
Research Article
A Novel Optimal Strategy for Communication System in the
Maritime Industry Based on Game Theory

Weijie Li ,1 Qin Qi ,2,3,4 and Yifang Liu5

1Institute of Biothermal Science and Technology, University of Shanghai for Science and Technology, Shanghai 200093, China
2School of Management, Xiamen University, Xiamen 361005, China
3Department of Publishing and Dissemination, Shanghai Publishing and Printing College, Shanghai 200093, China
4Shenzhen Value Online Information Technology Co., Ltd, Shenzhen 518000, China
5College of Science, University of Shanghai for Science and Technology, Shanghai 200093, China

Correspondence should be addressed to Qin Qi; qiqin_jxsh@163.com

Received 2 July 2022; Accepted 20 July 2022; Published 22 August 2022

Academic Editor: Chia-Huei Wu

Copyright © 2022 Weijie Li et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In this paper, we employ convex optimization and the saddle point equation to find the two-player optimal payoff in iterated rock-
paper-scissors game. We also describe the equivalent of payoff written in a two-person non-zero-sum matrix in the hypothetical
game system, which provides a possible way to make quantitative analyses. In addition, we use the interior-point methods to
simulate rock-paper-scissors game and our numerical results verify that our hypothesis of the payoff equation, max

Y
min
X

YTAX
=min

X
max
Y

YTAX, can still work very well even if A changes with the payoff g, but it is never affected by other factors.

1. Introduction

It is challenging for human beings to make optimal deci-
sions in noncooperative strategic interactions [1]. The fin-
est approach for scissors of rock paper is to really behave
allegedly. This means that each choice is played around a
third of the time and a player cannot imagine what is
next. Rock-paper-scissors (RPS for short) game widely
used to study competitive phenomena in society and biol-
ogy, especially species diversity and pattern formation
[2–7], offers a new way. As is known to all, the concept
of Nash equilibrium (NE), developed under the assump-
tion that the players are sufficiently rational to ensure that
they can accurately learn the strategies of the competing
players and to optimize their own strategy accordingly,
plays a fundamental role in both classic game theory and
evolutionary game theory [1, 8–13]. Furthermore, much
effort has been devoted to investigating RPS game using
a variety of models, such as the “rock-paper-scissors
dynamics model” [14, 15], scale-free memory model [16],
and cyclic dominance model [17–19]. Note that rock play
is a dominant strategy for both players (i.e., the best

choice of rock, whenever your opponent plays! So, the bal-
ance for this game is unique: both players always choose
rock).

Convex optimization is a reliable and efficient optimi-
zation method, which can obtain the global optimal solu-
tion precisely by selecting the appropriate algorithm.
Convex optimization, frequently used to solve optimiza-
tion problems due to its strong scalability and wide appli-
cations which include electronic technology [20–23],
software engineering [24–27], and machine learning [28],
can be fully applied to the game theory and sheds light
on the optimal strategy in iterated RPS game. When we
check the payment table for rock, paper, and scissors, we
see that such a balance does not exist. There is no option
where the selections for the two players are the best
answer for the other player. So, there is no true Nash
strategy balances.

In this paper, we employ convex optimization (CVX
for short) and the saddle point equation to optimize two
players’ payoff in iterated RPS game, which has a consid-
erable amount to offer in both theoretical researches and
practical applications. Make a move that either gives you
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a win or a stalemate that ensures you will not lose. You
can suppose for instance that your opponent will not play
it three times in a row, if they toss out scissors twice.
Either rock or paper they will play. In order to verify
our hypothesis of the study, we assign different values to
the convex optimization model and then draw graphs with
simulation software to find the pertinent rule, which
shows the feasibility of the convex optimization method.
Rock scissoring (also known as “rock” or ro-sham-bo) is
a hand game usually played between two people, in which
each participant produces a single one of three forms with
an extended hand (articles of rock, “rocks” are sometimes
known by various orders). The hand game normally is
played in between two people. The forms “rock,” “paper,”
and “scissors” are “clocked fist” (a fist with the index fin-
ger and middle finger extended, forming a V). “Scissors”
are the same as the two-fingered V sign (also denoting
“victory” or “peace”). It is not held vertically but is
directed horizontally.

