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Modulation parameters are very significant to underwater target recognition. But influenced by the severe and time-space varying
channel, most currently proposed intelligent classification networks cannot work well under these large dynamic environments.
Based on supervised contrastive learning, an underwater acoustic (UWA) communication modulation classifier named UMC-
SCL is proposed. Firstly, the UMC-SCL uses a simply convolutional neural networks (CNN) to identify the presence of the
UWA signals. Then, the UMC-SCL uses ResNet50 as an encoder and updates the network by supervised contrastive learning
loss function, which can effectively use the category information and make the eigenvector distribution of the same category
more concentrated. Then, the classifier uses the feature vector output by the encoder to distinguish the final modulation
categories. Finally, extensive ocean, pool, and simulation experiments are done to verify the performance of the UMC-SCL.
Without any prior information, the average classification accuracy for MPSK and MESK can reach 98.6% at 0dB and is

increased by 6% compared to the benchmark algorithm under low SNR.

1. Introduction

With the development of UWA communication technology,
more and more ocean applications have installed UWA
communication equipments. Through modulation classifi-
cation can explore the influence of ocean multipath and
Doppler effect and more effectively assistant target identifi-
cation, signal identification, interference identification, and
spectrum management.

In general, conventional modulation classification algo-
rithms can be divided into two categories: likelihood-based
and feature-based methods [1]. The likelihood-based method
requires a large amount of prior information and computa-
tion, which makes it unsuitable for harsh noncooperative
UWA communication. On the contrary, feature-based
method has gradually become the mainstream method due
to its low computational complexity and no dependence on
prior information.

Feature-based methods consist of two parts: feature
extraction and classifier. In [2], multiscale reverse dispersion
entropy and grey relational degree features are used to
improve the classification performance of ship-radiated

noise. In [3-5], support vector machine (SVM) is used to
distinguish wireless signals. In [6], high order cumulant
features are put into SVM based on mixture kernel function
to classify the digital signals. Wei et al. [7] use a SVM based
on hybrid features, cyclostationary, and information entropy
to classify the modulation types, including BPSK, QPSK,
2FSK, 4FSK, and MSK. By this means, the parameter extrac-
tion process is complicated, and the capacity is low. Even if
more training data is added, the classification performance
cannot always be improved [8]. For recent years, deep learn-
ing [9-16] has shown excellent performance in image fea-
ture extraction, speech recognition, and natural language
processing and has been successfully used on acoustic signal
sets [17, 18]. However, in modulation classification area, it is
mainly used in the electromagnetic communication.

In [9], long-short term memory (LSTM) is used to
classify the modulation schemes for a distributed wireless
spectrum sensing network. Li et al. [10] use the I/Q data to
classify signal directly through deep neural networks
(DNN). In [11, 12], adaption of deep learning to the com-
plex temporal signal domain is studied, and first proposed
a CNN-based classifier to solve the problem of excessive
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parameters in DNN. In [13], AlexNet and GoogLeNet are
used to classify the constellation of the signal samples.
Huang et al. [14] introduce a novel cascaded CNN that cas-
cade two-block CNN to identify MPSK and MQAM hierar-
chically. Wang et al. [15] propose a hierarchical CNN
scheme to more accurately classify the higher-order QAM
signals. Liu et al. [16] combine CNN with long short-term
memory (LSTM) architecture into DNN and increase the
accuracy rate by 13.5% compared with original CNN. In
these classic end-to-end neural networks, cross-entropy loss
is the most widely used loss function to achieve the purpose
of updating network weights. However, the cross-entropy
loss function also lacks robustness to noisy tags [19, 20]
and may have marginality [21, 22], leading to reduce gener-
alization performance. The traditional end-to-end super-
vised training methods focus on the final classification
accuracy rather than the quality of the features extracted
from the UWA data. As a result, when the signal-to-noise
ratio (SNR) becomes low, the accuracy of traditional
methods will drop sharply and cannot work well. In recent
years, the renaissance of contrastive learning has led to
major advances in self-supervised performance learning
[23-25]. When there is no available label, the data is aug-
mented through its own cropping and flipping, and the
encoder is updated through the self-supervised loss function.
Although it can alleviate the disadvantages of traditional
networks to a certain extent, it cannot learn from the other
samples in the same category. As a result, self-supervised
contrastive learning methods are not suitable for UWA data
with different SNR.

