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The uniform white noise assumption is widely applied for most of the existing direction-of-arrival (DOA) estimation methods,
which however may degrade the estimation performance. In practical scenarios, the nonuniform white noise model is more
adequate. In this paper, we propose a simple DOA estimation method in the presence of spatially nonuniform white noise
with unknown noise covariance matrix. The estimate of the unknown noise covariance matrix is firstly obtained by utilizing
the shift property of identical subarrays. Then, the received signal covariance matrix is prewhitened by the estimated noise
covariance, which can overcome the biased estimate of signal covariance. Finally, the performance improvement is verified by
simulations in terms of resolution ability and estimation accuracy.

1. Introduction

Direction-of-arrival (DOA) estimation is one of the most
important research topics in the field of array signal process-
ing and has been widely used in the radar, sonar, wireless
communications, and acoustic tracking, to mention just a
few [1–6]. Resolution ability and estimation accuracy, as
the two main indicators for measuring the estimation per-
formance, have been the consistent research focus. Over
the past decades, there exist several high-resolution DOA
estimation approaches. Among these approaches, the most
popular approaches include minimum variance distortion-
less response beamformer (MVDR) [7], multiple signal
classification (MUSIC) [8, 9], estimation of signal parame-
ters via rotational invariance technique (ESPRIT) [10], and
maximum likelihood (ML) [11, 12]. These approaches
can provide high accuracy and high resolution for DOA
estimation.

For the abovementioned DOA methods, a fundamental
assumption is that the DOA estimation methods are imple-
mented in the presence of spatially uniform noise (Gaussian
white noise). Under this assumption, the subspace-based
approaches can successfully separate the orthogonally signal

and noise subspaces, and the ML function with respect to the
noise variance single parameter becomes possible [13]. In
practical situations, the spatially uniform white noise can
hardly be guaranteed. Except for uniform noise, the sensor
noise can also be nonuniform [14], spatially correlated
[15], or burst impulsive [16]. Since the array response and
receive channels are usually nonideal and nonuniform, the
practical noise powers across the array are nonidentical
and usually behave as nonuniform [17]. The nonuniform
noise usually leads to diagonal covariance matrix with
nonidentical entries, which may degrade the estimation
accuracy for traditional DOA estimation methods. To
address this issue, the ML-based methods can deal with
the nonuniform case in DOA estimation. In [18, 19],
two ML-based estimators are proposed, respectively, based
on iterative optimization. However, the iterative optimiza-
tion procedure results in high complexity and is time-
consuming. Moreover, the obtained result may be a local
optimum rather than a global one [14]. For subspace-
based approaches, there exist several methods to address
the nonuniform noise issue [20, 21], which can avoid the
iterative optimization procedure, and as a result, they are
usually computationally efficient.
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In this paper, we propose a simple subspace-based DOA
estimation method under the nonuniform noises scenarios,
where the noise covariance matrix is estimated by utilizing
the shift property of identical uniform subarrays, and then,
some high-resolution approaches (such as MUSIC and
root-MUSIC [22]) are adopted for the following DOA esti-
mation. Simulations are provided to verify the performance
improvement of the proposed method in terms of estimation
accuracy and resolution ability.

2. System Model

In this section, we consider a uniform linear array (ULA)
with M sensors, and the i-th sensor is located at the
position li = ði − 1Þd, i = 1, 2,⋯,M, where d = λ/2 and λ
is the signal wavelength. Assume K far-filed uncorrelated
sources impinge on the array from distinct directions Θ =
½θ1, θ2,⋯,θK �. Therefore, the received signal of the array at
time tð1 ≤ t ≤ TÞ is computed as

x tð Þ = 〠
K

k=1
a θkð Þsk tð Þ + n tð Þ =As tð Þ + n tð Þ, ð1Þ

where A = ½aðθ1Þ, aðθ2Þ,⋯,aðθKÞ� is the M‐by‐K array man-
ifold matrix with aðθkÞ being the M × 1 steering vector for
the k-th signal, and the i-th element in aðθkÞ is denoted
as ejπði−1Þ sin θk . sðtÞ = ½s1ðtÞ, s2ðtÞ,⋯,sKðtÞ�T denotes the
source signal vector at time t with the subscript T being
the transpose operation. nðtÞ is the M × 1 noise vector
received by the array, which is uncorrelated with the signal
vector sðtÞ. In general, the noise nðtÞ is usually assumed as
the additive white Gaussian with zero mean and variance
σ2. Under this assumption, the covariance matrix of xðtÞ
can be obtained as

Rxx = E x tð ÞxH tð ÞÂ Ã
=ARssAH + σ2IM , ð2Þ

where the subscript H denotes the conjugate transpose oper-
ation, E½⋅� denotes expectation operation, Rss = E½sðtÞsHðtÞ�
represents the signal covariance matrix of sources, and IM
is the M‐by‐M unit matrix.