The marginal contribution of our study is that we intro-
duce the two-player non-zero-sum matrix A = ½1, 0, g ; g, 1,
0 ; 0, g, 1� to describe the payoff of players quantitatively as
XTAY and YTAX; we simulate the system with Newton
algorithm. We use the saddle point equation max

Y
min
X

YTA

X =min
X

max
Y

YTAX to calculate how players can obtain the

maximal payoff and find out that the EPRs of player X and
player Y increase with the payoff g. This method takes into
account the opponent’s previous movements, to decide
whether the opponent wants to choose one move over
another. In essence, each rock, paper, and scissor have a
“score.” The rating of the opponent’s move is increased after
every move. If the rock paper scissors is a game that is bad,
then they can only play in the devil’s sons, and of course, the
frenzied fans are spectators. Therefore, the concept that the
game is bad is not even taken into account or that the game
is not bad.

2. Model

For the sake of simplicity, we take a two-person non-zero-
sum RPS game model as an example to study the noncoop-
erative game system. In this game, each player plays innu-
merable rounds of the game and can only choose one
action among R, P, and S in each round, as shown in
Figure 1. The payoff g ðg > 1Þ is defined as the only param-
eter of the winning action in this game [1] (see Figure 2),
and rational players just make decisions according to the
value of g. Two players get a unit payoff when they choose
the same action. Furthermore, player X will win with payoff
g while player Y is going to get zero payoff when player X
beats player Y , and vice versa.

During competitions, players often plan three gestures
before the tournament begins. Some tourney players utilize
methods to mislead or fool other players into an illegal
move, which leads to a loss. One such approach is to call
the name of one move in order to misdirect and mislead
the other.

3. Results

3.1. Convex Optimization Equation. The expected payoff per
round (EPR) WX of player X and the EPR WY of player Y
are as follows:

WX = XTAY ,
WY = YTAX,

ð1Þ

where

A =
1 0 g

g 1 0
0 g 1

0BB@
1CCA,

XT = XR, XP , XSð Þ, YT = YR,YP , YSð Þ:

ð2Þ

XR, XP, and XS denote the payoff probabilities of player
X, and YR, YP, and YS denote the payoff probabilities of
player Y .

Compared with the traditional payoff function, our pay-
off equation is strictly convex. The convex optimization
problem is described by (3) and (4).

XR + XP + XS = 1,
YR + YP + YS = 1, ð3Þ

XR > 0, XP > 0, XS > 0,
YR > 0, YP > 0, YS > 0:

ð4Þ

Let BT
1 = ð1, 0, 0Þ, BT

2 = ð0, 1, 0Þ, and BT
1 = ð0, 0, 1Þ. With

the incidence matrices, we can rewrite problems (3) and
(4) as (5) and (6).

〠
i

BT
i X = 1, i = 1, 2, 3,

〠
j

BT
j Y = 1, j = 1, 2, 3, ð5Þ

BT
i X ≥ 0, i = 1, 2, 3,

BT
j Y > 0, j = 1, 2, 3,

ð6Þ

Here, player X selects a strategy i ∈ f1, 2, 3g, while player
Y selects a strategy j ∈ f1, 2, 3g. As (1)–(4) above are convex,
all their optima are global optima. Two adversaries ran-
domly throw out motions in the game rock paper scissors,
and each wins, loses, or draws with equal probability. It must
be a game of sheer luck, not competence—and certainly, if
everybody could be perfectly alleged, nobody could take
the lead on anybody else.

In this paper, the system we study is a two-person non-
zero-sum game, so it can be written as YTAX + XTAY ≠ 0.
In order to study it quantitatively, we suppose that player
X makes his decision first and player Y acts according to
player X’s decision later. In an object larger than another,
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a paper which covers a rock still makes sense. That is why
the paper beats the rock; only because the rock is not
harmed does it invisibly render the rock unnecessary to the
rest of the world. For rational players X and Y , player X
wants to minimize WY , while player Y wants to maximize
WY . Similarly, player X wants to maximizeWX , while player
Y wants to minimize WX . Game theory just renders it inef-
fective as an instrument to analyse the occurrences of the
real world with the highly problematic assumptions on
“rationality,” equilibrium solutions, information, and
knowledge.