In this paper, from the perspective of representation
learning, we extract features with high discrimination
through supervised contrastive learning [26] to support the
normal classification tasks in harsh UWA channel and pro-
pose a novel classification framework named UMC-SCL. We
first distinguish between valid signal and ocean noise
through a simply CNN. Then, the supervised contrastive
learning module will learn from the valid modulation signal
and update the encoder network by supervised contrastive
learning loss function. Go through this module, the features
of the same category are as close as possible, and the features
of different categories are as far away as possible. Therefore,
we can achieve the purpose of classification only by using a
fully connected layer. Finally, we verify the superiority of
the proposed method through extensive ocean, pool, and
simulation experiments and use principal component analy-
sis (PCA) to visualize the output features for interpretability.
Compared with the known traditional supervised networks,
the proposed method greatly improves the classification
accuracy under low SNR without any prior information
and parameter extraction process.

2. System Model

2.1. Signal Model. The UWA communication channel is one
of the most challenging wireless communication media
known to human. The medium space of underwater sound
propagation is very complicated, with high attenuation, long
time delay, strong multipath, and high Doppler effect.
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FIGURE 1: The progress of UWA communication.

Figure 1 shows the basic process of UWA communication.

h(t) is the energy normalized impulse response of UWA
channel, s(¢) is the original signal, and n(t) is the ocean
noise. a(t) is related to SNR. Node 1, Node 2, and Node 3
communicate with each other. The listener can intercept
their communication signals from the sea water. SL is emit-
ting sound source level, TL is propagation loss, and NL is the
background noise level [27].

2.2. UWA Data Sources. In order to make the research result
more applicable, we have constructed a complete data set
through actual ocean experiments, pool experiments, and
simulation experiments that are close to the reality.

2.2.1. Ocean Data. The ocean data are collected in Wuyuan
Bay, Xiamen, China. As shown in Figure 2, the sound source
T, and the receiving hydrophone R, are placed in the shal-
low sea near the footpath, with a depth of 5m and a commu-
nication distance of 60 m.

We send and receive signals at four different times of the
day. During the experiment, there are some activities such as
yachts, fishing boats, and other activities that introduce a lot
of man-made noise. Besides, dozens of plank road bridge
piers between the sending and receiving ends make the
reflection effect more significant.

2.2.2. Pool Data. Ocean experiments are costly, and the data
acquisition is difficult. In order to increase the richness of
the dataset, we further conduct pool experiments. The pool
is located in UAC laboratory in Xiamen University.
Figure 3(a) is the photo of the pool. The pool has a length
of 25 m and a width of 5 m. It is divided into deep water area
(depth=1.5m) and shallow water area (depth=1.15m).
Figure 3(b) is the distribution of transmitter and receivers
for pool experiment. T is the sound source, and R, is the
hydrophone. The distances between R,;, R,,, R,5, and T,
are 3m, 6m, and 12m, respectively, and the depth is 1 m.
When T, sends a signal, the sound rays will be attenuated
by water and reflected on the pool wall.
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FIGURE 2: The scene map of ocean experiment.

2.2.3. Simulation Data. Constructing a good simulation
UWA channel is the basis for carrying out practical experi-
ments. Figure 4 shows the sound ray propagation in a shal-
low sea channel. The sound ray will be reflected by the sea
surface and bottom during propagation. Moreover, the
speed of sound in seawater changes with temperature, salin-
ity, and water depth, causing sound rays to be refracted. The
speed of sound can be described according to the following
formula [27].

c=1449.2 + 4.6T - 0.055T + 0.00029T>
+(1.34—0.01T)(S - 35) +0.016Z,

(1)
where T is temperature in, S is salinity in ppm, and Z is the
depth of seawater in m.

In UWA communication, the impulse response can be
assessed by beam tracing for typical acoustic communication
frequencies. The basic path loss of the received signal that
traveling through the UWA channel is given by [28].