In practice, the noise nðtÞ is usually nonuniform; i.e.,
the noises at different sensors have different noise powers.
We have

Q = E n tð Þn tð ÞHÈ É
= diag qð Þ = diag σ21, σ22,⋯,σ2M

À Á
, ð3Þ
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Figure 1: The MUSIC spectrum under uniform and nonuniform noises. Results with four signals arriving at angles equally distributed
between 10° and 50°, M = 8, L = 500, SNR = 0 dB, and q = ½1, 1, 1, 1, 1, 20, 30, 50�T .

d

Ms + 1Ms1 2 2 Ms 2 Ms + 1 3 Ms

Subarray 1 Subarray 2 Subarray 3

M

Subarray 4

Figure 2: The ULA geometry and its subarrays.
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Figure 3: Continued.
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where σ2i , i = 1, 2,⋯,M is the sensor noise covariance at the i
-th sensor with q = ½σ21, σ2

2,⋯,σ2M�T and diag ð⋅Þ denotes a
diagonal matrix. In this case, the covariance matrix of xðtÞ
becomes

Rxx = E x tð ÞxH tð ÞÂ Ã
=ARssAH +Q: ð4Þ

From Equations (2) and (4), the uniform noise can be
regarded as a special case of nonuniform noise when σ21 =
σ22 =⋯ = σ2

M = σ2, i.e., Q = σ2IM .
Due to the effect of limited samples, the covariance

matrix Rxx is unavailable, but it can be estimated with L
snapshots as

R̂xx =
1
L
〠
L

t=1
x tð ÞxH tð Þ, ð5Þ

where the estimated covariance matrix R̂xx converges to Rxx
when the snapshot number L tends to be large enough. The
eigenvalue decomposition can be written as

R̂xx =UsΛsUH
s +UnΛnUH

n , ð6Þ

where Us and Un are the spanned signal and noise subspace
and Λs and Λn are the corresponding eigenvalue matrices

with respect to Us and Un, respectively. The pseudospectrum
of MUSIC can be obtained as

f θð Þ = 1
aH θð ÞUnUH

n a θð Þ : ð7Þ

Then, the DOAs can be estimated by finding the peaks of
f ðθÞ. However, as compared to the uniform noise scenarios,
the nonuniform noise may interrupt the MUSIC spectrum
and degrade the estimation performance. For clarity, we give
an example of the MUSIC spectrum under both uniform
and nonuniform noises in Figure 1. Here, we consider K =
4 uncorrelated sources equally distributed between 10° and
50° impinge on the ULA with M = 8, L = 500, and the SNR
being 0 dB. For the nonuniform noise case, the noise power
vector is set as q = ½1, 1, 1, 1, 1, 20, 30, 50�T . As can be
observed from Figure 1, the MUSIC spectrum performs well
under the uniform noise case. Meanwhile, under the non-
uniform noise scenarios, the MUSIC can only generate three
peaks with larger error and missing one source, which indi-
cates that the conventional MUSIC may become invalid for
nonuniform noise cases.

3. Proposed Method

For an M-element ULA, it can be divided into three consec-
utive subarrays with the same aperture and no overlapping
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Figure 3: The normalized spectrum under different SNRs with (a) SNR = −5 dB, (b) 0 dB, and (c) 5 dB. Results with four signals arriving at
angles equally distributed between 10° and 50°, M = 8, and L = 500.
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Figure 4: Continued.
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elements, as is shown in Figure 2. Each subarray is a uniform
linear subarray with Ms elements, where Ms = bM/3c with
the symbol b⋅c being the round down to the nearest integral
operation. The remaining elements can be regarded as the
fourth subarray with Mr =M − 3Ms elements and Mr can
be 0, 1, or 2. Note that when Mr = 0, the fourth subarray
does not exist, i.e., the fourth subarray exists only when
M ≠ 3Ms.

