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With the reform of electric power system, major progress has been made in the construction of the electricity market. Electricity
prices are a key influencing factor in the electricity market, and each participant trades electricity based on the price of electricity.
Therefore, improving the accuracy of electricity price forecasts is important for every player in the electricity market. Prediction
using single-layer neural networks has limited accuracy. Due to the high accuracy of machine learning in forecasting, the method
of deep belief network is used to predict the price of electricity in the future. Real data from the U.S. PJM electricity market are
used for simulation and compared with the prediction models of other neural networks. The results show that the prediction
accuracy of the deep belief network model is higher, and the use of the deep belief network can provide an effective method
for China’s electricity sales companies to predict electricity prices.

1. Introduction

In recent years, significant progress has been made in the
construction of the electricity market. Electricity prices are
an important factor in the electricity market, which can
ensure the stable operation of the market, and the prediction
of electricity prices has gradually become the focus of
scholars’ attention [1, 2]. Electricity prices are a key influenc-
ing factor in the electricity market, and each participant
trades electricity based on the price of electricity. Therefore,
improving the accuracy of electricity price forecasts is
important for every player in the electricity market [3, 4].
Therefore, further research on electricity price forecasting
is urgently needed.

In 2011, Abbas Khosravi proposed an interval prediction
method of Lower Upper Bound Estimation (LUBE) [5]. This
method adjusts the single output of NN into two outputs and
directly outputs the upper and lower bounds of the prediction
interval. Prediction Interval Coverage Probability (PICP), Pre-
diction Interval Normalized Average Width (PINAW), and
Accumulated Width Deviation (AWD) are evaluation indica-

tors. By assigning appropriate weight coeflicients to each
evaluation indicator, construct a comprehensive objective
function, and use the comprehensive objective function to
minimize network parameters to achieve interval prediction.

Many researchers proposed different types of NN for
interval prediction and optimized the network parameters
of NN with a heuristic algorithm. The authors in [6] pro-
posed an interval prediction method combining adaptive
fuzzy neural reasoning and simulated an annealing algo-
rithm. The authors in [7] combine multilayer perceptron
with Particle Swarm Optimization (PSO) algorithm to
analyze wind power and load interval forecasting. The
authors in [8] combined extreme learning machine and
PSO for interval prediction of wind power. The authors in
[9] combine wavelet neural network and improved artificial
bee colony for wind power interval prediction. The authors
in [10] used support vector machine to predict the upper
and lower bounds of electricity price and used PSO to opti-
mize the hyper parameters of support vector machine. The
authors in [11] proposed a method for predicting electricity
price interval based on a residual neural network.
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At present, there are many methods of electricity price
forecasting at home and abroad, which are categorized as
follows. The authors of [12] proposes to establish a time
series model of the residual range of electricity prices on
the existing electricity price prediction model and use the
autoregressive integrated moving average model (ARIMA)
to reduce the prediction error. The time series combination
model is simple and easy to understand, and the calculation
speed is fast, and the disadvantage is that the accuracy of the
prediction is low. Given the low accuracy of time series com-
bination models, some researchers have begun to use neural
network methods for electricity price prediction. In [13, 14],
the prediction model of convolutional neural network is pro-
posed to predict the price of electricity before the day. In
[15], a method was designed to first use the ensemble empir-
ical mode decomposition (EEMD) method to decompose
the historical electricity price and then use the wavelet
neural network to predict the electricity price. In order to
improve the prediction accuracy, the authors in [4] designed
a new neural network model that combines the wavelet
transform with the vector function to predict the price of
electricity. Some studies have proposed to combine the
above two models. In [16, 17], the model of regression neu-
ral network is used for electricity price prediction. The
authors in [18, 19] proposes a combined prediction model
based on EEMD, support vector machine (SVM), and auto-
regressive moving average model (ARMA), but the accuracy
of these combination models still needs to be improved.

In order to further improve the prediction accuracy, this
paper uses the prediction model of the deep belief network
[20] to predict the price of electricity before the day. Electric-
ity prices have characteristics of time series. Deep belief
networks can better capture the timing characteristics of
electricity price fluctuations. The wavelet transform is com-
bined with a DBN, which decomposes the original electricity
price signal, then provides a good initial value for all param-
eters through hierarchical pretraining, and then searches for
the optimal value by supervising the fine-tuning process.
Compared with other single-layer neural networks, this
paper proposes that the training process of deep belief
network is hierarchical. The number of iterations is large,
and the prediction accuracy is higher.

L.1. Influencing Factors of Electricity Price. In the case that
renewable energy does not participate in the market compe-
tition, the market electricity price is mainly affected by the
supply and demand relationship, unit quotation, transmis-
sion line blockage, and other factors, which has the charac-
teristics of nonlinear and nonstable [21]. When renewable
energy to participate in market competition, due to the low
cost of renewable energy generation, and output has uncer-
tainty, intermittent, and volatility, it is more likely to cause
the price of electricity fluctuations, when the electricity price
forecast needs to consider not only the generation and elec-
tricity supply and demand on the impact of electricity price
but also the influence of renewable energy generation on
electricity price.