A(l) = A I, (2)

where A is a scaling constant, [ is the traveling distance of
sound ray, k is the spreading factor, and « is the absorption
coefficient which is closely related to the frequency of sound
waves and can be obtained by Thorp’s empirical formula as

0.11f2
a= f2+
1+f

where the units of « and f are dB/km and kHz, respectively.
The impulse response of the multipath channel can be
expressed as the summary of the transfer function of each
path

44f*
4100 + f*

+2.75x 107f* +0.003,  (3)

H — I:I e—jZnﬁ _ P
(f) ; »(f) ;—m

where I 0 T and Tp are, respectively, the cumulative reflec-
tion coeflicient of the surface and bottom, propagation delay,
and the propagation distance of the p-th path. Generally
speaking, an ideal surface can be modeled by a reflection

coefficient y,=-1, while the bottom reflection can be
modeled by

p, sin 0, — p, /(clc,)* — (cos?0, )

cos GP < <
v(6,) = p, sin 0, + py /(clc,)* = (cos?6, ), >
1, otherwise

(5)

where 0, is the grazing angle associated with the p-th prop-
agation path and p and ¢ are the nominal density and the
speed of sound in water (p = 1000 kg/m® and ¢ = 1500 m/s).
Py and ¢, (calculated by Equation (1)) are the density and
the speed of sound in bottom. The propagation delay of
p-th path can be simple calculated as

~—~

B -1
TPZPCO’ (6)

where [, is the direct distance from the sender to the
receiver. In order to get a tractable, simple channel model,
we examine an approximation to the function. Taking p = 0 as
the reference path and H,(f) as the impulse function corre-
sponding to [, the impulse function of the receiving end can
be further expressed as

3. Supervised Contrastive Learning-Based
Modulation Classification

A large number of studies have proved that DNN is superior
to SVM. In the field of UWA modulation classification, the
application of DNN is still scarce and all use end-to-end
supervised methods. However, when the SNR becomes
low, the accuracy will drop sharply. In response to this prob-
lem, we use supervised contrastive learning to narrow the
feature distance between the same category and expand the
distance between different categories, so as to improve the
classification accuracy of modulation schemes under low
SNR.

3.1. Classification System Model. As shown in Figure 5, in
Step 1, the signals received by the receiver may be useful
signal or useless ocean noise. In Step 2, the input signals
are recognized through a simple two convolutional layers
and a fully connected layer. Conv1l x 32 means the chan-
nel number is 32, and the size of convolutional kernels is
11 x 11.

If the input signal is useful signal, it will be transported
to supervised contrastive learning module for further classi-
fication; if it is ocean noise, it will be discarded.

In Step 3, supervised contrastive learning loss function is
used to update the backbone network (ResNet50) to extract
features from UWA data and then put the features into
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FIGURE 4: Sound ray propagation in shallow sea channel.

classifier for classification. By this means, the influence of
ocean noise can be effectively eliminated, and the classifica-
tion accuracy at low SNR will be significantly improved. In
the following content, the specific network architecture will
be given in details.

3.2. Backbone Network. The backbone network of supervised
contrastive learning in this paper is ResNet50. ResNet50 is a
residual CNN with 50 layers. It directly skips several layers
and introduces the output of a certain layer into the input
part of the following data layer, which overcomes the prob-
lems of low learning efficiency and ineffective improvement
of accuracy due to the deepening of the network. Another
two important operations in the network are batch normal-
ization and ReLU. Batch normalization is aimed at convert-
ing the input data to an output data distribution with a
variance of 1 and a mean of 0 to improve the speed of net-
work optimization. ReLU is a nonlinear activation function.
It makes the output of some neurons be 0, so as to improve
the sparsity and avoid the overfitting phenomenon of the
network.

In traditional supervised end-to-end CNN, as shown in
Figure 6, the output of the classifier is used as the only indi-
cator to update the network. The most widely used loss func-
tion is the cross-entropy loss function, and the expression is

z Zyzc log (ch (8)

i c=1

1
Lss: NZLI'_
1

where N is the number of samples and M is the number of
label categories. If the true category of sample i is equal to

¢, then y;. = 1; otherwise, y,. = 0. p,_ is the predicted probabil-
ity that the sample i belongs to the corresponding category.

3.3. Supervised Contrastive Learning. Supervised contrastive
learning effectively utilizes the category label information,
making the feature points from the same category closer
than the points from different categories. Different from
self-supervised learning [24], the positive samples are other
samples in the same category. As shown in Figure 7, the
progress is divided into two training stages. The first stage
focuses on the training of the encoder and uses the super-
vised contrastive learning loss function to update the
encoder. The second stage focuses on the training of the
classifier using the feature output by the encoder and using
the cross-entropy loss function to update.

