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There are two common problems in the field of motor imagery (MI) recognition, which are poor generalization and low
recognition performance. A recognition method based on multisource transfer learning and multiclassifier fusion is therefore
proposed to realize the MI classification. In this approach, multisource transfer learning method is used to transfer samples
from multiple source domains to target domain. The source domain selection method based on distribution similarity is
designed to select those source domains whose distribution is similar to the target domain, and samples with high information
entropy are selected from these source domains for transferring. Then, an MI classification method is proposed through the
fusion of multiple classifiers. The classifiers are trained by labeled samples in the target domain and the transferred samples in
multiple source domains. The new sample in the target domain can be identified by the weight fusion of the results of these
classifiers. In order to verify the effectiveness of the proposed method, four types of motor imagery in the BCI Competition IV
dataset 2a were used to evaluate the recognition ability, and the results approved an excellent recognition and generalization
performance as well as a better training efficiency comparing to the well-applied methods nowadays.

1. Introduction

Motor imagery (MI) has been applied to many situations,
such as the recovery of patients with limb motor dysfunction
and control of robotic arms, and is one of the most widely
used paradigms in brain–computer interfaces (BCI) [1, 2].
It is a type of body movement (e.g., of the hands, feet, and
tongue) imagined by the mind, which does not require any
external stimuli. These imagined movements can be distin-
guished by decoding the modulation of the brain rhythms
in the involved cortical areas.

As a noninvasive technique for recording brain activity,
electroencephalogram (EEG) has the characteristics of high
time resolution and convenient acquisition [3]; therefore, it
is widely used in MI-based BCI. However, there are individ-
ual differences and time-varying owing to the different scalp
shapes among human brains, and the characteristics of the
human brain state change depending on time. This causes

the data distribution of MI to be significantly different. Thus,
it significantly affects the generalization and stability of MI
recognition based on traditional machine learning methods,
such as logistic regression (LR) [4, 5], support vector
machine (SVM) [6, 7], linear discriminant analysis (LDA)
[8, 9], and artificial neural network (ANN) [10, 11].

Transfer learning is a new machine learning method that
transfers existing knowledge in the source domain to
improve the poor performance of classification methods
caused by small training samples in the target domain and
inconsistent distribution between training and test data [3].
Therefore, transfer learning has attracted increasing atten-
tion in recent years. In MI recognition methods based on
transfer learning, the target domain is a new subject with a
small number of training samples, and the source domains
are other subjects with a sufficient number of training sam-
ples, in which each subject can be considered as a source
domain.
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Knowledge distillation method that transfers the knowl-
edge learned from a large network to a small network model
to improve the classification performance of the cognitive
states was proposed [12]. In [13], a general representation
method for the EEG signal between different subjects or ses-
sions based on variational autoencoders and antagonistic
networks was proposed. In steady-state visual evoked
potential-based BCI, Wu et al. proposed a cognitive state
recognition method based on active transfer learning
(ATL), by directly combining the training data of subjects
in the source domain with training samples of subjects in
the target domain, in the process of active learning [14].
Wu et al. combined the ATL method with a semi-
supervised learning algorithm and proposed an active
semi-supervised transfer learning (ASTL) method to further
improve cognitive state recognition performance [15]. Hos-
sain et al. proposed an information transfer active learning
(ITAL) method based on the ATL method [16]. They inves-
tigated the information subspace in the source domain that
transfers information-rich samples from the source domain
to the target domain. Jeon et al. proposed an MI recognition
method based on domain adaptation, using the training data
of the source and target domains to train a deep neural net-
work in an adversarial manner [17]. A multisource fusion
transfer learning (MFTL) is proposed in Ref. [18]. In this
method, Riemannian geometry alignment algorithm is used
to select the source subjects whose features are similar to the
current user. Then the balance distribution adaptation is
used to calibrate the features extracted from the Riemannian
tangent space. Finally, Takagi-Sugeno-Kang (TSK) fuzzy
system is used to recognize the EEG signals. She et al. pro-
posed hierarchical semi-supervised extreme learning
machine (HSS-ELM) for MI recognition [19]. This method
firstly employed a hierarchical ELM (H-ELM) to extract fea-
tures automatically, and then the semi-supervised ELM (SS-
ELM) is used to MI recognition.

In the above methods, a large number of labeled training
samples are required, whereas the labeling of EEG data
requires a large amount of time and economic cost. Mean-
while, these methods fail to consider large individual differ-
ences among subjects, resulting in negative transfer and
severely affecting the performance of recognition methods.
Further, most of these methods are aimed at binary classifi-
cation, that is, left-right hand MI, which significantly hin-
ders the practical application of BCI technology based on
MI recognition.

