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Cooperative communication is widely seen as a promising key technology for improving the energy efficiency of battery-driven
multiple mobile terminals (MTs). In this study, we investigate the use of machine learning (ML) in multiuser cooperative
access networks. Because MT cooperation and bandwidth allocation are considered two main issues in such networks, we
design an ML-aided method to solve the bandwidth issues so that the proposed method can maximize the network’s energy
efficiency. Specifically, we use machine learning with artificial neural network (ANN) trained at base station (BS) (a) to decide
whether MTs in the heterogeneous access network should cooperatively communicate and (b) to determine the optimal
bandwidth allocation for this communication by distributing the trained ANN to all MTs. The computer simulation results
show that under the described communication environment in this paper, the proposed method can provide 99.8% correct
prediction for MT cooperation and output the optimal bandwidth allocation with at least 88% accuracy, which demonstrates
the effectiveness of the proposed method. Besides, the simulations also show that the proposed method can provide about
14%–25% power consumption reduction, which validates the EE performance of the proposed method.

1. Introduction

In recent years, as mobile terminal (MT) applications are
growing dramatically, the traffic loading on networks and
the power consumption of each MT become very important
issues in modern wireless networks. For reducing traffic
loading and saving the power consumption for each MT,
forwarding transmission via MTs using cooperative wireless
methods, which are also called user cooperation, is widely
considered a promising approach [1]. Recently, lots of stud-
ies have investigated power consumption of user coopera-
tion in cellular systems [2–4]. For example, in [2], the
authors studied MT cooperation-based traffic downloading
for distributing content to MTs. In [3], the authors proposed
a method to increase the energy efficiency (EE) of two-MT
cooperative cognitive wireless networks with network cod-
ing. In [4], the tradeoff between throughput and energy con-

sumption in cooperative cognitive radio networks was
theoretically analyzed.

Due to the limited transmission power of battery-driven
MTs, an appropriate access scheme for improving EE per-
formance is necessary in uplink cellular systems. Besides,
such low energy consumption scheme will offer the opportu-
nity to accommodate more battery-driven MTs because the
total energy consumption of the whole cooperative system
can be reduced. In our previous work [5], we investigated
user cooperation traffic loading and proposed a method for
optimizing the bandwidth allocation strategy to save power
in MTs. Theoretical analysis and experiments of evaluating
the proposed method in [5] show that up to 70% of single
MT’s power can be saved via the method. However, this user
cooperation-aided forwarding approach selects a proxy ter-
minal to meet the total communication demands of other
MTs, and thus, the proxy terminal (i.e., one of the MTs)
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tends to be allocated more bandwidth (or spectrum
resources) and may suffer from frequency selective fading.
As a result, the transmission performance of the proxy ter-
minal is occasionally worse than expected.

Although the method in [5] can substantially improve
performance, the decision on whether MTs should cooper-
ate for transmissions and the optimal allocation of band-
width for these cooperative transmissions still remain as
essential problems in cooperative transmission systems.
According to the analysis results for the bandwidth alloca-
tion proportion (called ν in [5]) which is used for deciding
the bandwidth allocated for cooperative communication,
there exists an optimal proportion value called νop that can
minimize system power consumption in the considered
cooperative heterogeneous access networks. To determine
this optimal value νop, the base station (BS) needs to collect
the channel state information (CSI) and traffic demand of
each MT and perform a series of tasks, which causes delay
and thus reduces communication efficiency such as through-
put. Past experience and available data can be used to per-
form such tasks, which are complex and computationally
expensive, but traditional approaches based on explicit rules
and instructions are not necessary. In particular, the best
power-saving performance can be obtained by cooperative
communication among MTs with an exhaustive search for
the optimal bandwidth allocation, while it costs a lot of com-
putation. If the bandwidth allocation can be determined in a
less costly way, the method in [5] would be more feasible.

