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This paper proposes a novel signal source identification system composed of unmanned aerial vehicles (UAVs) and a blockchain,
in which the identification method makes full use of binocular camera data and received signal strength. The UAV tasks are
organized by using blockchain technology and smart contracts. To tackle the challenge that the transmit power of the object
and the channel path loss coefficient are unknown to the UAV, a maximum likelihood estimation method is developed to
estimate the parameters in the path loss log-normal shadowing model. Then, the mean squared error is used as the metric to
distinguish the signalling object. The simulation results show that the proposed method can effectively complete the task. Also,
a mobile edge computing- (MEC-) enabled UAYV testbed system is designed and implemented in real environment. The system

works accurately where the number of candidate objects is 3.

1. Introduction

Radio signal source identification provides essential support
in many applications [1-3]. However, except the basic
information of the object (such as shape and outline), the
parameters of the signal are usually unknown. Therefore,
in a complex electromagnetic environment, it needs to first
screen out the potential targets and then identify the one
which is sending signals. The traditional ways of object
detection and radio direction finding are easily constrained
by their own mobility and rely on manual operation and
control. Therefore, to improve the efficiency, accuracy,
and reliability of the identification, as well as reduce the cost,
an integrated and shareable aerial platform is required.
Technology advances in unmanned aerial vehicles
(UAVs, also known as drones) have enabled them to carry
multiple types of onboard sensors. Cameras are one kind
of sensors that have been commonly used. A UAV carrying

cameras can provide a clearer view from the air than ground
while allowing flexible movement. Cameras carried on UAV's
can be classified into many types, such as single camera [4],
multiple cameras [5], and spectral cameras [6]. A binocular
camera is a single camera with two lenses and is capable of
outputting both graphs and depth information, thus arousing
interest in UAV applications, such as UAV navigation [7],
obstacle avoidance [8], and localization [9]. Furthermore,
road detection [10] and photogrammetric measurements
[11] can be also solved with UAV binocular vision.
Meanwhile, the reduced cost and weight of Software-
Defined Radio (SDR) equipment make it feasible for UAV's
to carry an SDR onboard. The application fields of
UAVs carrying SDRs can then be extended to wildlife track-
ing, search, rescue, etc. For example, in [12], two SDR-based
UAV-assisted wildlife tracking methods are presented: one is
based on four single-stage antennas using the Doppler effect
and the other one using Yagi omnidirectional antennas for
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signal reach angle. Ref. [13] presents a UAV system carrying
VHEF telemetry equipment that includes a hexacopter UAV,
an onboard computer, an SDR receiver, a directional
antenna, and a control laptop on the ground. In paper [14],
to search for survivors after a disaster, the authors use the
UAV carrying an SDR as a GSM base station to receive sig-
nals sent by the target’s GSM device and locate the target
by the received signal strength and UAV coordinates.

As UAVs are getting more powerful and smarter nowa-
days [15], automatic UAV-assisted radio source detection
becomes a potential solution and a hot research topic. An
automatic UAV trajectory planning method for ground
object localization is proposed in [16]. The solution locates
ground objects by received signal strength and automatically
finds paths with high localization accuracy and low energy
consumption by reinforcement learning. A method for
locating illegal base stations via received signal power in
the case of unknown channel model and unknown noise
model is proposed in [17]. It takes advantage of directional
antennas and controls the UAV by Q-learning algorithms.
However, all the above methods have only been validated
in numerical simulations. In reality, the real-time perfor-
mance of the system, due to heavy data transmission stress
and computation demands, can be a major challenge to be
settled in field experiments.