To solve these problems, this paper proposes an MI rec-
ognition method based on multisource tranfer learning and
multiclassifier fusion (MSTL-MCF). In our approach, the
labeled samples in some source domains with similar data
distributions as the target domain were selected based on
transfer learning. Labeled samples in the source domains
were obtained using a small number of labeled samples to
label a large number of unlabeled samples based on semi-
supervised learning. A multiclassifier fusion method was
proposed to recognize the classification of an MI task. Mul-
tiple classifiers were trained using the selected labeled sam-
ples and labeled samples in the target domain. The average
accuracy of cross-validation of each classifier on its own

training set was considered as the weight. The final recogni-
tion result was the classification that corresponded to the
maximum probability-weighted fusion of these classifiers.

The remainder of this paper is organized as follows. In
Section 2, the MSTL-MCF method for MI recognition is
described. In Section 3, BCI Competition IV dataset 2a is
used to evaluate the performance of the proposed MSTL-
MCF, including the performance of the semi-supervised
learning labeling method for labeling unlabeled samples in
the source domains, effectiveness of the multisource transfer
learning, and recognition performance of the MI recognition
based on the MSTL-MCF. Finally, Section 4 concludes the
study.

2. MI Recognition Method Based on the MSTL-
MCF

There are two stages in the proposed MI recognition method
based on MSTL-MCF: training and recognition. A schema
of the training and recognition processes is shown in
Figure 1.

In the training process of MSTL-MCF, the EEG samples
were first preprocessed, including filtering and eliminating
artifacts. A sample alignment method in the source domains
based on Euclidean space alignment (EA) was proposed to
solve the problem of data distribution differences owing to
the time-varying characteristics of EEG signals. Then, a large
number of unlabeled samples from each source domain were
labeled by the semi-supervised learning labeling method
based on cotraining after extracting features using a com-
mon spatial pattern (CSP).

The following is an iterative process, including the sam-
ple transfer method based on multisource transfer learning
and training of the multiclassifier fusion model. In the for-
mer method, the distribution similarity between the labeled
samples of the target domain and that of each source
domain was measured.M source domains with a higher dis-
tribution similarity were selected from N source domains.
The labeled samples with larger information entropy in
these source domains were transferred, andM training pools
were formed with the labeled samples from the target
domain to train the M + 1 classifiers. Moreover, a multiclas-
sifier fusion model was combined with these classifiers using
the classifier trained by the labeled samples in the target
domain. Unlabeled samples in the target domain were clas-
sified by this fusion model, and unlabeled samples with
low confidence were labeled based on active learning and
added to the labeled sample set of the target domain. These
steps were repeated until the specified maximum number of
iterations was reached or no samples were labeled.

The new sample of the target domain was recognized by
each classifier of the multiclassifier fusion model, and the
results of each classifier were fused based on the weight
fusion method as the final recognition result.

2.1. Sample Alignment Method Based on EA. Owing to the
time-varying characteristics, the data distribution of the
EEG was different with the change in time, even if the same
subject performs the same MI task. Specifically for data in
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the source domain with a large number of samples that are
typically collected from different time periods, it is more
susceptible to time-varying effects.

This paper proposes a source-domain sample alignment
method based on EA. By adjusting the EEG covariance matrix,
we find a projectionmatrix thatminimizes the distance between
the average covariance matrices of the same subject in different
time periods to solve the time-varying influence.

For more details about EA, please refer to Ref. [20].

2.2. Feature Extraction Method. In MSTL-MCF, a feature
extraction method for labeled samples of all source and tar-
get domains was proposed based on CSP [21].

First, the covariance matrix of the samples of the jth
class is calculated as

Pj =
1
Nj

〠
N j

i=1
S j,ið ÞS

T
j,ið Þ, ð1Þ

where Pj(j = 1,⋯, K, K is the number of classes) is the covari-
ance matrix, T is the transpose of a matrix, Sðj,iÞ ∈ℝn×t (n is the
number of channels, and t is the number of time samples) is the
ith sample of the jth class, andNj is the number of labeled sam-
ples in the jth class.

Then, the spatial filter Wj of the jth class was con-
structed to satisfy the following equation:

PjWj = Cj + C−j
� �

WjDj, ð2Þ

where P−j is the covariance matrix of all samples except the jth
class and Dj represents a diagonal matrix consisting of eigen-
values of Pj. All samples of the jth class were filtered by Wj to
obtain the spatial filter signals Zðj,iÞ(i = 1,⋯,N), where N is
the total number of samples, as expressed below.