Without loss of generality, the covariance matrices of the
four subarrays can be extracted directly from Rxxin Equation
(4) as

Rxx,1 = Rxx 1 : Ms ; 1 : Msð Þ =A1RssA1
H +Q1,

Rxx,2 = Rxx Ms + 1 : 2Ms ;Ms + 1 : 2Msð Þ =A2RssA2
H +Q2,

Rxx,3 = Rxx 2Ms + 1 : 3Ms ; 2Ms + 1 : 3Msð Þ =A3RssA3
H +Q3,

Rxx,4 = Rxx 3Ms + 1 : M ; 3Ms + 1 : Mð Þ =A4RssA4
H +Q4,

8>>>>><>>>>>:
ð8Þ

where A1, A2, and A3 are the Ms‐by‐K array manifold
matrices of the former three subarrays extracted from A
and satisfy Ai+1 = FAi with F= diag ð½ejπð1+MsÞ sin θ1 ,⋯,
ejπð1+MsÞ sin θK �Þ for i = 1, 2. A4 is theMr‐by‐K array manifold
matrix for the fourth subarray. Q1 = diag ðqð1 : MsÞÞ, Q2 =
diag ðqð1 +Ms : 2MsÞÞ, Q3 = diag ðqð1 + 2Ms : 3MsÞÞ, and
Q4 = diag ðqð3Ms + 1 : MÞÞ. From Equation (8), AiRssAi

H

(i = 1, 2, 3, 4) can be regarded as the noise-free covariance
matrix.

For the former three subarrays, they are identical subar-
rays with different origin shifts. Since Ai = FAi−1 holds for
ði = 2, 3Þ and F and Rss are both diagonal matrices, the

noise-free covariance AiRssAi
H can be simplified as AiRss

Ai
H =A1Fði−1ÞRssðFði−1ÞÞ

HA1
H =A1RssA1

H . Equivalently, the
noise-free covariance matrices of the three former subarrays
are approximately the same, which can be utilized to elimi-
nate the effect of nonuniform noise.

The cross-covariance matrices for the former three sub-
arrays can be obtained in a similar approach as

C12 = Rxx 1 : Ms ;Ms + 1 : 2Msð Þ =A1RssA2
H ,

C13 = Rxx 1 : Ms ; 2Ms + 1 : 3Msð Þ =A1RssA3
H ,

C23 = Rxx Ms + 1 : 2Ms ; 2Ms + 1 : 3Msð Þ =A2RssA3
H ,

8>><>>:
ð9Þ

where Cij (i, j = 1, 2, 3, i ≠ j) denotes the cross-covariance
matrix between the i-th subarray and j-th subarray. Accord-
ing to the definition of cross-covariance matrix, Cij =CH

ji

holds. Note that the cross-covariance matrices do not
contain the noise item since the noises are uncorrelated
with the signal and are mutually uncorrelated at different
sensors.
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Figure 4: The normalized spectrum under different WNPRs with (a) WNPR = 10, (b) 30, and (c) 50. Results with four signals arriving at
angles equally distributed between 10° and 50°, M = 8, and SNR = 0 dB.
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We can define two new matrices as

T1 =C−1
12Rxx,1 = A1RssA2

HÀ Á−1 A1RssA1
H +Q1

À Á
,

U1 =C−1
13C12 = A1RssA3

HÀ Á−1 A1RssA2
HÀ Á

,

8<:
ð10Þ

where ð⋅Þ−1 denotes the matrix inverse operation. Accord-
ing to the relationship of A1, A2, and A3, we can simplify

Equation (10) as T1 = F+ C−1
12Q1 and U1 = F, and thus, we

have

T1 −U1 =C−1
12Q1: ð11Þ

From Equation (11), Q1 can be estimated as

Q̂1 =C12 T1 −U1ð Þ = Rxx,1 −C12C−1
13C12: ð12Þ

Similarly, by defining

And Q3 can be estimated as

Q̂3 = CH
23 T3 −U3ð Þ: ð14Þ

With the estimated Q̂1 and Q̂3, the corresponding noise-
free estimated covariance matrices for Rxx,1 and Rxx,3 are