Owing to the rapid growth of machine learning (ML),
many difficult research issues have been solved by ML-
based methods, especially in future communication systems
[6]. Thus, various ML-based approaches for wireless com-
munication have been proposed in recent years [7–23]. For
example, in [8], the authors used an ML-aided method to
predict trajectory and detect conflict for aerial vehicles. In
[9], the authors proposed an ML-based method to solve
the resource allocation problem in cognitive radio systems.
In [11], an ML-based method was used to solve the iterative
decoding issue for ultra-dense small cell networks with
cooperative transmission. In [16], the authors proposed an
ML-based method to process transmission antenna selection
task in multiple-input-multiple-output (MIMO) systems.
ML-based methods also have a potential to further improve
energy efficiency in cooperative heterogeneous networks.
Meanwhile, it is important to prioritize the key performance
indices (KPIs) that include intelligence, connectivity, spec-
trum efficiency, and energy efficiency as described in [24]
because considering all the KPIs consumes a lot of computa-
tional resources to construct an optimal solution for a wire-
less system. In summary, in recent years, various ML-based
methods were proposed to solve difficult problems in wire-
less communications. However, for the EE optimization
problem in cooperative heterogeneous networks in the
next-generation communications, we still need intelligent
solutions, which motivate our work in this paper.

From the literature about EE problem, it can be known
that how to achieve optimal EE performance in cooperative
system is a difficult optimization problem of resource alloca-

tion so that optimal solution may not be found with limited
computing resources. However, with the aid of ML technol-
ogies, it becomes less complicated and more feasible. There-
fore in this study, we propose an effective bandwidth
allocation strategy with ML-based methods using artificial
neural networks (ANNs) for user-cooperative traffic for-
warding. In our previous study [5], by averaging the effects
of small-scale fading, each MT uploads its position and traf-
fic demand to the BS. The BS then uses conventional
methods to determine if cooperative communication would
be more efficient and calculate νop with the help of this
uploaded information. The results, noncooperative or coop-
erative communication (i.e., the communication mode)
along with the value of νop, are returned to each MT and
the BS performs follow-up operations. In ML-based
approaches, the BS can further utilize the forementioned
information to train or update ANNs, which are then used
to predict the best communication mode and the value of
νop without the existing algorithms. Once ANNs have been
trained on the BS side, the trained ANN can be distributed
to each MT by operator updates. Then, the MTs can use
these trained or updated networks to determine whether
they should use cooperative transmissions and further pre-
dict the value of νop (within an allowed error, of course)
for the cooperative communication case. Finally, it is not
necessary to upload the MT’s information to the BS, and this
reduces the system complexity and improves EE. It should
be noted that, to apply it in a realistic transmission environ-
ment, here, we consider a generalized channel attenuation
model with frequency selective fading and spatially corre-
lated shadowing, in which the effect of small-scale fading is
averaged for focusing on averaged transmission quality.

The main contributions of this paper are as follows:

(i) We introduce an ML-aided method in cooperative
communications based on the validated evaluation
results in [5], in which an effective energy efficiency
optimization method is provided

(ii) The proposed ML-aided method predicts transmis-
sion performance parameters such as the optimal
bandwidth proportion coefficient νop by using MT
deployments and their communication demands.
Henceforth, the proposed ML-aided methods can
improve the computational cost and EE

(iii) A more realistic environment with the frequency
selective fading channel and effect of spatially corre-
lated shadowing is applied to the evaluation in this
paper. To the best of our knowledge, there has been
no previous work which dealt with the issue of
bandwidth allocation under frequency selective
channel in cooperative communications, although
this issue is very important and may affect the sys-
tem performance substantially

The rest of this paper is organized as follows. Section 2
describes the system model and formulates the problem in
this study. Section 3 introduces the proposed method.
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Section 4 provides simulation results. Finally, Section 5 con-
cludes our work.