Z j,ið Þ = STi Wj: ð3Þ

Furthermore, the m front and m back rows of Zðj,iÞ are
obtained to form a new matrix Z~

ðj,iÞ, and the eigenvector
xðj,iÞ of the ith labeled sample of the jth class is calculated as fol-
lows:

x j,ið Þ = log var Z
~

j,ið Þ
� �� �

: ð4Þ

Data
preprocessing

Data
preprocessing

Data
preprocessing

Data
preprocessing

Data
preprocessing

Data
alignment

Data
alignment

Data
alignment

Feature
extraction

Feature
extraction

Feature
extraction

Feature
extraction

Feature
extraction

Unlabeled
labeling

Unlabeled
labeling

Unlabeled
labeling

Unlabeled
labeling

Source domains
samples transfer

Training
classifier 1

Training
classifier 2

Training
classifier M

Training
classifier

Labeled
data

Multiple classifiers fusion

Fusion classification model

Le�
hand

Right
hand

Feet Tongue

Source domain 1

Source domain 2

Source domain N

Target domain

Training

Recognition

Figure 1: The schema of MI recognition method based on the MSTL-MCF.
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Finally, the above steps are iterated K times to obtain the

eigenvector of the ith sample xi = ½xTð1,iÞ, xTð2,iÞ,⋯, xTðK ,iÞ�
T
,

which is a K × 2m dimension column vector.
In the feature extraction of unlabeled samples, the covari-

ance matrix and spatial filter were estimated from labeled sam-
ples in the same domain.

2.3. Sample Labeling Based on Semisupervised Learning. In
the proposed MSTL-MCF, many labeled samples are necessary
in each source domain. However, manual labeling requires
much time and economic costs. We propose a semi-
supervised learning labeling method for unlabeled samples of
the source domains.

2.3.1. Semi-supervised Learning Labeling Based on
Cotraining. To increase the labeling accuracy, we introduced
cotraining into the unlabeled sample labeling method based
on semi-supervised learning. The process was as follows:

(1) The labeled sample sets XðL1Þ and XðL2Þ(XðL1Þ = XðL2Þ)
were used to train two classifiers: SVM (CSVM) and
LR (CLR).

(2) The samples in the unlabeled sample sets XðU1Þ and
XðU2Þ (XðU1Þ = XðU2Þ) were labeled by the trained classi-
fiers CLR and CSVM, respectively, and pseudolabeled
sample sets XðPL1Þ and XðPL2Þ were obtained

(3) The confidence of the samples inXðPL1Þ andXðPL2Þ was
measured, and it was determined whether the labels of
the samples with high confidence were consistent with
the labels of KðK = 3Þ, labeled samples adjacent to
them. If so, these pseudolabeled samples were added
to the labeled sample sets XðL1Þ and XðL2Þ, and the
CSVM and CLR classifiers were retrained

Using the retrained classifiers CSVM and CLR, label the
unlabeled sample setsXðU2Þ and XðU1Þ, respectively, and repeat
the process of the last paragraph until the maximum number
of iterations is reached or when no sample in the unlabeled
sample sets can be added to the labeled sample sets. The inter-

section of the two labeled sample sets obtained by the last iter-
ation is taken as the final labeled sample set; that is,
XðLÞ = XðL1Þ ∩ XðL2Þ.

Furthermore, during this process, the labeling of unlabeled
samples may change as the number of iterations increases. To
avoid samples with uncertain categories residing in the labeled
sample sets, a dynamic adjustment mechanism for labeled
samples was proposed. Consequently, the labeling the accu-
racy of the unlabeled samples in the source domains was
improved. Additionally, it providedmore transferable samples
with reliable category information.

2.3.2. Sample Confidence Measurement. Mislabeled samples
lead to a decrease in the labeling accuracy of unlabeled samples
if they participate in the training of the classifier. Therefore, in
the MSTL-MCF, we propose the concept of a confidence mea-
sure and estimate the possibility of correct labeling of the sam-
ples. The computational formula is given by

Mi =
ωi

Ei
, ð5Þ

where Mi, ωi, and Ei are the confidence measure, reliability
coefficient, and information entropy of the ith pseudolabeled
sample, respectively. The greater the confidence level of the
sample, the more likely it is to belong to this category. Selecting
samples with higher confidence to add to the labeled sample sets
can avoid the impact of mislabeled samples on training the
classifiers.

The reliability coefficient of the sample indicates how reli-
able it belongs to its labeled category, and the computational
formula is given as follows:

ωi =
P 1ð Þ
i − P 2ð Þ

i

P 1ð Þ
i

, ð6Þ

where Pð1Þ
i represents the posterior probability of the ith unla-

beled sample of the classification that is labeled and Pð2Þ
i repre-

sents one of the ith unlabeled samples of the slave
classification with the second largest posterior probability
value. The larger the value of ωi, the greater the reliability of
the ith unlabeled sample belonging to the corresponding
classification.

The information entropy is used tomeasure the amount of
information in a sample [22–24]. The smaller the information
entropy, the less category information the samples contain,
and vice versa. The formulation is as follows:

Ei = −〠
nc

c=1
P yc xijð ÞlogP yc xijð Þ, ð7Þ

where PðycjxiÞ represents the posteriori probability that xi
belongs to the cth class and nc represents the number of
classifications.