In the electricity market, the market trading center has
disclosed the information to the market members. The
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information includes not only historical electricity price data
but also transaction supply and demand information, elec-
tricity generation forecast, electricity consumption forecast,
renewable energy generation forecast, and other informa-
tion. In order to improve income and avoid price risk,
market members need to decide the quotation strategy after
integrating all kinds of information. Electricity prices are
affected by many factors. There are correlations among the
multiple factors. DBN is an inference network based on
probabilistic uncertainty and provides an effective way for
learning and inference of causal information. The DBN
can predict the state variables on each time slice. DBN has
been applied in photovoltaic power generation probability
forecast [22], load forecast [23], and economic index fore-
cast [24].

According to the expert knowledge of the main factors
affecting electricity price, this paper takes wind power gener-
ation, total power generation, and total electricity consump-
tion as the explanatory variables of electricity price. We then
construct the DBN model to predict the electricity price
interval by evidence inference.

2. Deep Belief Network Model

Several traditional electricity price prediction models are
introduced earlier. The deep belief network (DBN) is intro-
duced in this paper. DBNs are mainly used in feature learn-
ing, data classification, and data generation. In DBNs,
restricted Boltzmann machine (RBM) is primarily used as
unsupervised learning subparts of the building blocks, plus
a logistic regression layer for prediction.

2.1. Restricted Boltzmann Machine. The Boltzmann machine
(BM) is a type of neural network. BM is a neural network
with a two-layer neuronal structure and the visible layer
(VL) composed of elements, which is mainly used to input
data that needs to be trained [16]. The hidden layer (HL)
composed of hidden elements is mainly used to detect
features. The structure of the Boltzmann machine is shown
in Figure 1(a).

BM has a strong ability to learn characteristics, because
of its training and learning takes a long time. To optimize
its time-consuming drawbacks, Sejnowski proposed RBM
on the basis of BM.

The difference between RBM and BM is that neurons of
the same layer are disconnected from each other in RBM.
Neurons of different layers are completely connected in both
directions in RBM. The advantage of this connection is that
the number of neurons per layer is uncorrelated with each
other. There is no connection between the RBM and the
layer, which reduces the process of information transfer
and therefore reduces the time to solve.

RBM can flow in both directions, which is equivalent to
increasing the number of iterations of training and ensuring
the accuracy of the predictive model. This will make the
accuracy of the prediction not drop too much. The RBM
structure is shown in Figure 1(b).

RBM represents the probability distribution from the
explicit layer to the hidden layer through the energy
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FiGURE 1: (a) The structure of BM. (b) The structure of RBM.

function, given the feature v;, the hidden element h;, its
connection weight w, ;, and the offset b;; its energy function
E(v, h) can be defined.
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The energy function is used to define the probability
distribution of the explicit and implicit layers.

P(v,h) = ,
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Here, Z is the normalized constant of the distribution
function. W represents the weight between each hidden
element and the feature.
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Here, w; is the weight value from the ith feature to the j
th hidden element. M is the number of cells. N is the num-
ber of hidden elements.

Thus, the conditional distribution probabilities for each
feature and hidden element can be derived as follows:
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2.2. Deep Belief Network. Deep belief networks are stacked in
cascades by multiple RPMs, and the DBN training process
consists of pretraining and fine-tuning [19, 20].

The DBN training process includes hierarchical pre-
training and fine-tuning. Hierarchical pretraining provides
initial values for all parameters, while fine-tuning explores
optimal values based on the network structure. The deep
belief network pretrain process is shown in Figure 2.

The visible layer
(®)

The layer-by-layer training process is as follows:

(1) The next RBM is fully trained using raw input data

(2) Fix the weight and offset of the first RBM, and take
the features extracted by the bottom RBM as the
input to the top RBM; these two hidden layers can
then be thought of as a new RBM and trained in
the same way

(3) After the second RBM has been fully trained, it is
stacked on top of the first RBM, and the process is
repeated to train as many RBM layers as possible

(4) Repeat the above 3 steps as many times as possible

(5) Finally, add a standard predictor at the top, logistic
regression, and the training of predictors is called a
fine-tuning process, which is designed to slightly
adjust the parameters in the entire network

3. The Fine-Tuning Process of the DBN

3.1. Wavelet Decomposition. The original electricity price
contains many nonlinear and nonstationary factors, which
are one of the reasons for the reduction of the accuracy of
predicting electricity prices. Therefore, we need to use wave-
let transforms to decompose historical data into multiple
frequencies to give the data better performance in terms of
variance and outliers.