Player X’s best defense is to use X to minimize YTAX.

min
X

YTAX, ð7Þ

while player Y should choose Y to maximize one of the pay-
offs of the system.

max
Y

min
X

YTAX
� �

, ð8Þ

YTAX = YR,YP, YSð Þ
1 0 g

g 1 0

0 g 1

0BBB@
1CCCA XR

XP

XS

0BBBB@
1CCCCA

= YR + gYP , YP + gYS, YS + gYRð Þ XR

XP

XS

0BBBB@
1CCCCA

= YRXR + YPXP + YSXS + g YRXS + YPXR + YSXPð Þ
= YR + gYPð ÞXR + YP + gYSð ÞXP + YS + gYRð ÞXS:

ð9Þ

We define χ = YR + gYP, ξ = YP + gYS, and μ = YS + g
YR, where χ, ξ, μ denote the values of the expected payoff
(gain), respectively.

When χ < ξ, μ and player X wants to minimize YTAX,
then he should maximize XR and its coefficient χ. That is
to say, whenXR = 1, XP = 0, and XS = 0,YTAX is the mini-
mal payoff. From the inner minimization in (8), we have
eT1 = ðXR, XP , XSÞ = ð1, 0, 0Þ. The other two cases
(ξ < χ, μ ; μ < χ, ξ) proceed similarly. Two-person games
are the simplest form of competing situations. These games
have only two players; it is dubbed zero-sum games, as one
player wins the other player lose.

X

Y

(1,1) (0,g) (0,g)(g,0) (1,1) (1,1)(g,0) (g,0)(0,g)

R

R S

Y

R S

P S

Y

R SP P P

Figure 1: The payoff tree: each player (player X or player Y) has three possible actions: rock (R) beats scissors (S), S beats paper (P), and P in
turn beats R. As it is doubtful that the adversary will play rock again, shears are unsurpassable. In the event of paper, scissors win; it is a tie, if
the adversary chooses scissors. RPS players are mentally classified as winners and losers. Next time, a losing player will more likely switch to
another throw.

R P S

1 0 g

g 1 0

R

P

S 0 g 1

Figure 2: The payoff matrix: each element of the payoff matrix is
from row player to column player. It has just two potential
outcomes in a simultaneous zero-sum game: one player draw, a
win, and a loss for the other. A player who decides to play rock is
going to beat another player who has selected scissors (“rock
smashes scissors” or “blunt scissors” at times) but is going to lose
to the player who has picked paper (“paper covers rock”)
(“scissors cuts paper”). The game is tied, usually played to break
the tie quickly, if both players decide to play the same form. The
game type was created in China and spread through increased
contact with East Asia, and various varieties of signs were
developed throughout time. A genuinely random opponent is not
feasible to acquire an edge. However, it is possible to gain an
important advantage by using the psychological flaws of
intrinsically nonrandom adversaries. Actually, people tend to be
nonrandom players. As a result, competition for algorithms
playing rock paper scissors was held.

3Wireless Communications and Mobile Computing



For max
Y

ðmin
X

YTAXÞ, inner optimization can be

described as follows:

min
X

YTAX = YTAei, i = 1, 2, 3, ð10Þ

where ei denotes the vector that is all zeros except for one in
the ith position, that is, deterministic strategy i. These opti-
mization expressions are to be compared with the following
standard form of a convex optimization function: the most
difficult aspect of making decisions, according to a study
presented at the annual conference of the academy of man-
agement this month, is not finding the proper answer; it has
the fortitude to really act on that information.