Table 1: Comparison of the accuracy of different MI recognition
methods (%).

Subjects
Method

MFTL
DA_
PSD

HSS-
ELM

ITAL_
CSP

ITAL_
FBCSP

MSTL_
MCF

1 79.00 70.00 81.14 67.50 81.30 82.57

2 52.00 38.00 49.86 46.80 49.50 53.89

3 85.75 76.00 78.02 74.90 84.65 86.50

4 58.75 39.00 63.33 28.60 58.00 67.60

5 45.25 31.00 44.03 30.50 50.90 43.67

6 49.00 38.00 49.44 45.90 45.50 48.58

7 82.00 70.00 81.11 75.00 82.30 86.13

8 82.00 63.00 81.49 77.40 81.60 84.59

9 80.50 59.00 81.38 79.40 72.50 84.23

Mean 68.50 53.78 67.76 58.70 67.10 70.86
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2.4. Sample Transfer Based on Multisource Transfer
Learning.When the number of samples in the target domain
is small, it is difficult to obtain a classification model that can
accurately identify the MI classification of the samples in the
target domain. Moreover, it takes a considerable amount of
time to collect sufficient training data for the target domain.
Therefore, it is necessary to transfer a number of labeled
samples from the source to target domains. However, if the
samples of the source domains whose data distribution is
significantly different from that of the target domain, the
phenomenon of negative transfer occurs, resulting in a sig-
nificant decline in the MI recognition performance of the
target domain.

In MSTL-MCF, we propose a method for transferring
samples based on multisource transfer learning, in which a
large number of labeled samples in some source domains
are transferred to the target domain. The proposed method
consists of two stages. First, by measuring the data distribu-
tion similarity between the target domain and each source

domain, source domains with large data distribution similar-
ities are selected. Second, samples with high information
entropy from these source domains are selected to improve
the robustness of our approach.

2.4.1. Source Domain Selection. In the source domain selec-
tion method, we propose a distribution similarity measure
method between the target domain and each source domain.
The formulation is as follows:

Bk =
1

∑n Tð ÞÞ
i=1 ϕ x Tð Þ

i

� �
−∑n Skð Þ

j=1 ϕ y Skð Þ
j

� �����
����
2

H

, ð8Þ

where Bk is the distribution similarity of the samples
between the target and the kth source

domains. k∑nðTÞÞ
i=1 ϕðxðTÞi Þ − ∑nðSkÞ

j=1 ϕðyðSkÞj Þk2
H

is called maxi-
mum mean discrepancy [25], which is used to measure the
difference between two different but related distributions.
Samples of the source domain and that of the target domain
are, respectively, mapped to the Reproducing Kernel Hilbert
Space by a kernel function, i.e., ϕð∙Þ, so as to avoid the prob-
lem of infinite MMD distance between the two distributions.
nðTÞ and nðSkÞ are the number of samples in the target domain

and the kth source domain, respectively; xðTÞi is the feature vec-
tor of the ith sample of the labeled sample set XðTÞ in the target
domain; and yðSkÞj is the feature vector of the jth sample in the k
th source domain.

A simple threshold Bth is defined to guarantee a high
estimation precision for transferring suitable source
domains. If Bk > Bth, the data distribution between the target
domain and the kth source domain is similar, and the sam-
ples in this source domain can be transferred. When Bth is
set between 3.0 and 4.5, the difference between the highest
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Table 2: Labeling accuracy of unlabeled samples in multiple source
domains based on semi-supervised learning(%).

Subjects
The number of
correct labeled

samples

The number of
mislabeled
samples

Accuracy(%)

1 127 10 92.70

2 144 28 83.72

3 184 39 82.51

4 302 34 89.88

5 344 56 86.00

6 508 71 87.74

7 262 25 91.29

8 207 33 86.25

9 254 31 89.12
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(Bth = 3:5) and the lowest accuracy for motor imagery recog-
nition is about 0.03%. Therefore, the concrete value of the
similarity threshold is set to 3.5.

M source domains with similar data distribution to the tar-
get domain are selected from allN source domains. The specific
number of M depends on how many source domains have Bk
greater than Bth. The target domain is different, and the specific
value ofM is also different.

2.4.2. Unlabeled Sample in the Target Domain Labeling
Method Based on Active Learning. In the proposed MSTL-
MCF, labeled samples of the target domain are obtained based
on active learning. In active learning, some labeling requests
can actively generate and submit selected samples to experts
for labeling [26, 27]. In our approach, the expert labeling
results are simulated using the real label of the sample. In each

iteration, the unlabeled samples in the target domain are pre-
dicted by the fusion classification model.