Considering a practical commercial application scenario,
a user may not afford such a UAV fleet and it is also not
necessary. Therefore, UAVs may be from a heterogeneous
origin and form a computing paradigm of multiple autono-
mous agents. In the meantime, the air-ground integrated
edge computing system has been put into practice [18]. In
such an architecture, how to ensure secure communication
and cooperation between multiple parties becomes a key
problem. Blockchain [19, 20] has been proven to be very
useful in various IoT applications. In literature [21], the
authors describe a method of organizing the communication
protocol, which allows agents of the multiagent system
(MAS) to make decisions about their actions. The paper
shows how to implement an autonomous economic system
with UAVs and organize a communication system among
agents in a peer-to-peer network using the decentralized
Ethereum blockchain technology and smart contracts.
“BUS” proposed in [22] is a UAV swarm-assisted data
acquisition scheme in which data is collected from IoT
devices via a UAV swarm and then stored in the nearest
server with the assistance of blockchain. A smart contract
is employed to handle the IoT devices and missions in
BUS. In another work, the selection of the UAV for the
desired quality of network coverage and the development
of a distributed and autonomous real-time monitoring
framework for the enforcement of service-level agreement
(SLA) are introduced [23]. It builds a novel blockchain
architecture that relies on machine learning techniques to
monitor and penalize UAVs that violate SLA. In [24], the
authors propose a new type of blockchain to resolve critical
message dissemination issues in a vehicular ad hoc network
(VANET), which can be used as a reference in our work.

In this paper, partly motivated by [25], we design and
implement a mobile edge computing- (MEC-) enabled
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UAV system equipped with onboard SDR and binocular
camera, one for each. A signal source identification algo-
rithm that fuses the visual depth information and received
power strength is proposed. The organization of tasks of
UAVs is enabled by blockchain. Our method can work in
situations where the objects’ transmit power and channel
parameters are unknown.

The rest of this paper is organized as follows. Section 2
briefly introduces the overall architecture of the system.
Blockchain preliminaries are presented in Section 3. In
Section 4, the system model, the four major parts, the for-
mulation of the problem, and the design of the algorithm
are described in detail. Section 5 gives the experimental
results, including the results of the semiphysical simulation
and the real-world experiment. Finally, Section 6 concludes
the paper.

2. System Architecture

The proposed scenario consists of a target area, a hiding sig-
nal source, various UAVs, some users, a ground access point,
edge computing servers, network services, and a blockchain,
as shown in Figure 1. A user would like to make an order for
signal source identification. With the help of the servers, a
smart contract is generated with the order data (the purpose
of the order, attribute data, participators, etc.) and then trans-
ferred to the blockchain. Any unoccupied UAVs can accept
the contract which contains information about the task.

Then, the UAV makes a scheduled flight and informs the
user about the result of the task. During the flight, the data
collected by the UAV will be sent to the edge servers for
analysis. After returning to the base, the UAV notifies the
servers that the order is completed. This ensures the security
and reliability of the proposed system.

3. Blockchain Preliminaries

The blockchain is essentially a distributed public ledger,
where each transaction is recorded in a block. Each block
is identified by its hash. Each block not only contains the
content of the transaction and timestamp but also references
the hash of its previous block. These blocks are linked by
reference hash and then superimposed into a “chain” in
chronological order to create a blockchain. A blockchain
network is a peer-to-peer network composed of a group of
nodes. Each node operates the same blockchain through its
own copy. The blockchain is a distributed data structure that
is copied and shared among network members. We assume
that each user conducts transactions on the network through
miners (i.e., nodes). The literature [26] summarizes that the
operations of nodes in a blockchain network follow
the below steps:

(1) The user interacts with the blockchain through a pair
of private/public keys. When initiating a transaction,
the transaction initiator needs to sign the transaction
with a private key, and those transactions are
addressable on the network through the initiator’s
public key. When a new transaction is generated, it
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FIGURE 1: System architecture.

will be broadcast to other participating nodes in the
blockchain network

(2) After the transaction is broadcast to the entire net-
work, within an agreed time interval, each node will
collect several unverified transactions and hash them
into a time-stamped block. Each block can contain
hundreds or thousands of transactions

(3) Each node performs a Proof-of-Work (PoW) calcu-
lation equivalent to solving a mathematical problem
to determine who can verify the transaction. Letting
the fastest node in calculation do the job is the way
to achieve consensus. The node with the fastest
PoW calculation will propagate its own block to
other nodes. This calculation process is a “mining”
process to derive the effective hash of the new block

(4) The node that obtained the verification right broad-
casts the block to all nodes, and other nodes will con-
firm whether the transactions contained in this block
are valid. If valid, add this block to the blockchain
and apply the transactions it contains to update the
world view of all nodes. Otherwise, this block will
be discarded. Once the block is accepted by the
blockchain, the transactions contained in the block
are part of the blockchain and cannot be changed
in any way

(5) Once all nodes accept the block, the blocks that have
not previously completed the PoW work will be
invalidated, and each node will reestablish a block
to continue the next PoW calculation work