In self-supervision, the function of the two converters is
to flip or crop the input picture so that the two newly gener-
ated images can be used as the positive samples. Due to the
high complexity of UWA data, cropping or flipping the time
domain signal will destroy its original characteristics. Since
the label information is known, the supervised contrastive
learning takes all the samples from the same class in the
batch as positive samples and compares them with the neg-
ative samples in the rest of the batch. The loss function
becomes

2N
ISP — Z L™, (9)

i=1

exp (z;-z;/T)
Zkl ik " eXP (Z; - Zk/T)

(10)

sup _
Li 2N~— ZI#J ="

where i is the blind UWA data and z; represents the feature
generated by the backbone network. z; represents the feature
that comes from the same category with data i, and z; repre-
sents the feature generated by backbone network that is dif-
ferent from data i. 7 is a scalar temperature parameter larger
than 0. y, is the category label of i. To update the network
parameters under the constraint of the loss function, the
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FiGure 5: Flow chart of supervised contrastive learning-based modulation classification scheme.
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feature output from backbone network will have the follow-
ing characteristics:

(1) The sum of the cosine distance between the feature
vectors of all other samples in the same category
and the feature vectors of the sample i, the larger
the better

(2) The sum of the cosine distance between the feature
vectors of the sample in different categories and the
feature vectors of the sample i, the smaller the better

The classifier in the second stage is a simple fully
connected layer. It uses the 2048-dimensional standardized
feature output by the encoder to classify the modulation

schemes. It should be mentioned that the parameters of
the encoder are frozen in the second stage. Therefore,
whether the encoder can obtain excellent features after train-
ing plays a decisive role.

Algorithm 1 describes the update process of the super-
vised contrastive learning.

4. Experiments and Results

In this section, the details of the experiments are explained.
We also evaluate the modulation classification performance
of the proposed method and compare it with the existing
methods. In order to analyze the algorithm performance
more intuitively, we use PCA to visualize the features to pro-
vide the interpretability of the proposed method.

4.1. Dataset Generation. The original modulation signals are
generated through the MATLAB simulation platform. The
candidate modulation set is given by

M = {BPSK, QPSK, 8PSK, 2FSK, 4FSK, 8FSK}. (11)

Table 1 shows the parameter setting of different modula-
tion schemes. The ocean noise is actually collected in the
Wuyuan Bay sea area. After passing through the ocean chan-
nel, the pool channel, and the simulation channel, the data
with the characteristics of multipath fading and Doppler
frequency shift is obtained. On this basis, Gaussian white
noise with different SNR is superimposed on the obtained
data through MATLAB. In this paper, the intraband SNR
is used to evaluate the performance of the proposed algo-
rithm. It can be calculated as

SNR = 10log,, (F (12)

5

) + SNRGaussmn(dB)
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6
Input: Encoder training: batch size 32, initial learning rate a=5e — 2, epoch E p:IOO, 7=0.07
Classifier network training: batch size 128, initial learning rate a'= le - 3, epoch E 1')=100
Output: Backbone network parameter 6, The Classifier network ©.
//Encoder training
1: for epoch =L:E,
2: sample a batch of data, update « as described in Section III — D
3:  Backbone encodes m into F.
4: calculates loss L*P (10)
5: update 0 with 0 «— 0—-a-V,L*"P
6: end for
/IClassifier network training
7: for epoch = I:E;7 do
8: Freeze encoder parameter, update ' as described in Section IIT — D
9: Classifier network decodes F into result
10: calculates loss L, (8)
11: update ® with @—06-a’ VgL,
12: end for
//Finish training
Return the parameter 9, ®
ALGorITHM 1: Two-stage training of supervised contrastive learning.
TaBLE 1: Parameter setting of the modulation signals. “Python” programming language, the CUDA 10.1 and
Nodun Sk K CUNDD software. The optimizer of ResNet50 is “Adam,”
odulation type 21418 2/4/8 and the learning rate is 0.05 and decays to 10% of the origi-
. ~ 0,, = 2nm/M fm=11kHz+2mkHz  na] learning rate every 30 epochs.
Modulation point =01, M1 =01, M~—1
Sample frequency 66 kHz 4.3. Experiment Results
Symbol width 1ms

where F. is the sampling frequency and B is the bandwidth
of the signal.