R̂xx,1 = Rxx,1 − Q̂1 ≈A1RssA1
H ,

R̂xx,3 = Rxx,3 − Q̂3 ≈A3RssA3
H :

(
ð15Þ

Since the noise-free covariance matrices of the former
three subarrays are approximately the same, then we can
estimate Q2 as

Q̂2 =
Rxx,2 − R̂xx,1 + R̂xx,3

À Á
2 : ð16Þ

In the following, we will estimate the noise power matrix
for the fourth subarray, which can be categorised into two
cases.
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Figure 5: The normalized spectrum under different SNRs with (a) SNR = 0 dB, (b) 5 dB, and (c) 10 dB. Results with two closely located
signals arriving at angles 30° and 35°, M = 8, and L = 500.

T3 = CH
23

À Á−1Rxx,3 = A3RssA2
HÀ Á−1 A3RssA3

H +Q3
À Á

= FH + CH
23

À Á−1Q3,

U3 = CH
13

À Á−1CH
23 = A3RssA1

HÀ Á−1 A3RssA2
HÀ Á

= FH :

8<: ð13Þ
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Case 1. When Mr = 0, the fourth subarray does not exist.
With the estimated Q̂1, Q̂2, and Q̂3, the noise-free

covariance matrix can be obtained correspondingly, i.e.,

R̂ 1ð Þ
xx,nf = R̂xx − diag q̂13ð Þ, ð17Þ

where q̂13 = ½diag ðQ̂1Þ, diag ðQ̂2Þ, diag ðQ̂3Þ�.

Case 2. When Mr ≠ 0, the fourth subarray exists.

The fourth subarray contains Mr elements, and its
covariance matrix is Rxx,4 in Equation (8). As the noise-
free covariance matrices of identical ULAs with different

shifts are the same, we can divide R̂ð1Þ
xx,nf into N = b3Ms/Mrc

parts, which are identical with the fourth subarray with dif-
ferent shifts and no overlapping. And the covariance matrix
of the n-th ðn = 1, 2,⋯,NÞ part is

R̂n,free = R̂ 1ð Þ
xx,nf n − 1ð ÞMr + 1 : nMr ; n − 1ð ÞMr + 1 : nMrð Þ:

ð18Þ

According to the shift property of identical subarrays, the
noise-free covariance matrix of the fourth subarray and
R̂n,free is the same. Q4 can be estimated as

Q̂4 = Rxx,4 −
1
N
〠
N

n=1
R̂n,free: ð19Þ

Then, we can obtain the noise-free covariance matrix of
the entire array for Case 2 as

R̂ 2ð Þ
xx,nf = R̂xx − diag q̂14ð Þ, ð20Þ

where q̂14 = ½diag ðQ̂1Þ, diag ðQ̂2Þ, diag ðQ̂3Þ, diag ðQ̂4Þ�.
Therefore, from Equations (12), (14), (16), and (19), an

estimation of the noise-covariance matrix is obtained by
the estimation of Q1, Q2, Q3, and Q4. Using the estimated
noise-covariance matrix, we can prewhiten the received
array data and obtain the noise-free covariance matrix, in
Equations (17) and (20) for different cases. Then, DOAs
can be estimated by several classic approaches, such as
MUSIC and root-MUSIC.

As depicted above, the proposed approach firstly esti-
mates the noise covariance matrix to obtain the noise-free
covariance matrix and then uses some classical approaches
for the following DOA estimation. Therefore, the complexity
mainly includes two parts: the estimation of noise-
covariance matrix and the estimation of DOAs by classical
approaches. For the estimation of noise-covariance matrix,
it mainly involves the calculation of covariance matrix Rxx
and the estimation of noise covariance matrix; the complex-
ities of which are OðM2LÞ and Oð6M3

s Þ, respectively. For the
classical DOA estimation approaches, such as MUSIC and
root-MUSIC, their complexities can be approximately
denoted as OðM2SÞ [23] and Oð20M2KÞ [24], where Sð≫LÞ
denotes the number of spectral points of the total angular
field of view. In general, by applying the proposed approach
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Figure 6: The normalized spectrum under different WNPRs with (a)WNPR = 10, (b) 30, and (c) 50. Results with two closely located signals
arriving at angles 30° and 35°, M = 8, and SNR = 10 dB.
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Figure 7: Continued.
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to MUSIC and root-MUSIC, the complexities become
OðM2S +M2L + 6M3

s Þ and Oð20M2K +M2L + 6M3
s Þ, respec-

tively. As compared to the original estimation approach, the
complexities become slightly larger. However, the perfor-
mance can be greatly improved, which is verified by the
following numerical results.