Wavelet transforms can be in discrete form to improve
efficiency. The discrete form of the wavelet transform is
shown as follows:

(6)

Wim ) =2 Y (1 =)

t=0

Here, ¢ is the mother wave. m and # are the two integer
variables that determine the scale ¢ and translation parame-
ters. t is an indicator of discrete time. T is the length of the
signal f (1).

This paper uses an algorithm based on Mallat’s fast dis-
crete wavelet transform. The algorithm consists of a decom-
position filter and a reconstruction filter. Thus, a multilevel
decomposition process based on the Mallat algorithm can
decompose historical electricity price data into one approx-
imation (An) and multiple granular values (Dn), as shown
in Figure 3.
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FIGURE 2: The pretraining process of DBN.
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3.2. DBN-Based Hierarchical Pre-Training. Traditional
neural networks are very prone to get stuck in the problem
of local optimization. When the neural network is a deep
network, this problem will become more prominent because
there are more parameters to optimize. The way to deal with
local optimality problems is to initialize the parameters as
much as possible.

DBNss have a better way of solving these problems. The
DBN training process includes hierarchical pretraining and
fine-tuning. Hierarchical pretraining provides initial values
for all parameters, while fine-tuning explores optimal values
based on the network structure.

Each time you pretrain an independent RBM, you can
get the relevant parameters a, b, W. The pretraining process
is achieved by performing a random gradient rise of the
RBM objective function, i.e. the log-likelihood of P(v).

—E(v,h)
P)= Y (7)

Here, P(v) is the probability of the visible vector on all
hidden units. Therefore, the objective function takes the
form as follows:
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FiGure 4: The DBN inference.
Log = ZlogP(v, 0). (8)

ves

Here, 6 € {a, b, W}. S are the training datasets.

According to Bayesian statistical theory, the objective
function (9) is maximized by the stochastic gradient ascend-
ing algorithm to generate a stable and initially good RBM.
The gradient ascending algorithm shows that the parameters
a, b,and W in the RBM are updated according to the deriv-
ative of the objective function L, as shown below

dlog P(v) _ 3
D) Byl Bl )
dlog P(v) _ )

9a; v = Ep[vi], (10)
0 log P(v

agb i =Ep[h] - Ex[h)]. (11)

Here, Ep and E; are raw data driven and reconstructed
data-driven probabilities, respectively.

In the paper, we use equations (4) and (5) on the training
dataset. It is easy to compute EP[] of equations (9)-(11).
However, the calculation of items 2 in equations (9) through
(11) is much more complex because the DBN system learns
the expected value of the distribution P. One possible strat-
egy is to apply alternating Gibbs sampling on any random
state of the visible unit until some convergence criterion,
such as the k-step, is met. Therefore, the expectation of P
can be estimated by analysis. However, sampling strategies
are time-consuming and therefore rarely enforced in real
life. As a remedy, a quick learning method called contrastive
divergence (CD) is proposed. This method takes two
approaches to speed up the sampling process. One is to ini-
tialize the Markov chain with training samples, and the
other is to obtain samples after only the Gibbs sampling k
step, called CD-k. Experimental results show that even if k
=1, CD can do a good job of model recognition.

This paper uses CD-1 to estimate the expected value of
Ej. So, the update rules for parameters a, b,and W can be
derived from equations (9)-(11).
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(12)

Here, the superscript ¢ is the time step. # is the learning
rate, which is 0.9 in this paper.

3.3. The Fine-Tuning Process of Supervise. Recent studies
have found that the accuracy of the prediction is the highest
when the number of layers of the RBM is 4. As described in
Section 2.2, the number of neurons per layer in a DBN is
properly initialized based on a hierarchical pretraining
method. These parameters need to be fine-tuned under
supervision until the loss function of the DBN reaches a
minimum. Based on the effectiveness of the BP algorithm,
this paper uses the BP algorithm to deal with such tasks.

In the supervised fine-tuning process, the BP algorithm
works in a top-down manner based on a certain cycle. One
duty cycle means that all parameters are updated at once,
which will reduce the error of prediction. Next, these errors
are backpropagation by the training set, and then the DBN
parameters are readjusted to the optimal state. Therefore,
after repeating a certain BP cycle, the optimal DBN param-
eters can be obtained, which means that the training process
of the deep belief network is completed.

3.4. DBN Inference. DBN inference is based on the estab-
lished DBN at time 1 : ¢, adding the sample of explanatory

TaBLE 1: Number of neurons in each layer of DBN.

The index of RBM The number of neurons

RBM1 61-3
RBM2 3-4
RBM3 4-8
RBM4 8-4

variables at time t+ 1 (inferential evidence) to infer the
discrete state (cluster category) and the posterior probability
of the predictor variable at time t + 1.