min f0 xð Þ
subject to f i xð Þ ≤ 0, i = 1,⋯m

hi xð Þ = 0, i = 1,⋯, p

8>><>>: ð11Þ

In this paper, we introduce a scalar variable α represent-
ing the value of the inner minimization:

max α
subject to α ≤ YTAei, i = 1, 2, 3
〠
j

BT
j Y = 1,  j = 1, 2, 3

BT
j ≥ 0, j = 1, 2, 3

8>>>>>>><>>>>>>>:
ð12Þ

Writing in matrix notation

max α

subject to αI −AY ≤ 0

ITY ≡ 1
BTY ≥ 0,

8>>>>><>>>>>:
ð13Þ

where α =min
X

YTAX, IT = ð1, 1, 1Þ, OT = ð0, 0, 0Þ, and

I =
1 0 0
0 1 0
0 0 1

0BB@
1CCA: ð14Þ

The symbol ≥ denotes being greater or equal to, the sym-
bol ≤ denotes being less or equal to, and the symbol ≡
denotes being equivalent to. Thus, we have obtained the
standard convex optimization equation of our model.

3.2. The Saddle Point Equation. The primal problem (11) is
convex with convex payoff mainly decided by player X.

min YTAX

subject to〠
i

BT
i X = 1,  i = 1, 2, 3

−BT
i X ≤ 0, i = 1, 2, 3

8>>><>>>: ð15Þ
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(a) The optimal value of EPR of player XðW∗
XÞ, when gϵ0-50

0
0.50

10 20 30
g

40

WX

50

EP
R 

(In
 u

ni
ts 

of
 g

1)

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

(b) The optimal value of EPR of player YðW∗
Y Þ, when gϵ0-50

Figure 3: The optimal value of EPR of player X and player Y .
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The Lagrangian is

L X, λ, νð Þ = YTAX − λiB
T
i X + 〠

3

i=1
Vi B

T
i X − 1

� �
: ð16Þ

Thus, the dual function is

g λ, νð Þ =min
X

L X, λ, νð Þ =min YTAX − λiB
T
i X + 〠

3

i=1
Vi B

T
i X − 1

� �
:

ð17Þ

For each pair ðλ, νÞ with λ ≥ 0, the Lagrange dual func-
tion gives us a lower bound on the optimal value p∗ of the
optimization problem (15). You are calm; scissors shows.
You must be very careful to cut an object or open a box with
scissors if you wish to cut it. Scissors shows that you are
crafty and are awaiting a chance. You have just made a
lovely dinner for scissors if you believed you could suffocate
rock by throwing paper. Thus, we have a lower bound that
depends on some parameters λ and ν. Problem (15) is trans-
lated into the optimization problem:

max − 〠
3

i=1
Vi, i = 1, 2, 3

subject to λ ≥ 0

8><>: ð18Þ

This is called the Lagrange dual problem corresponding
to problem (15). The Slater condition [28] says that strong
duality between (17) and (18) holds if the quadratic inequal-
ity constraints are strictly feasible; i.e., if there exists an X
with−BT

i X < 0,∑iB
T
i X = 1, i = 1, 2, 3. Strong duality between

(17) and (18) will be proven in the next section.
Now, suppose the order of play is reversed; player Y

chooses YR,, YP, YS first, and then, player X chooses XR, XP
, XS. Following a similar argument, if the players follow the
optimal strategy, player X should choose X to minimize
max
Y

YTAX, which results in a payoff of min
X

max
Y

YTAX

which is equivalent to

min β

subject toβI − AX ≥ 0

ITX ≡ 1
BTX ≥ 0,

8>>>>><>>>>>:
ð19Þ

where Equations (13) and (19) are standard convex optimi-
zation payoff functions of players X and Y . Note that player
Y ’s problem is dual to player X’s in game theory. Many pow-
erful algorithms have developed as a result of competitions
for programming rock paper scissors, the heuristic compila-
tion of techniques by Iocaine Powder, for instance, who was
the winner of the First International RoShamBo Programing
Competition in 1999. It also contains six metastrategies for
each method it deploys, which defeat the opponent in sec-
ond, third, and second guessing and so on.