4. Results and Discussion

In this section, we evaluate the performance of the proposed
method via simulations. The worst noise power ratio
(WNPR) is defined as WNPR = σ2max/σ2min and the signal-
to-noise ratio (SNR) is defined as SNR = σ2s /∑K

k=1σ
2
k/K ,

where σ2
max and σ2min denote the maximum and minimum

noise powers, respectively, and σ2s is the signal power. The
root mean squared error (RMSE), defined as RMSE = ð1/
KLÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑K

k=1∑
J
j=1ðbθk,j − θkÞ

2
q

, is adopted as the performance

criteria, where bθk,j denotes the estimate of the k-th DOA
in the j-th trial.

The effectiveness and robustness of the proposed
approach are firstly verified. Here, we consider K = 4 sources
equally distributed between 10° and50°. The ULA is mod-
elled with M = 8 sensors, and the snapshot number is set
as L = 500. Figure 3 shows the normalized spectra of the
proposed approach and MUSIC under different SNRs with

q = ½1, 1, 1, 1, 1, 20, 30, 50�T . Figure 4 shows the normalized
spectra of the proposed approach and MUSIC under differ-
ent WNPRs with SNR = 0 dB. As is observed, the proposed
approach can generate four obvious spectral peaks under
different SNRs and WNPRs, all of which are coincident with
the true DOAs. Meanwhile, the MUSIC approach may gen-
erate less peaks, especially for low SNRs. And the generated
peaks deviate the positions of true DOAs. With the increase
of SNR, the MUSIC approach can generate four peaks, but
the proposed approach still provides sharper spectra than
that of the MUSIC approach. Therefore, the proposed
approach can achieve effective and robust DOA estimation
under different SNRs and WNPRs.

To verify the resolution performance of the proposed
approach, we test our approach and MUSIC at a small angu-
lar difference. Two closely located sources are assumed to
impinge on the array from DOAs 30°and35°, and other
experimental conditions are kept unchanged. The spectra
with different SNRs and WNPRs are shown in Figures 5
and 6, respectively. As is shown, the traditional MUSIC
can generate only one spectral peak at low SNR and thus fail
to distinguish the two sources. Despite the increase of SNR,
the MUSIC can successfully detect the two closely located
sources, but they may deviate the positions of true DOAs.
In contrast, the spectrum of the proposed approach has
two obvious peaks both under different SNRs and WNPRs.
The DOAs corresponding to the peaks are coincident with
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Figure 7: The resolution probability of different approaches under M = 8, 9, and 10 sensors with respect to (a) SNR, (b) snapshot number,
and angular difference Δθ. Results with two closely located signals arriving at angles 30° and 35°. Other conditions include (a) L = 500,
(b) SNR = 6 dB, and (c) SNR = 6 dB, L = 500, and θ1 = 30°.
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the true DOAs, indicating that the proposed approach can
achieve effective DOA estimation of closely located DOAs
under different conditions.

Subsequently, the results of resolution probability to
detect two closely located sources under different SNRs,

snapshot number, and angular differences are shown in
Figure 7. Here, we consider the ULA with M = 8, 9, and 10
sensors, and two closely located sources are assumed to
impinge on the array from DOAs 30° and 35° for
Figures 7(a) and 7(b). Other experimental conditions are
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Figure 8: The RMSE performance of different approaches with respect to (a) SNR and (b) snapshot number. Results with four signals
arriving at angles equally distributed between 10° and 50°, M = 8, and L = 1000 (a), SNR = 2 dB (b).
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kept unchanged. It is observed that both the proposed
approach and MUSIC exhibit improved resolution probabil-
ity with the increase of SNR, snapshot number, angular
differences, and sensor number. At the same time, the pro-
posed approach occupies higher resolution probability in
all the considered cases and reaches 100% resolution proba-
bility much faster than that of the MUSIC method. The
results in Figure 7 demonstrate the superiority of the pro-
posed approach in terms of the resolution probability.

