.56E+02 1.42E+01 4.24E+02 9.22E+02 1.59E+01 4.18E+02

Std 1.78E+01 1.22E+01 3.13E+00 7.49E+01 2.34E+01 1.05E+01 4.10E+01

AVE7_200
Mean 6.70E+02 4.68E+02 2.41E+02 1.53E+03 2.93E+03 7.38E+01 1.94E+03

Std 3.30E+01 3.06E+01 3.03E+01 2.97E+02 3.99E+01 4.50E+01 8.43E+01

AVE7_500
Mean 2.51E+03 1.91E+03 2.54E+03 7.08E+03 1.27E+04 2.77E+02 1.04E+04

Std 8.45E+01 5.94E+01 9.54E+01 1.31E+03 1.24E+02 1.89E+02 2.24E+02

Table 9: Statistical results for the data of Table 6 using left-sided
Wilcoxon signed-rank test (α = 0:05).

Comparing order p value H Signed-rank

SIGGSO vs. GSO 2.1282e-05 1 33

SIGGSO vs. IADE 0.2307 0 146

IADE vs. SIGGSO 0.7770 0 205

SIGGSO vs. EDIWPSO 5.5635e-06 1 2

SIGGSO vs. HSCH 9.4199e-06 1 24

SIGGSO vs. HHO 0.0150 1 126.5

SIGGSO vs. GA 9.1269e-07 1 0
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SIGGSO on AVE4_100, AVE4_200, AVE7_100, and AVE7_
200. However, we noticed that IADE has a poor performance
on all 500-dimensional AVEs compared with SIGGSO, which
means that IADE failed to perform well on higher-
dimensional AVEs. HHO outperforms SIGGSO on 50% test
AVEs including AVE4_100, AVE4_200, AVE4_500, AVE7_
100, AVE7_100, and AVE7_100. On high-dimensional
AVE5 and AVE6, HHO did not perform well than SIGGSO.

For more convincing statistical analysis, Wilcoxon
signed-rank test (WSRT) is adopted to perform pairwise
comparisons between SIGGSO and the rest of algorithms.
Here is the hypothesis for SIGGSO proposed in this study:

H0. The mean and standard deviation of the fitness value
obtained by the SIGGSO is greater than that of another
algorithm.

H1. The mean and standard deviation of the fitness value
obtained by the SIGGSO is less than or equal to that of
another algorithms.

We use the left-sided WSRT function signrankðx, y, ′tail′,
′lef t′Þ in MATLAB for the above hypothesis test. Table 9 gives
the statistical results on all test AVEs.

According to the p value, Table 9 shows that SIGGSO
shows a significant improvement over GSO, EDIWPSO,
HSCH, HHO, and GA with a level of significance α = 0:05.

For the comparison between SIGGSO and IADE, the p value
is 0.2307 (>0.05), which means that the difference between
these two algorithms cannot be deemed significant. Mean-
while, for the comparison between IADE and SIGGSO, the
p value is 0.7770 (>0.2307), which means that we prefer to
accept the H1 hypothesis over SIGGSO vs. IADE; i.e.,
SIGGSO possesses competitive advantages compared with
IADE.

Table 10 shows that SIGGSO always requires more exe-
cution time than IADE, EDIWPSO, and GA on all the com-
pared AVEs. Although EDIWPSO and GA required far less
time than SIGGSO, the three algorithms fail to solve AVEs
well, as they have lower solution accuracy and weaker stabil-
ity than SIGGSO. Due to its’ superiority in execution time
compared to SIGGSO, IADE is preferable for solving AVEs,
until the performance of IADE on higher-dimensional and
multipeak AVEs is improved. Compared to SIGGSO, the
execution time of HSCH is unacceptable in solving higher-
dimensional AVEs. For example, HSCH required almost
19, 18.9, 19.5, and 21.4 seconds for solving AVE4_500,
AVE5_500, AVE6_500, and AVE7_500, respectively. This
is nearly 3.5 times than the time required by SIGGSO. Com-
pared to SIGGSO, HHO not only required less time but also
did not perform well on most test AVEs. Based on the
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Figure 10: Fitness plots of the iterative process of the compared AVEs.
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previous analysis, there is a trade-off in SIGGSO between the
execution time and the solution accuracy and the capacity
for solving high-dimensional AVEs.

Figure 10 displays the fitness plots of one iterative pro-
cess of the compared AVEs obtained by the compared
algorithms.

As shown in Figures 10(a)–10(c), SIGGSO requires more
iterations to reach the global optima than the other metaheuris-
tic algorithms. However, when solving high-dimensional AVEs
containing AVE5_200, AVE_500, AVE6_100, AVE6_200, and
AVE6_500, SIGGSO converges significantly faster, i.e., with
fewer iterations than the other algorithms. Moreover, the ability
of SIGGSO to leave the local optima is stronger than that of the
other four algorithms. For instance, Figures 10(i)–10(l) show
that the ability of IADE to leave the local optima is weaker.

All figures show that when solving either multisolution
AVEs or high-dimensional AVEs, GA and HSCH fluctuate
considerably during their early iterations and cannot leave
the local optima, and their solution accuracy is the worst
out of the five algorithms.

One point that is worth to consider is that SIGPSO
requires slightly less iterations than EDIWPSO on most test
AVEs. For example, from Figure 10(k), we can see that
SIGPSO requires about 120 iterations to converge to a global
optimum, whereas EDIWPSO needs more than 200 itera-
tions. This shows that the adaptive model (9) designed in
this paper is a thinkable adaptive step size strategy.

Considering that we need a robust algorithm to solve
AVEs, SIGGSO is absolutely an effective technique to this
end, especially for multisolution AVEs or high-dimensional
AVEs. This is because SIGGSO uses effective adaptive step
size techniques with GSO, and it indicates that the strategy
selecting method is useful for solving AVEs.

6. Conclusion

The AVE is a NP-hard problem, and its solution has several
forms. There are both low-dimensional and high-
dimensional AVEs. There are also single- or multisolution
AVEs. This study verified the advantages of GSO in solving
multisolution AVEs compared to the other metaheuristic
algorithms. As the basic GSO has relatively poor solution
accuracy and struggles to solve high-dimensional AVEs, an
improved GSO based on the sigmoid function, called
SIGGSO, was proposed in this study. The sigmoid function
was used to reconstruct the adaptive step size model in
GSO. This improvement enhances the convergence rate of
the GSO during the early iterations and improves its ability
to capture the global optima during the later stages. Through
numerical experiments, it was established that SIGGSO had
higher solution accuracy and better stability compared to the
other algorithms. For solving high-dimensional AVEs, it
could converge to the global optimum with fewer iterations.
The proposed SIGGSO algorithm can be applied to linear
complementarity, bilinear programming, concave minimiza-
tion, and other problems. Moreover, it can be applied to
other continuous optimization problems.

In the end, we suggest several potential directions of
future research. We intend to focus on improving the speed

of the algorithm for higher-dimensional AVEs, which is a
limitation of SIGGSO, and we hope to find other activation
functions of NN that may further improve the performance
of GSO.
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