2. System Model and Problem Formulation

In this study, we consider an existing heterogeneous network
that includes a set of MTs denoted as U = f1,⋯,Ug and
indexed with u = 1,⋯,U together with a BS deployed in
the network. The noncooperative and cooperative transmis-
sion scenarios considered in this study are illustrated in
Figure 1. The MTs are in close proximity to each other
and are able to communicate with the BS. Each MT is
equipped with single antenna whereas the BS is equipped
with M centralized antennas. The communications among
the BS and MTs utilize an allocated bandwidth resource B
for the uplink data transmissions. To make the proxy receive
the traffic from other MTs and transmit the total traffic to
the BS simultaneously, each MT is with two types of trans-
mission modules: one can be operated as cellular link for
sending data to the BS, and the other one can perform
device-to-device (D2D) link for local data exchange with
other MTs. In this type of network, all of the MTs are uni-
formly distributed in a circular communication area of
radius Rcoop that is Rcell away from the BS. Here, the radius
of the cooperative-communication area depends on the
capability of the D2D link.

In the conventional noncooperative transmission sce-
nario, each MT directly sends its communication demand
CðuÞ to the BS using the equally allocated nonoverlapping
bandwidths B/U . In the cooperative transmission scenario
[5], the available bandwidth is divided into two parts: νB
and ð1 − νÞB. The MTs, which are also known as clients,
equally occupy the partial nonoverlapping bandwidth
resource of νB to communicate with a proxy using multiple
D2D links. In other words, the allocated bandwidth for each
MT is νB/ðU − 1Þ . The corresponding bandwidth alloca-
tions is shown in Figure 2. The proxy, which is selected from
the MT set U, works as a data aggregator and sends the total
traffic demands Call =∑U

u=1 CðuÞ to the BS using the remain-
ing bandwidth ð1 − νÞB.

Because ν is a coefficient indicating proportion in our
bandwidth allocation strategy, it can range from 0 to 1.
The analysis in our previous work [5] shows that the trans-
mit power at the clients or proxy is mathematically infinity
in the two extreme cases of ν = 0 and ν = 1 because one of
the clients or proxy is allocated without any bandwidth.
Therefore, there exists an optimal value νop that minimizes
the power consumed by the whole system, and νop indirectly
varies with respect to the MT deployments, the selected
proxy, and the uplink CSI. This is the key finding in [5],
and the existence of νop enables ML-based approaches to
simplify the system and hence improves energy efficiency.

3. Proposed ML-Aided Methods for
Cooperative Communications

In our previous study [5], we proposed an effective method
for heterogeneous cooperative networks that can save up to

70% of MT transmit power. However, two major issues still
remain in this method: One is how to decide if MTs should
cooperate, and the other one is the proportion of bandwidth
allocation to each MT. Therefore, in this study, for a given
MT deployment and their communication demands, our
goal is to use ML methods to resolve the following two
issues: (a) deciding cooperative or noncooperative commu-
nication among MTs and (b) if cooperative, how the optimal
value of νop is effectively determined. For this purpose, we
first collect some data and generate a database B to train
the ML algorithms. Database B consists of an input space
V and two output spaces T 1 and T 2. The input–output
pairs of V and T 1 are used to train an ANN to determine
the communication mode, and the input-output pair of V
and T 2 is used to train another ANN to predict the optimal
value of νop. The generation of the database and the training
of ANNs are performed in the offline phase, as shown in
Figure 3.

In the input space V , there are N possible feature vec-
tors. Since large-scale fading is highly dependent on the geo-
metrical locations and small-scale fading has been averaged,
we consider each feature vector V ðnÞ, n = 1,⋯,N , which
consists of MT deployments and their communication
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Figure 2: Bandwidth allocation strategy for the non-cooperative
and cooperative transmissions with U = 4.
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Figure 1: Noncooperative and cooperative transmissions withU = 4.
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demands. The n-th feature vector for the input space
V = fV ðnÞgNn=1 is written as

V nð Þ = C u, nð Þ, X u, nð Þ, Y u, nð Þf gUu=1
� �T , ð1Þ

where Xðu, nÞ and Yðu, nÞ denote the n-th horizontal and ver-
tical coordinates of MT u, respectively, and Cðu, nÞ is the com-
munication demand ofMT u at the n-th position. Certainly, in
our future work, we can consider more parameters such as
small-scale fading and mobility, to extend our study for more
complicated scenarios.