Furthermore, the RMSE performance under different
SNRs and snapshot numbers is shown in Figure 8. Here,
we consider an ULA with M = 8 sensors. There are K = 4
incident DOAs equally distributed between 10° and50°.
The MUSIC and root-MUSIC approaches are adopted for
comparisons, and the proposed approaches are also per-
formed for the two traditional methods (denoted as
MUSIC_pre and root-MUSIC_pre), respectively. As can be
observed, the RMSE performance is improved with the
increase of SNR and snapshot number. By performing the
proposed prewhitening procedure, the improved approach
can provide lower RMSE, especially at low SNR and larger
snapshot number. The reasons are given as follows. When
the SNR is low, the nonuniform noises become the domi-
nant factor to degrade the estimation accuracy, and the pro-
posed approach can eliminate the effect; with the increase of
SNR, the nonuniform noises become less important, and the
estimation performance will converge to be similar. On the
other hand, with the increase of snapshot number, the esti-
mated noise power matrix becomes more accurate, which
can enhance the estimation performance of DOAs. The
results in Figure 8 effectively verify the superiority of the
proposed approach under different SNRS and snapshot
numbers.

5. Conclusions

In this paper, we propose a simple DOA estimation method
in the presence of spatially nonuniform white noise with
unknown noise covariance matrix. Firstly, the unknown
noise covariance matrix is estimated according to the shift
property of identical subarrays. Then, the received signal
covariance matrix is prewhitened by the estimated noise
covariance to overcome the biased estimate of signal covari-
ance. Therefore, the performance of the proposed method
can be improved. Finally, simulation results are provided
to verify the effectiveness of the proposed approach in terms
of resolution ability and estimation accuracy.

Data Availability

No data were used to support this study.

Conflicts of Interest

The authors declare that there is no conflict of interest
regarding the publication of this paper.

Acknowledgments

This work was partially supported by the Natural Sci-
ence Foundation of Shandong Province under Grant
ZR2019MF026 and the Shandong Provincial Key Research
and Development Program of China under Grant
2019GNC106106.

References

[1] H. Krim and M. Viberg, “Two decades of array signal process-
ing research: the parametric approach,” IEEE Signal Processing
Magazne, vol. 13, no. 4, pp. 67–94, 1996.

[2] P. Stoica and A. Nehorai, “Performance study of conditional
and unconditional direction-of-arrival estimation,” IEEE Trans-
actions on Acoustics Speech and Signal Processing, vol. 38, no. 10,
pp. 1783–1795, 1990.

[3] A. Olfat and S. Nader-Esfahani, “A new signal subspace pro-
cessing for DOA estimation,” Signal Processing, vol. 84, no. 4,
pp. 721–728, 2004.

[4] E. Aboutanios, A. Hassanien, A. El-Keyi, Y. Nasser, and S. A.
Vorobyov, “Advances in DOA estimation and source localiza-
tion,” International Journal of Antennas and Propagation,
vol. 2017, Article ID 1352598, 3 pages, 2017.

[5] G. Zheng, Y. Song, and C. Chen, “Height measurement with
meter wave polarimetric MIMO radar: signal model and
MUSIC-like algorithm,” Signal Processing, vol. 190, article
108344, 2022.

[6] F. Wen, J. Shi, and Z. Zhang, “Generalized spatial smoothing
in bistatic EMVS-MIMO radar,” Signal Processing, vol. 193,
article 108406, 2022.

[7] R. Qian, M. Sellathurai, and D. Wilcox, “A study on MVDR
beamforming applied to an ESPAR antenna,” IEEE Signal Pro-
cessing Letters, vol. 22, no. 1, pp. 67–70, 2015.

[8] R. O. Schmidt, “Multiple emitter location and signal parameter
estimation,” IEEE Transactions on Antennas and Propagation,
vol. 34, no. 3, pp. 276–280, 1986.

[9] P. Stoica and A. Nehorai, “MUSIC, maximum likelihood, and
Cramer-Rao bound,” IEEE Transactions on Acoustics Speech
and Signal Processing, vol. 37, no. 5, pp. 720–741, 1989.