The previous hypothesis is based on the sequence of how
player X and player Y make decisions. Now, player X and
player Y are making decisions at the same time. In compar-
ison with Equations (13) and (19), we accordingly have

max
Y

min
X

YTAX =min
X

max
Y

YTAX: ð20Þ

We call Equation (20) the saddle point equation. It is a
description of the saddle point at which players get the max-
imal payoff. Equation (13) gives the left part of Equation
(20), whereas (19) provides the right part of Equation (20).

Similarly, looking at the payoff of player X, we have
another saddle point equation

max
X

min
Y

XTAY =min
Y

max
X

XTAY : ð21Þ

The above equation is also a description of the saddle
point equation at which players can achieve the maximal
payoff of the system we study. Equations (13) and (20) rep-
resent the left part and the right part of Equation (20),
respectively. Based on this, we denote the left and right parts
of Equation (21) as

max δ

subject to δI − AX ≤ 0

ITX ≡ 1
BTX ≥ 0

8>>>>><>>>>>:
ð22Þ

min γ

subject to γI − AY ≥ 0

ITY ≡ 1
BTY ≥ 0

8>>>>><>>>>>:
ð23Þ

We use strong duality theorem to prove Equation (20).
The same principle can also be used to prove Equation (21).

To prove it, first, it is noted that

min
X

L X, λ, νð Þ =min YTAX − λiB
T
i X + 〠

3

i=1
Vi B

T
i X − 1

� �( )
:

ð24Þ

This means that we can write the optimal value of the
primal payoff as

d∗ =max
λ≥0

min
X

L X, λ, υð Þ: ð25Þ

We also have

p∗ =min
X

max
λ≥0

L X, λ, νð Þ ð26Þ

by the definition of the dual function. Thus, strong duality
can be described as the equality d∗ = p∗. YTAX satisfies the
strong max-min property or the saddle point property [29].
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3.3. Optimization Algorithm. With linear equality and
inequality constraints reduced to a sequence of linear con-
straint problems, the optimization problem in standard form
is as follows:

min f0 xð Þ
subject to f i xð Þ ≤ 0, i = 1,⋯⋯,m
hi xð Þ = 0,  i = 1,⋯⋯,p

8>><>>: ð27Þ

We have

f i ~xð Þ ≤ 0, i = 1,⋯⋯m,
hi ~xð Þ = 0, i = 1,⋯⋯,p,
~λ ≥ 0, i = 1,⋯⋯,m,
~λi f i ~xð Þ = 0, i = 1,⋯⋯m,

∇f0 ~xð Þ + 〠
m

i=1

eλi ∇f i ~xð Þ + 〠
p

i=1
~vi∇hi ~xð Þ = 0,

8>>>>>>>>>>><>>>>>>>>>>>:
ð28Þ

which are called the Karush-Kuhn-Tucker (KKT) conditions
[29].

Because problem (15) is convex, the KKT conditions are
also sufficient for the points to be primal and dual optimal.
Thus, we have

−BT
i
~X ≤ 0,  i = 1, 2, 3,

〠
3

i=1
BT
i
~X − 1 = 0, i = 1, 2, 3,

~λi ≥ 0,  i = 1, 2, 3,

− eλi BT
i
~X = 0, i = 1, 2, 3,

YTA + 〠
3

i=1
eλi −BT

i

� �
+ 〠

3

i=1
eνi BT

i = 0:

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

ð29Þ

Then, Xˇ and ðλˇ, νˇÞ are primal and dual optimal, with
zero duality gap. Interior-point methods solve problem
(15) by applying Newton’s method to a sequence of equality
constrained problems.

First, we translate problem (15) into an optimization
problem, which states that the inequality constraints are
implicit in the objective

min YTAX + 〠
3

i=1
I −BT

i X
� �( )

, i = 1, 2, 3

subject toBT
i X − 1 = 0,

8>><>>: ð30Þ

where I : R⟶ R is the indicator function for the nonposi-

tive reals

I zð Þ =
0 z ≤ 0,
∞z > 0,

(
ð31Þ

and I0 is the indicator function of f0g.
Then, we define the function

Î zð Þ = −
1
t

� �
log −zð Þ,

dom Î = R++

ð32Þ

to approximate the indicator function by using the barrier
method, where t > 0 is a parameter that determines the accu-
racy of the approximation. The function Î− is convex and
nondecreasing and takes on the value ∞ for z > 0. Î− is dif-
ferentiable and closed and increases to∞ as z increases to 0.