Both output space T 1 and T 2 have N target values, and
the n-th element in T 1 = fT 1ðnÞgNn=1 and T 2 = fT 2ðnÞgNn=1
is formulated as

T 1 nð Þ = 1, 0f gT, for noncooperative communication,

0, 1f gT, for cooperative communication,

(

ð2Þ

T 2 nð Þ = νop nð Þ, ð3Þ
where “1” and “0” in (2) represent the corresponding logical
variables of “true” and “false,” respectively. The values of
T 1ðnÞ and T 2ðnÞ for all n are obtained from our previous
study [5]. More specifically, for arbitrary n, we first exhaus-
tively search for the optimal νopðnÞ and record it in T 2 and
then further calculate the total consumed power with the
corresponding νopðnÞ for both communication modes (the
calculations for noncooperative and cooperative νopðnÞ
follow equations (21) and (22) in [5]). In the last step, we
compare the transmit power to determine the best commu-
nication mode and record the results in T 1.

Once the database B is generated, two ANNs (i.e.,
models or functions) M∗

1 and M∗
2 are trained by substituting

V , T 1, and T 2 into the given network structures and train-
ing them. Generally, M∗

1 and M∗
2 can be written as

M∗
i = arg min

Mi

L i T i,Mi Vð Þð Þ, ð4Þ

where i = 1 and i = 2 denote the first and second ANNs,
respectively, and L i is the loss function used for network
training. After both ANNs have been trained, M∗

1 and M∗
2

can be used to predict the answers to communication mode
determination and bandwidth allocation. Here, this process
is called “Online Phase,” which is also shown in Figure 3
with gray frames. Note that the “Existing Cooperative Trans-
missions” block in Figure 3 can be realized with any existing
cooperative transmission method such as the one provided
in [5]. The proposed method is summarized in Algorithm 1.

4. Simulation Results

In the simulations, we collected N sets of data for training
M∗

1 and M∗
2 and Npred sets of data for testing these trained

ANNs. To evaluate the accuracy of the proposed ML-based
prediction methods, we defined a parameter ρðn′Þ, where
n′ = 1,⋯,Npred, to represent the predicted accuracy of the

n′th νop. It is expressed as

ρ n′
� �

= 1 −
~νop n′

� �
− νop n′

� ����
���

νop n′
� � , ð5Þ

where ~νopðn′Þ is the predicted optimal proportion of band-
width for cooperative communication, which is mainly
dominated by the MT deployments and communication
demands. ~νopðn′Þ can be calculated by

~νop n′
� �

=M∗
2 V n′

� �� �
: ð6Þ

Finally, the output of M∗
1 ðn′Þ and the complementary

cumulative distribution function (CCDF) of ρðn′Þ for all of
n′ = 1,⋯,Npred are used to evaluate the proposal.

The main simulation configurations and settings for the
ANN training in this study are listed in Tables 1 and 2,
respectively. Here, the parameters of ANN such as maxi-
mum number of epochs or number of layers are chosen by
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Figure 3: Functional block diagram of the proposed ML-aided bandwidth allocation strategy for the considered cooperative transmissions.
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doing numbers of simulations and select the values which
can result in good learning performance. Note that because
the area of cooperative communication is not large, the
shadowing loss variations can be viewed as completely
correlated for all MTs. Furthermore, according to [5, 26], a
frequency selective channel model with L (indexed with
l = 1,⋯, L) subchannels (or paths) is adopted, and a intertap
correlation coefficient matrixΘISI for simulation of intersymbol
interference (ISI) is also considered. The detailed parameters can
be found in our previous study in [5].With the consideration of
current computational complexity and computer resources, we
adopt one hidden layer with 10 nodes for the ANNs.