First, the unlabeled samples in the target domain are pre-
dicted using the fusion classification model.

Then, an active query method based on sample uncer-
tainty is proposed in which the sample confidence calculated
based on (5) is used as the sample selection criterion, and sam-
ples with low sample confidence are selected for labeling to
form a newly labeled sample set XðTÞ.

Finally, classifier C0 is retrained by XðTÞ, and it is further
used to reselect the transferable source domains and samples
from all source domains.

2.4.3. Source Domain Sample Transfer. The labeled samples
in the distribution similarity source domains are classified
using classifier C0. If the classification results are consistent
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with the labeled information, the data distribution of these
samples is similar to that in the target domain.

For these samples, the information entropy Eðj,iÞ (the ith
sample in the jth similarity source domain) is calculated
according to (7). There is an information entropy threshold
Eth. If Eðj,iÞ > Eth, it indicates that the sample is uncertain and
has a large amount of information; then, the sample is
selected to enhance the robustness of the recognition
method. The selected samples comprise the labeled sample

sets XðSÞ
j ðj = 1, 2,⋯,MÞ in each similar source domain. It

was also found in the experiments that when Eth is set
between 0.7 and 0.9, recognition accuracy of MI tasks was
hardly influenced. The threshold Eth is defined to 0.8, to
guarantee high detection precision for suitable sample
transfer.

2.5. MI Recognition Based on Multiclassifier Fusion. To solve
the problem of insufficient training of the classification
model caused by the lack of training samples in the target
domain, we propose a multiclassifier fusion method for MI
recognition of the target domain. The multiclassifier fusion
model comprises M + 1 classifiers, C0, C1,⋯, CM , and each
classification is assigned a weight. Based on the concept of
weight fusion, the results of the sample to be recognized by
each classifier are fused as the final recognition result. This
study implements a multiclassifier fusion model on multiple
logistic regression (LR) classifiers. The number of classifiers
in this model depends on how many source domains have
a similar data distribution to the target domain.

First, the target domain classifierC0 is trained by the labeled

sample set XðTÞ in the target domain, and the classifier

70

74

78

82

86

90

40 80 120 160

La
be

lin
g 

ac
cu

ra
cy

 (%
)

Number of source domain labeled training samples

W/ DAM
W/o DAM

Figure 6: The labeling accuracy of w/ DAM and w/o DAM.

70

74

78

82

86

90

40 80 120 160

La
be

lin
g 

ac
cu

ra
cy

 (%
)

Number of source domain labeled training samples

SC
IE

Figure 7: The labeling accuracy of SC and IE.

7Wireless Communications and Mobile Computing



parameter ωðTÞ is obtained by optimizing the objective function
JωðTÞ ð∙Þ:

Jω Tð Þ =min
ω Tð Þ

−
1

n Tð Þ 〠
n Tð Þ

i=1

y Tð Þ
i log hω Tð Þ x Tð Þ

i

� �
+

1 − y Tð Þ
i

� �
log 1 − hω Tð Þ x Tð Þ

i

� �� �
0
BB@

1
CCA

2
664

+ λ Tð Þ ω Tð Þ
��� ���2

2

�
,

ð9Þ

where nðTÞ is the number of labeled samples in the target

domain; xðTÞi and yðTÞi are the feature vector and label of the i
th labeled sample in the target domain, respectively; hωðTÞ ð∙Þ is
the discriminant function of LR, which is a sigmoid function
[28]; and λðTÞ is the regularization parameter.

Then, classifiers CðSÞ
j ðj = 1, 2,⋯,MÞ are trained by

X~ðSÞ
j ðj = 1, 2,⋯,MÞ, and the parameter ωðSÞ

j ðj = 1, 2,⋯,M
Þ of each classifier is obtained by optimizing the objective

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9

A
cc

ur
ac

y 
(%

)

Subjects

W/ MSTL
Baseline
W/o MSTL

Figure 8: The recognition accuracy of the 9 subjects, respectively, as the target domain.

58
59
60
61
62
63
64
65
66
67
68
69
70
71

40 60 80 100 120 140 160

A
cc

ur
ac

y 
(%

)

Number of training samples of target domain

W/ MSTL
W/o MSTL
Baseline

Figure 9: The average recognition accuracy.

8 Wireless Communications and Mobile Computing



function J
ωðSÞ
j
ð∙Þ, respectively:

J
ω

Sð Þ
j
=min

ω
Sð Þ
j

−
1

n Tð Þ + ~n Sð Þ
j

〠
n Tð Þ+~n

i=1

~y Sð Þ
j,ið Þ log hω Sð Þ

j
~x Sð Þ

j,ið Þ
� �

+

1 − ~y Sð Þ
j,ið Þ

� �
log 1 − h

ω
Sð Þ
j

~x Sð Þ
j,ið Þ

� �� �
0
BB@

1
CCA

2
664

+ λ
Sð Þ
j ω

Sð Þ
j

��� ���2
2

�
,

ð10Þ

where n~ðSÞj is the number of samples in the X~ðSÞ
j , and x~ðSÞðj,iÞ

and y~ðSÞðj,iÞ are the feature vector and label of the ith labeled sam-

ple in the X~ðSÞ
j , respectively.