Wind power generation W, total electricity generation P,
and total electricity consumption L are taken as the explan-
atory variables of electricity price EP. Assuming that the
joint probability distribution over the time trajectories has
been obtained. If the sample at time ¢ + 1 is added as infer-
ence evidence, the posterior probability is obtained by
DBN inference. The posterior probability of the electricity
price at time f + k is gradually obtained. The DBN evidence
inference procedure is shown in Figure 4.

DBN inference has both exact inference and approxi-
mate inference. In this paper, the joint tree inference algo-
rithm of DBN is used. Joint tree inference constructs a 1.5
DBN joint tree using nodes within two adjacent time slices
in the DBN. The evidence is then entered to reasoning using
the forward-backward algorithm, after the inference is
finished. A predictor variable is at marginalizedt + k. The
corresponding posterior probability was calculated when
the predictor variable takes different discrete values.

Using the Bayesian network toolbox FullBNT-1.0.7, the
specific steps to achieve exact inference are as follows.
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(1) Convert the DBN model to a 1.5DBN joint tree TaBLE 2: Error comparison between DBN prediction model and
’ ) Boltzmann machine prediction model.
(2) Input evidence‘ and reason by using the forward- The model The average error
backward algorithm DBN prediction model 0.85
(3) Calculate the posterior probability when the electric- Boltzmann machine prediction model L1
ity price takes different discrete values at each time
(4) The predicted average of electricity price at time ¢
+k is computed 4. Simulation and Analysis

(5) The lower and upper bounds of the electricity price ~ This chapter describes the experimental environment and
prediction interval at the ¢+ k time point can be  verifies the effectiveness and accuracy of the proposed model
obtained through simulation experiments.
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4.1. Experimental Environment. In order to verify the superi-
ority of the forecasting model proposed in this paper, the
real data of the US PJM electricity market [12] is used for
simulation and prediction.

In the paper, we select 61 days of historical electricity
price data from October 1, 2018, to November 30, 2018, to
predict the electricity price of December 1, 2018. We take
h as the sampling period and take the sample data of the first
40 days with a total of 960 h as the training sample. We take
the sample data of the next 21 days with a total of 504h as
the prediction set. In this paper, the historical electricity
price data is entered in the Matlab simulation platform,
the scale of this data can avoid the simulation process taking
too long under the premise that the accuracy is basically up
to the requirements, and the sample characteristics are
trained, and the 1-day electricity price prediction result is
obtained by the sample set prediction of 504 h, and the effec-
tiveness of the proposed model prediction of the electricity
price is verified by comparing with the actual electricity price
data, and the electricity price prediction is verified by com-
paring with the EEMD and GA-SVM. The prediction results
of the combined electricity price prediction model such as
the ARMA composite model, the GA-SVM combined
model, and the ARMA-GARCH combined model illustrate
the accuracy of the forecasting model in this paper. The pre-
diction results of various models are shown in Figure 5.

4.2. Test Results and Analysis. By entering historical electric-
ity price data on the Matlab simulation platform, the simu-
lation results of the forecast electricity price of the US PJM
electricity market as of December 1, 2018, are as follows.
The number of neurons in each layer of the DBN is shown
in Table 1.

The forecast electricity price data in this article is shown
in Figure 6. The metric is compared to the real electricity
price pair for the US PJM electricity market as of December
1, 2018. The pairing of the prediction data of the Boltz-
mann machine model with the real electricity price is
shown in Figure 7.

The error pairs of the DBN prediction model and the
Boltzmann machine prediction model are shown in Table 2.

T T T
8600 8650 8700

data of other models.

TaBLE 3: Comparison of the average error of each prediction
model.

The model The average error
DBN prediction model 0.85
EEMD model 1.99
GA-SVM 6.30
ARMA 8.80

RBM information can flow in both directions, which is
equivalent to increasing the number of iterations of training
and ensuring the accuracy of the predictive model. By com-
paring the errors of the DBN prediction model with the BM
prediction model, we can see that the average error of the
DBN prediction model is lower than the average error of
the BM prediction model. Therefore, using RBM to predict
electricity prices, the prediction accuracy does not decrease,
but increases slightly. The pairing of forecast data from other
models with real electricity prices is shown in Figure 8.

The average error pairs for each prediction model are
shown in Table 3.

As can be seen from Figure 8 and Table 3, the use of
DBN for electricity price prediction is more accurate than
that of single-layer neural networks, which can provide an
effective method for actual electricity price prediction.

5. Conclusions

In this paper, a price prediction model based on a deep belief
network is proposed. Simulation predictions are made using
real data from the U.S. PJM electricity market and compared
with forecasting models of other neural networks. The
following conclusions are drawn: the prediction accuracy
of the deep belief network model used in this paper is higher,
and the use of deep belief network can provide an effective
method for China’s electricity sales companies to predict
electricity prices.
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