Subsequently, we replace I− with Î− in (30).

min YTAX + 〠
3

i=1
− 1/tð Þ log BT

i X
� �( )

,  i = 1, 2, 3

subject toBT
i X − 1 = 0

8>><>>:
ð33Þ

The objective function here is convex, since −ð1/tÞ log ð
−ZÞ is convex, increasing in z, and differentiable [29]. We
obtain the function

∅ Xð Þ = 〠
3

i=1
−

1
t

� �
log BT

i X
� �

, i = 1, 2, 3, ð34Þ

with dom∅ = fX ∈ Rn∣−BT
i X < 0, i = 1, 2, 3g,which is the log-

arithmic barrier for problem (15). Finally, we obtain the gra-
dient and Hessian of the logarithmic barrier function ∅:

∇∅ Xð Þ = 〠
3

i=1

1
BT
i X

∇ −BT
i X

� �
, i = 1, 2, 3,

∇2∅ Xð Þ = 〠
3

i

1
−BT

i X
∇ −BT

i X
� �

∇ −BT
i X

� �T + 〠
3

i=1

1
BT
i X

� �∇2 −BT
i X

� �
, i = 1, 2, 3:

8>>>>><>>>>>:
ð35Þ

3.4. Verifying Hypothesis. The hypothesis in our study is that
the saddle point equation max

Y
min
X

YTAX =min
X

max
Y

YTAX

can still work very well even if A changes with g, but it is
never affected by other factors. Assigning a specific value
to A in simulation software, such as A = A1 = ½1, 0, 2:7,1 ;
2:7,1, 0 ; 0,2:7,1�, we can calculate the left part of the saddle
point equation max

Y
min
X

YTAX easily using the CVX soft-

ware package. With our specified values, the calculation
result of the left part of the saddle point equation is max

Y

min
X

YTAX = +1:23333. The calculation result of the right

part is min
X

max
Y

YTAX = +1:2333. Assigning another specific
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value to A in simulation software, such as A = A2 = ½1, 0,
4:1 ; 4:1,1, 0 ; 0,4:1,1�, the calculation result of the left part
of the saddle point equation is max

Y
min
X

YTAX = +1:7. The
calculation result of the right part is min

X
max
Y

YTAX = +1:7
. It means that no matter A = A1 or A = A2, the left part of
the saddle point equation stays the same with the right part.
As indicated in Figure 3, suppose g1 = ðg + 5:1Þ/3, the opti-
mal value of EPR of player XðW∗

XÞ equals to that of player
YðW∗

YÞ, which increases with g and reaching towards 0.95.
Thus, we believe numerical results are consistent with our
theoretical hypothesis.

4. Conclusion

We have demonstrated in this paper how players can obtain the
optimal payoff in two-player iterated RPS game with the convex
optimization method and saddle point equation and verify the
hypothesis of the payoff equation with interior methods by
using simulation software. Hence, it can be concluded that con-
vex optimization is a feasible method to maximize the payoff in
two-player iterated RPS game regardless of other factors. Fur-
thermore, the research method is operational and the results
of our study can be extended to game systems like social cycling,
species competition, election, and economical issues and pro-
vide insight into further related quantitative research.

Rock paper scissors (RPS) is not only a game popular with
children but also a basic and classic model system for studying
the mechanism of decision-making in noncooperative strategic
interactions in depth. The RPS is a topic of increasing interest
and significance for it helps improving our understanding on
many complex competition issues (species divergence, price
cycling, human decision-making, rationality and cooperation,
and so on). It is also a starting point to enter into the interdisci-
plinary field between statistical physics and game theory [9].

As stated in Bi and Zhou’s paper [8], cooperation in a
finite-population RPS game system with more than two
players may be much more difficult and complex to achieve
than the case of only two players; we only provide the sim-
plest model to probe into the optimal strategy in iterated
RPS game in the paper; much more complicated related
research needs being carried out in the future.
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