Finally, each classifier of the Cjðj = 1, 2,⋯,MÞ performs
10-fold cross-validation on its own training set, and its aver-
age accuracy αjðj = 1, 2,⋯,MÞ is taken as the weight of each
classifier. The weight of C0 is one because it is directly
related to the samples in the target domain.
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The result of the last iteration is used as the final fusion
classification model. When a new sample is recognized, it is
predicted byM + 1 classifiers and the probability of the sam-
ple belonging to a certain class in each classifier is weighted
to obtain the probability that the sample belongs to the class.
The corresponding category when the probability is the
maximum is the classification to which the sample to be
identified:

l = argmax
k

p C0ð Þ
k + 〠

M

j=1
αj × p

Cjð Þ
k

 !
, ð11Þ

where l indicates the classification that the sample is identi-

fied and pðC0Þ
k and p

ðCjÞ
k are the probabilities that the sample

to be identified is the kth classification of the C0 and Cj.
The recognition method based on the fusion of multiple

classifiers can avoid insufficient training of a single classifier
owing to the lack of training samples, which affects the rec-
ognition performance. By assigning different weights to each
classifier, the influence of low-performance classifiers on the
entire classification model can be reduced, thereby improv-
ing the accuracy of the model.

3. Experimental Results and
Effectiveness Evaluation

To evaluate the performance of our approach, we verified
the effectiveness of the MI recognition method based on
MSTL-MCF and analyzed the results. To obtain general
results, all results were averaged after 30 cycles.

3.1. Experimental Setup. Proposed method was applied to
BCI Competition IV dataset 2a [29]. As shown in Figure 2,
the dataset consists of 22 EEG channels collected from 9
healthy subjects with a sampling frequency of 250Hz,
including Fz, FC3, FC1, FCz, FC2, FC4, C5, C3, C1, Cz,
C2, C4, C6, CP3, CP1, CPz, CP2, CP4, P1, Pz, P2, and
POz. Raw EEG signal was filtered by a third-order Butter-
worth band-pass filter of 8-32Hz. Among them, each subject
recorded 576 trails involving four MI tasks, including imag-
ination of movement of the left hand, right hand, both feet,
and tongue, of which includes two sessions with 72 trails for
each class. In the following experiment, the time segment of
0-4 s after the onset of the visual cue was used as one trail
data, that is, one sample. In order to reduce the influence
of the electrooculogram (EOG) activity on the EEG, regres-
sion analysis is used in this study. It is the most challenging
dataset for MI classification and the most commonly used
published dataset for evaluating the performance of MI clas-
sification methods, which has a low signal-to-noise ratio,
significant differences between subjects, and more MI tasks.

Compared with other datasets, it has considerable signal
noise and extreme values,

In each source domain, samples of two sessions were
combined, 80 samples (20 samples in each class) were ran-
domly selected as the labeled samples, and others were used
as the unlabeled samples. The maximum times of iteration is
20, and 20 samples were selected in each iteration.

In the target domain, samples in the one session were
used as the training set, and other samples were used as
the test set. 40 samples were randomly selected from the
training set as the labeled samples, and others were used as
unlabeled samples. The maximum times of iteration is 30,
and 4 samples were selected in each iteration.

The baseline method is LR that has better recognition
accuracy than SVM and LDA. All samples in one session
are training set and all samples in other session are test set
for each subject.

3.2. Performance Evaluation of MI Recognition Based on
MSTL-MCF. For the performance evaluation of MSTL-
MCF in MI recognition, the recognition results of the target
domain samples were compared with those of MFTL, DA_
PSD, HSS-ELM, ITAL_CSP, and ITAL_FBCSP, which were
proposed in recent years and are commonly used for com-
parison. In the experiment, nine subjects were selected indi-
vidually as the target domain, and the remaining eight
subjects were used as the source domains. In these three
methods, one session was used as the training set and the
other as test set in the target domain.

The results are listed in Table 1.
Clearly from Table 1, the average recognition accuracy of

the nine subjects of our method can reach 70.86%, which is
significantly higher than that of the other methods, in which
our proposed method has the best performance for all sub-
jects, except for subjects 5 and 6. Only 160 labeled samples
of the target domain were used in our method, ITAL_CSP
and ITAL_FBCSP; however, all the labeled training samples
of the target domain were used in the other three methods.