[10] R. Roy and T. Kailath, “ESPRIT-estimation of signal parame-
ters via rotational invariance techniques,” IEEE Transactions
on Acoustics Speech and Signal Processing, vol. 37, no. 7,
pp. 984–995, 1989.

[11] H. Qiao and P. Pal, “On maximum-likelihood methods for
localizing more sources than sensors,” IEEE Signal Processing
Letters, vol. 24, no. 5, pp. 703–706, 2017.

[12] P. Stoica and A. B. Gershman, “Maximum-likelihood DOA
estimation by data-supported grid search,” IEEE Signal Pro-
cessing Letters, vol. 6, no. 10, pp. 273–275, 1999.

[13] M. Esfandiari, S. A. Vorobyov, S. Alibani, and M. Karimi,
“Non-iterative subspace-based DOA estimation in the pres-
ence of nonuniform noise,” IEEE Signal Processing Letters,
vol. 26, no. 6, pp. 848–852, 2019.

[14] H. Zhou, G. Hu, J. Shi, and Z. Feng, “Novel diagonal reloading
based direction of arrival estimation in unknown non-uniform
noise,” Mathematical Problems in Engineering, vol. 2018,
Article ID 3084516, 9 pages, 2018.

[15] M. Agrawal and S. A. Prasad, “A modified likelihood function
approach to DOA estimation in the presence of unknown spa-
tially correlated Gaussian noise using a uniform linear array,”

14 Wireless Communications and Mobile Computing



IEEE Transactions on Signal Processing, vol. 48, no. 10,
pp. 2743–2749, 2000.

[16] M. Guo, Y. Sun, J. Dai, and C. Chang, “Robust DOA estima-
tion for burst impulsive noise,” Digital Signal Processing,
vol. 114, no. 4, article 103059, 2021.

[17] A. Paulraj and T. Kailatn, “Eigenstructure methods for direc-
tion of arrival estimation in the presence of unknown noise
fields,” IEEE Transactions on Acoustics Speech and Signal Pro-
cessing, vol. 34, no. 1, pp. 13–20, 1986.

[18] M. Pesavento and A. B. Gershman, “Maximum-likelihood
direction-of-arrival estimation in the presence of unknown
nonuniform noise,” IEEE Transactions on Signal Processing,
vol. 49, no. 7, pp. 1310–1324, 2001.

[19] C. E. Chen, F. Lorenzelli, R. E. Hudson, and K. Yao, “Stochastic
maximum-likelihood DOA estimation in the presence of
unknown nonuniform noise,” IEEE Transactions on Signal
Processing, vol. 56, no. 7, pp. 3038–3044, 2008.

[20] Y. Wu, C. Hou, G. Liao, and Q. Guo, “Direction-of-arrival esti-
mation in the presence of unknown nonuniform noise fields,”
IEEE Journal of Oceanic Engineering, vol. 31, no. 2, pp. 504–
510, 2006.

[21] B. Liao, H. Lei, C. Guo, and H. C. So, “New approaches to
direction-of-arrival estimation with sensor arrays in unknown
nonuniform noise,” IEEE Sensors Journal, vol. 16, no. 24,
pp. 8982–8989, 2016.

[22] M. Wagner, Y. Park, and P. Gerstoft, “Gridless DOA estima-
tion and root-music for non-uniform linear arrays,” IEEE
Transactions on Signal Processing, vol. 69, pp. 2144–2157,
2021.

[23] Q. Wu, F. Sun, P. Lan, G. Ding, and X. Zhang, “Two-dimen-
sional direction-of-arrival estimation for co-prime planar
arrays: a partial spectral search approach,” IEEE Sensors Jour-
nal, vol. 16, no. 14, pp. 5660–5670, 2016.

[24] F. Yan, X. Li, T. Jin, L. Liu, and M. Jin, “A real-valued poly-
nomial rooting method for fast direction of arrival estima-
tion with large uniform linear arrays,” IEEE Access, vol. 7,
pp. 122330–122341, 2019.

15Wireless Communications and Mobile Computing


	Simple Direction-of-Arrival Estimation under Nonuniform Noise Scenarios
	1. Introduction
	2. System Model
	3. Proposed Method
	4. Results and Discussion
	5. Conclusions
	Data Availability
	Conflicts of Interest
	Acknowledgments