In Step 2, it is aimed at distinguishing the ocean noise
and the useful signals. The train set consists of 2,000 ocean
noise samples and 2,000 modulation signal samples with dif-
ferent SNR. The corresponding test set is 800 samples per
category. In Step 3, the training set of supervised contrastive
learning consists the data with different SNR after noise pol-
lution. Among them, 550 samples of each modulated signal
are generated from -9dB to 9dB every 2dB, 250 samples
of which are used as the training set and 300 samples are
used as the test set. Therefore, the training set contains
15,000 samples with different SNR, and the test set of each
SNR contains 1,800 samples.

4.2. Experimental Implements. In the ocean and pool exper-
iments, NI USB-6259 Pinout capture card is used to convert
the digital signal to analog signal at the transmitter and con-
vert the analog signal to digital signal at the receiver.
JYH500A power amplifier and Type-2692-0S2 charge ampli-
fier are used to amplify the transmitted signal and the
received signal, respectively. WBT22-1107 transducer which
can convert the analog electrical signal to acoustic signal is
used to send and receive signal in the water. Besides, the
experiments are performed on computing server equipped
with an Intel(R) Core(TM) i7-9700K 3.6GHz CPU, a NVI-
DIA GeForce RTX 2060 SUPER GPU, “Pytorch” and

4.3.1. Simulation Results. The simulation experiment is car-
ried out under the simulation UWA channel. In the noise
distinction stage, the distinction between ocean noise and
useful signals is obvious, especially in the frequency domain.
Even when the SNR is -6 dB, the classification accuracy can
still achieve 100%. Therefore, it can be explained that the
simple convolutional network of Step 2 can well eliminate
the influence of marine noise. In the Step 3, Figure 8 gives
the classification accuracy of six modulation schemes. In
general, the classification accuracy of six modulation signals
increases with the increase of SNR and can achieve an aver-
age accuracy of 98.84% at 0 dB. When the SNR decreases to
-6 dB, the recognition of 8PSK is the most difficult, and the
confusion of modulation categories is mainly concentrated
on QPSK and 8PSK.

4.3.2. Actual Ocean and Pool Experiment Results. Due to the
difficulty and high cost of obtaining ocean data, in practical
experiments, we mix pool data with the ocean data to
increase the richness of training set, so that the trained
encoder and classifier can better fit the distribution charac-
teristics of UWA data. The result of Step 2 in practical exper-
iments is the same as mentioned in the previous simulation
part. In Step 3, using the feature output by the encoder, the
classification accuracy of the single fully connected layer is
shown in Figure 9. For MPSK, its information is modulated
in phase, so its characteristics in the time domain are not as
obvious as MFSK. When the SNR is -6 dB, the average accu-
racy of MPSK is 79.7%, while MFSK can achieve a high
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FiGure 8: Classification accuracy of simulation experiments versus
SNR.
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Ficure 9: Classification accuracy of ocean and pool experiments
versus SNR.

accuracy of 97.3%. When the SNR increases to 0dB, the
average accuracy of six types of modulation signals can reach
98.6%.

Classification performance results of six modulation cat-
egories at -6dB and 0dB are presented using confusion
matrix in Figure 10. In each modulation category, 300 tests
are implemented. When SNR is -6 dB, BPSK, 2FSK, 4FSK,
and 8FSK have achieved high classification accuracy through
supervised contrastive learning. However, since QPSK and
8PSK are relatively similar in modulation phase, they are
easy to be confused. There are 102 QPSK samples that are
mistaken for 8PSK and 70 8PSK samples that are mistaken
for QPSK. When the SNR reaches 0dB, except for the

slightly larger classification error of QPSK, the recognition
accuracy of other modulation schemes almost reaches 100%.

4.3.3. Accuracy Comparison. To verify the superiority of the
proposed method in this paper, the performance is investi-
gated by making comparisons with four relevant algorithms
in recent years; the comparison algorithms are as follows:

(1) Algorithm 1 based on ResNet50 using constellation
density as feature [29]

(2) Algorithm 2 based on AlexNet using 3-channel
image as feature [13]

(3) Algorithm 3 based on VGGNet using original gray
image as feature [30]

(4) Algorithm 4 based on SE-Net using the features in
time domain, frequency domain, and time-
frequency domain [31]

Figure 11 presents the average classification accuracy of
five algorithms versus SNR. The average accuracy is
obtained by averaging the classification performance of six
modulation categories. As shown in Figure 11, the following
observations can be made.