Therefore, our proposed method has higher recognition
accuracy and training efficiency and is more conducive to
the practical application of BCI technology. This is mainly
because the labeling accuracy of unlabeled samples was
improved through the semisupervised learning labeling
method for the unlabeled samples in the source domains.
The multisource transfer learning method provides a large
number of labeled samples with reliable category informa-
tion for the target domain. By measuring the similarity of
the data distribution between the target domain and each
source domain, the impact of negative transfer on the recog-
nition performance is avoided. Finally, in the fusion recogni-
tion model of multiple classifiers, the weights of the
classifiers were different, thereby reducing the impact of rel-
atively low-performance classifiers on the fusion model to
improve the performance of MI recognition.

3.3. Reliability Evaluation of the Semi-supervised Learning
Labeling Method. To verify the reliability of the semi-
supervised learning labeling method in MSTL-MCF, we first
evaluated the influence of the proposed method on the MI
recognition performance of the target domain. Subsequently,
we evaluated the reliability of the method and influence of
mislabeled samples in the source domains on the recogni-
tion performance of the target domain samples. Moreover,
the effects of cotraining, dynamic adjustment mechanism,
and sample confidence measurement on labeling perfor-
mance were verified.
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Data from the two sessions of each source domain were
combined. Forty samples were randomly selected as the test
set, and the remaining samples were used as the training set.
In particular, 40, 80, 120, and 160 samples (10, 20, 30, and 40
samples in each class) were randomly selected from the
training set as the initial labeled sample training set, and
the remaining samples were selected as the unlabeled sample
training set.

3.3.1. Labeling Effect of Unlabeled Samples in Source
Domains. To verify the impact of the source domain sample
labeling method based on semi-supervised learning on the
recognition performance of target domain samples in the
MSTL-MCF, the accuracy of MI recognition in the target
domain obtained by the MSTL-MCF was compared to that
of the semi-supervised learning labeling method (w/SSLL),
which was not used in the proposed method (w/o SSLL).
The results are shown in Figure 3. Both methods have the
average results of nine subjects as the target domain.

In Figure 3, the horizontal and vertical axes represent the
number of labeled training samples and MI recognition
accuracy in the target domain, respectively. Clearly from
the results, when the training samples in the target domain
were less than 80, the recognition accuracy of the w/ SSLL
was slightly lower than that of the w/o SSLL. However, with
an increase in the number of training samples in the target
domain, the recognition accuracy of these two methods is
almost the same.

This is because when the target domain has few training
samples, some of the mislabeled samples are transferred,
thus affecting the recognition performance of the classifica-
tion model.

3.3.2. Influence of Mislabeled Samples in the Source Domains
on the MI Recognition. The proposed semi-supervised learn-
ing labeling method inevitably contains mislabeled samples.
Thus, we first evaluated the influence of these mislabeled
samples on the training process of the MSTL-MCF in this
experiment. When every subject was taken as the target
domain, we counted the number of correctly labeled sam-
ples, number of incorrectly labeled samples transferred from
the source domains, and corresponding labeling accuracy of
these samples. The results are listed in Table 2, where the
number of labeled samples was 160 in the target domain.

Clearly from the results, the labeling accuracy is from
82.51% to 92.70%, and the average accuracy is 87.60%.
Therefore, the semi-supervised learning labeling method in
MSTL-MCF can supply a large number of reliable correctly
labeled samples.

In the MSTL-MCF-based MI recognition method, in the
two cases of using pseudolabels (including incorrectly
labeled samples) to participate in the training and using real
labels (all correctly labeled samples) to participate in the
training, the recognition accuracies were compared. The
results are presented in Figure 4.

From the results in Figure 4, the recognition accuracies
were all significantly close, regardless of the accuracy of each
subject or average accuracy. Therefore, in the proposed
MSTL-MCF method, in the process of recognition model

training, the influence on the MI recognition effectiveness
of the target domain samples is significantly small, even if
there are a small number of mislabeled samples in source
domains.

3.3.3. Cotraining Effectiveness Verification. In the cotraining
(CT) effectiveness verification experiment, the labeling effect
of the cotraining of SVM and LR was compared with that of
using SVM and LR, and results are shown in Figure 5.

As shown in Figure 5, the CT has a better labeling effect
than SVM and LR. For different numbers of labeled samples,
the labeling accuracy of the CT method was 3.92%, 5.83%,
4.86%, and 4.11% higher than that of SVM and 8.44%,
6.95%, 7.17%, and 5.15% higher than that of LR. Therefore,
for the proposed semi-supervised learning labeling method
in MSTL-MCF, the CT method using two classifiers for
training can effectively improve the accuracy of the unla-
beled samples of the source domains.