Table 3 shows the prediction results of the 1st ANN for
communication mode. As indicated in the first row, there
are 921 cases that should use cooperative communication
and were correctly predicted (true positive cases), whereas
there is no case that should be non-cooperative but was
falsely predicted to be cooperative (false positive cases).
Therefore, in the cases that cooperative communication
was predicted, the correct rate is 100%. Similarly, as indi-
cated in the second row, there are 77 cases that should use
noncooperative communication and were correctly pre-
dicted (true negative cases), whereas there are 2 cases that
should use cooperative communication but were falsely pre-
dicted to be noncooperative (false negative cases). Therefore,
in the cases that noncooperative communication was pre-
dicted, the correct rate is 97.5%. In summary, among all
1,000 test cases, 998 cases were correctly predicted and 2
cases were incorrectly predicted. Therefore, the first ANN

1 Input: Cðu, nÞ, Xðu, nÞ, Yðu, nÞ, u = 1,⋯,U , n = 1,⋯,N
2 Output: M∗

i , i = 1, 2
3 Initialization: V =∅, T 1 =∅, T 2 =∅, Create ANNs Mi for i = 1, 2
4 %Generation of input space in database B
5 for n = 1,⋯,N do
6 V temp =∅
7 for u = 1,⋯,U do
8 V temp =V temp

S
Cðu, nÞS Xðu, nÞS Yðu, nÞ;

9 end
10 V =V

S
V T

temp

11 end
12 %Generation of output space in database B
13 for n = 1,⋯,N do
14 Calculate νopðnÞ by substituting V ðnÞ and using exhaustive searching based on [5];
15 T 2 =T 2

S
νopðnÞ;

16 Calculate the total power consumption of non- cooperative and cooperative communications according to [5];
17 if Non-cooperative power ≤ Cooperative power then
18 T 1 =T 1

S f1, 0gT ;
19 else
20 T 1 =T 1

S f0, 1gT
21 end
22 end
23 %Training all of ANNs
24 for each i = 1, 2 do
25 M∗

i = arg minMi
L iðT i,MiðV ÞÞ

26 end

Algorithm 1: The proposed ML-based energy efficiency method.

Table 1: Main configurations.

Parameter Value

Number of BS antennas, M 8

Number of MTs, U 4

Position of BS (0, 0)

BS antenna deployment Centralized

Distance between BS and center of
communication area, Rcell

≤103 m

Radius of communication area, Rcoop 20m

MT deployment in communication area Uniform

Proxy selection
Best channel
condition

Bandwidth, B 20MHz

Channel model
Frequency
selective

Path loss exponent -4

Shadowing correlation
Completely
correlated

Shadowing standard deviation [25] 9.6

Fading model Rayleigh

Number of subchannels, L 4

Intertap correlation coefficient matrix for ISI ΘISI = 0:95 l−l ′j j/L
Number of data for training, N 104

Number of data for testing, Npred 103
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of the proposed method predicted the communication mode
with an accuracy of 99.8%.

Figure 4 shows the CCDF of the predicted accuracy for
the second trained ANN M∗

2 . It can be seen that about
50% cases reach 99% prediction accuracy. Moreover, all
the cases reach at least 88% prediction accuracy, which indi-
cates the optimality of the output νop and means that band-
width allocation is effectively optimized by the second ANN
of the proposed method shown in Figure 3. This fact further
verifies that when system is working with the proposed
method, approximately 70% power consumption can be
saved via cooperative communications as the experiment
results in [5]. Consequently, from the results in Table 3
and Figure 4, it is obvious that the communication mode
decision and bandwidth allocation mentioned in Section 3
can be effectively and accurately performed via the proposed

ML-based method with two ANNs. Specifically, after the
training process of the two ANNs is finished, the first
ANN can accurately predict whether the system should
cooperate or not, and the second ANN can provide the opti-
mal νop for optimizing EE performance, which makes the
whole system always utilize energy in an optimal way.

Besides, since optimal bandwidth proportion ~νopðn′Þ for
cooperative communication can be predicted to reach opti-
mal EE by using the proposed ML-aided method, here, we
conduct simulations of cooperative communication with
multiple MTs to validate the EE performance of the pro-
posed method.