(1) For all five algorithms, the modulation classification
performance improves with an increasing SNR value

(2) Given the same SNR, in addition to the proposed
algorithm, the other four algorithms will have a
sharp decay on the classification accuracy when the
SNR becomes low

(3) The proposed supervised contrastive learning algo-
rithm has strong adaptability to low SNR UWA
modulation signals and outperform all other algo-
rithms. When the SNR is -6 dB, the accuracy of our
proposed method is 6% higher than the benchmark
algorithm [29]

4.3.4. PCA for Interpretability. PCA can reduce a set of n
-dimensional vectors to k-dimension through orthogonal
transformation. That is, k unit orthogonal basis is selected,
so that the original n-dimensional data is represented by this
group of basis. For high-dimensional data, first make the
mean of the input vector to 0 and then use the covariance
to represent the correlation between vectors a and b. The
covariance is calculated as

n n

Cov(ab) =+ Y (a,~ )b~ ) = - Y ab.  (13)

i=1 i=1

S|

For mn-dimensional vectors {a,, a,, ---a,, }, the matrix X
is composed of
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Ficurek 11: Classification accuracy of the proposed algorithm and the comparison algorithm versus SNR.

The covariance matrix C is
1
Cc=-xxT,
n

li 5 15:
f— al e p— ala .
ng ng T (15)

1

_Ea A
mi“*1i

nia

It can be seen that the diagonal of the matrix C is the
variance of the vectors, and the other elements are the
covariances between different vectors. Supposing Y = PX is
the vector of the original data X projected to the low-

dimensional space, P is the transformation matrix, and D
is the covariance matrix of Y, there is the following equation

(PX)(PX)" = PCP". (16)

1
D=_YY"'=
n

|

In order to enable the transformed low-dimensional vec-
tors to represent more original information, we hope that
they are not correlated with each other; that is, the covari-
ance is equal to 0. Therefore, the matrix D should be a diag-
onal matrix. According to the relevant knowledge of linear
algebra, the matrix P should be the eigenvector matrix of
matrix C, and it should be arranged from top to bottom
according to the size of the corresponding eigenvalues. Select
the matrix P, composed of the first k rows of matrix P, and
obtain a matrix Y, with k-dimensional vectors. Taking k = 3,
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FIGURE 12: Feature point distribution after dimensionality reduction by PCA.

the high-dimensional feature outputs by the network are
presented in a 3-dimensional plane. Figure 12 shows a 3-
dimensional space cross-sectional view of the feature point
distributions extracted by different networks.

It is easy to see that the features extracted by the super-
vised contrastive learning method have a higher degree of
discrimination and better classification effect under low
SNR. When SNR is -6 dB, the features extracted by ResNet50
[29] are overlapped. In contrast, the features extracted by the
proposed method, except that the features of QPSK, 8PSK,
and 8FSK, have some overlap; the feature distributions of
the other three modulation signals are concentrated and easy
to distinguish. What is more, with the increase of the SNR,
the feature point distribution boundaries of different modu-
lation schemes become clearer and clearer.

5. Conclusion

In this paper, we are the first to propose a novel modulation
classification scheme based on supervised contrastive learn-
ing. Firstly, the useful signals and ocean noise will be distin-
guished in the first module. Secondly, the encoder ResNet50
in the supervised contrastive learning module will learn the
input UWA data under the guidance of the supervised con-
trastive learning loss function to update the network. By this
means, the distance between feature vectors in the same cat-
egory but with different SNR will be minimized, and the dis-
tance between feature vectors of different categories will be
expanded as much as possible. Then, the classifier recognizes
the modulation scheme according to the feature output by
the encoder. Finally, the ocean, pool, and simulation experi-
mental results verify the superiority of the proposed method.
Compared with the existing researches, the experimental
verification in this paper is more complete. The proposed
method eliminates the complex parameter extraction pro-
cess and does not require any prior information. When the
SNR is 0dB, the average accuracy can achieve 98.6%. Com-

pared to the benchmark algorithm, the accuracy at -6dB is
improved by 6%. Moreover, we use PCA to visualize the fea-
ture distribution, which can intuitively analyze the superior-
ity of the proposed algorithm.
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