3.3.4. Effectiveness Verification of the Dynamic Adjustment
Mechanism. To verify the impact of the dynamic adjustment
mechanism on the effect of the semi-supervised learning
labeling method, the labeling effect of unlabeled samples of
the source domains was compared using the dynamic
adjustment mechanism (w/ DAM) and not using the
dynamic adjustment mechanism (w/o DAM). The results
are shown in Figure 6.

Clearly from Figure 6, the w/ DAM method has a better
labeling effect than the w/o DAM method, and the labeling
accuracy improved by 3.65%, 2.58%, 0.39%, and 2.27%.
Therefore, the dynamic adjustment mechanism can effec-
tively improve the accuracy of unlabeled samples in the
source domains.

3.3.5. Effectiveness Verification of the Sample Confidence
Measurement. In the experiment, we used the sample confi-
dence (SC) and information entropy (IE) methods to select
the samples from the source domains to verify the effective-
ness of the SC method. The labeling effectiveness of unla-
beled samples in the source domains was compared. The
results are shown in Figure 7.

As shown in Figure 7, for different numbers of labeled
training samples in the source domains, using the SC
method for sample selection has better labeling effectiveness
than using the IE method, and the labeling accuracy
improved by 3.21%, 5.75%, 2.05%, and 0.63%. Therefore,
the sample confidence measurement method can effectively
improve the labeling accuracy of unlabeled samples in the
source domains.

3.4. Effectiveness Evaluation of Multisource Transfer
Learning. To verify the effectiveness of the multisource
transfer learning method in MSTL-MCF, the recognition
performance of the target domain samples was compared
using the multisource transfer learning method (w/ MSTL)
and not using the multisource transfer learning method
(w/o MSTL). The recognition model was trained by the
labeled samples in the target domain. The recognition accu-
racy of the nine subjects in the target domain is shown in
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Figure 8, and the average recognition accuracy is shown in
Figure 9.

As shown in Figures 8 and 9, the w/ MSTL method has
significantly better recognition performance than the w/o
MSTL method, which shows that selecting the samples from
the source domains based on multisource transfer learning
can improve the MI recognition performance of the target
domain.

Therefore, transferring suitable samples to participate in
the training of the MI recognition model of the target
domain has better recognition performance than the classifi-
cation model trained only by the labeled training samples of
the target domain. Furthermore, it can effectively reduce the
number of labeled training samples in the target domain,
thereby reducing the time required to calibrate the classifica-
tion model for MI recognition.

3.5. Effectiveness Verification of the Source Domain Selection.
To evaluate the effectiveness of the source domain selection
(SDS) in the multisource transfer learning method, the MI
recognition performance of the target domain was compared
using the SDS (w/ SDS) and not using the SDS (w/o SDS). In
the w/o SDS method, all labeled samples of the source
domains were considered as candidate samples. The average
recognition accuracy is shown in Figure 10.

As shown in Figure 10, regardless of the number of
labeled samples used in the target domain to participate in
the model training, the results of w/ SDS method and that
of w/o SDS method were significantly close. This shows that
the proposed source domain selection method can effectively
determine source domains with data distributions similar to
the target domain. With comparable recognition accuracy,
classification model training in the target domain requires
less samples in the source domain, which can improve the
efficiency of model training.

To show the performance of the source domain selection
method in improving the training efficiency of the classifica-
tion model for the target domain more clearly, the average
number of source domain samples transferred by the w/
SDS method was compared to that of the w/o SDS method
when nine subjects were used as the target domain, and
the results are shown in Figure 11.

The results show that the number of labeled training
samples transferred from the source domains in the w/
SDS method is lower than that of the w/o SDS method,
which can reduce the training time of the classification
model. However, the recognition accuracy of the target
domain was equivalent. Therefore, the w/ SDS method can
improve the training efficiency of the classification model
in the MSTL-MCF.

4. Conclusion

This paper proposes a MI recognition method based on
multisource transfer learning and multiclassifier fusion to
solve the problem of poor generalization of MI recognition
methods due to individual differences, which is common in
MI recognition methods. In our method, a semi-supervised
learning labeling method is proposed to provide a large

number of samples with reliable labeling which are provided
for the subsequent process. In the multisource transfer
learning, the source domains with high distribution similar-
ity are selected by measuring the distribution similarity
between the target domain and each source domain, and
the samples with high information entropy from these
source domains are transferred. In the multiclassifier fusion,
several classifiers are trained by the samples in the trans-
ferred source domains and the samples in the target domain,
and the weights are assigned to each classifier. Furthermore,
the final recognition result is obtained based on the idea of
weight fusion. Our method has an average recognition accu-
racy of 70.86% for the four types of motor imagery in the
BCI Competition IV dataset 2a, which is approximately
3.7% higher than that of the closest method. In addition,
the effectiveness of the source domain unlabeled sample
labeling method and the effectiveness of the multisource
transfer learning method proposed in this paper are also
evaluated.
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