In the simulations, we evaluate the total power con-
sumption of all MTs with and without proposed cooperative
scheme under different traffic demands and check how
much power consumption reduction can be obtained by
using the proposed method. The simulation results are
shown in Figure 5. The results shown here include the power
consumption reduction results between systems using non-
cooperative and proposed cooperative communication
schemes with 2 MTs, 3 MTs, and 4 MTs. From the results,
it can be observed that, although the power consumption
reduction performance is only about 14%–16% for system
with small number of MTs, i.e., 2 MTs, for all traffic
demands, it becomes much better which reaches maximally
about 25% when MT number and traffic demand are getting
larger. Besides the trend that larger MT number and traffic
demand can result in better EE performance, there are also
some points needed to be noted. Firstly, because of the phys-
ical constraints applied on the proxy, for example, maxi-
mum transmit power, we cannot increase the total
communication demand without any limitation. Secondly,
the results in Figure 5 are evaluated with consideration of
the worst channel attenuation case. In other words, all
MTs are affected by the shadowing, and hence, the large-
scale fading is approximately identical. In real cases,

Table 2: Parameters for the ANN training.

Parameters Values

Number of hidden layers 1

Number of hidden layer nodes 10

Maximum number of epochs 103

Activation functions Sigmoid

Validation data percentage 15%

Loss function for the 1st ANN Cross entropy

Loss function for the 2nd ANN MSE

Training algorithm for the 1st ANN Scaled conjugate gradient

Training algorithm for the 2nd ANN Levenberg–Marquardt

Table 3: Prediction results of 1st ANN.

Prediction result Correct Incorrect Correct rate

Cooperative 921 0 100%

Noncooperative 77 2 97.5%

Total 998 2 99.8%

0.88 0.9 0.92 0.94 0.96 0.98 1
Predicted accuracy
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Figure 4: CCDF of the prediction accuracy of the second trained
ANN M∗
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however, shadowing on each MT may be quite different
because of the surrounding obstacles. As a result, the benefits
of user cooperation aided transmission forwarding can be
further improved. Therefore, from these simulation results,
it can be known that the proposed method can effectively
reduce system power consumption in cooperative communi-
cations with large number of MTs.

In summary, the method proposed in this study provides
an effective way to optimize the EE performance using the
approach in [5], which showed that the proposed coopera-
tive communication scheme can offer optimal EE perfor-
mance with optimal bandwidth allocation νop. However, in
[5] the optimal νop was found by exhaustive search, which
is very computationally consuming and difficult to be imple-
mented. With the ML-based approach proposed in this
study, the optimal νop can be determined effectively and
the cooperative communication scheme becomes much
more feasible. Moreover, in practical applications, because
the ML training can be performed offline, the system can
work online after ML training with very limited computa-
tional resources. In addition, although some suboptimiza-
tion algorithms in [27] can also be used to find νop with
reduced complexity, they need large amount of feedback
information from MTs to obtain high search performance.
Comparing to these traditional suboptimization methods,
some feedback information such as CSI could be reduced
by using the proposed ML-based approach, which can also
improve communication efficiency such as throughput.

Besides, here, we also provide simulation results of
power consumption reduction by using proposed coopera-
tive scheme. From the results, it can be observed that maxi-
mally 25% power consumption reduction can be obtained
for larger number of MTs. Instead of the best case of 25%
reduction, it can be seen that the proposed can provide at
least about 14% power consumption reduction, which vali-
dates the EE performance of the proposed method.

5. Conclusion

In this study, we investigated the cooperative transmission
strategy of MTs in heterogeneous network and proposed
an ML-aided method to determine MT communication
mode and bandwidth allocation. For the networks consid-
ered in this study, there are two essential issues: (a) whether
the MTs should perform cooperative or noncooperative
communication and (b) how the optimal bandwidth alloca-
tion is determined. To solve these problems, we adopted two
ANNs to predict the correct answers. The simulation results
show that the first ANN of the proposed method predicted
the communication mode with an accuracy of 99.8% and
the second ANN can output bandwidth allocation parameter
νop with at least 88% accuracy, which demonstrates the
effectiveness of the proposed method. Besides, we also pro-
vide simulation results of power consumption reduction by
using the proposed cooperative scheme. The results show
that 14%–25% can be obtained, which verifies the EE perfor-
mance of the proposed method. Certainly, in practice, the
effectiveness of the proposed ML-aided method needs to be

further verified with consideration of small-scale fading
based channel variation, and discussion about computa-
tional cost for the proposed ML-aided method is also neces-
sary, which are left as our future works.
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