In essence, a smart contract refers to a piece of condi-
tional statement code that runs on the blockchain. When
two parties of a smart contract generate an asset transaction
on the blockchain, this piece of code is triggered to automat-
ically complete the specific transaction process. Smart

contracts are special accounts on the blockchain, which con-
tain addresses, balances, status, and codes. The address is a
unique identifier for the account, just like a regular user
account. The smart contract works as follows:

(1) Construction of smart contracts: smart contracts are
jointly formulated by multiple users in the block-
chain and can be used for any transaction behavior
between any users. A contract clearly stipulates the
rights and obligations of both parties to the transac-
tion electronically. The code contains conditions that
will trigger the automatic execution of the contract.
All possible results of the contract should be
described in the smart contract

(2) Storage smart contracts: once the coding is com-
pleted, the smart contract is uploaded to the block-
chain network; that is, all nodes on the entire
network can receive the contract

(3) Executing smart contracts: the smart contract will
periodically check whether there are related events
and trigger conditions and push the events that meet
the conditions to the queue to be verified. The verifi-
cation node on the blockchain first performs signa-
ture verification on the event. After most nodes
reach a consensus on the event, the smart contract
will be successfully executed and the users will be
notified. The execution result of a smart contract
must be deterministic; that is, the same input always
produces the same output. Because all interactions
with the contract are performed through signed mes-
sages on the blockchain, all network participants can
obtain the cryptographically verifiable trace of the
contract’s operations

4. System Model

The architecture of the proposed blockchain-based signal
source identification system is shown in Figure 2. There
are three roles: miners, initiators, and participants. In the
system, participants have backbone ground edge units to
support UAV manipulating, data processing, negotiating
with miners, and transmitting data to initiators.

Miner: the miner is a trusted and authenticated node that
has multiple roles. First, it acts as a broker between initiators
and participants. It accepts requests from initiators and
matches them with participants. Second, it is a maintainer
of the stable operations in the blockchain system which
packages all kinds of data and smart contracts onto the
blockchain. There could be a few miners, such as servers of
the different public third-party platforms, in a real scenario.

Initiator: the initiator refers to the users in Section 2. The
object detection or signal source identification task is
launched by the initiator. Then, the initiator sends this task
to the miner and waits for the assignment and draft smart
contract. Smart contract and data related to the transaction
will be handed to the miner to write onto the blockchain.
Detection data will be returned by participants directly.
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FIGURE 2: The proposed system model.

Finally, the initiators make payment through the blockchain
by using digital currency.

Participant: the participant refers to the UAV. It is
controlled by a ground edge unit. The participant can
evaluate the recruitment from the miner and accept the
task. It reads the parameters related to the object identifi-
cation task and the smart contract from the blockchain.
Then, it flies to the target area and sends the computation
results to the initiator.

After matching and agreement on the smart contract,
the object detection and signal source identification task is
technically carried out in three major steps, ie., visual-
based object detection and tracking, binocular depth estima-
tion, and wireless signal-aerial image fusion-based signal
source identification. The flow chart of the method is shown
in Figure 3.

4.1. Blockchain and Smart Contract. The design goals of
introducing blockchain and smart contract lie in two aspects:

4.1.1. Reliable Collaboration. We need to ensure the authen-
ticity and reliability of initiators and participants. To this
end, the blockchain guarantees that the synchronization
and consistency of quality of service (QoS) of each UAV,
and the payment is correctly made by the user.

4.1.2. Security and Privacy. We assume that the initiator and
participants are all semihonest nodes who obey the agree-
ment and honestly execute the tasks. However, they may
want to probe into others’ data, either individually or
collusively. On the other hand, both sides do not want to
expose their identities. Therefore, the proposed blockchain-
based architecture combines secure schemes such as
asymmetric key cryptography, ring signature, and consensus
mechanism. All the operations are performed in a
privacy-preserving manner.

According to Figure 2, there are totally eight steps for the
whole process.

Step 1. The initiator sends its task requirement and
remuneration offering to the miner which is encrypted by
its private key and with ring signature.

Step 2. The miner decrypts the requirement and recruits
the participant with an optimal matching algorithm accord-
ing to predefined conditions. The offer is sent with the
encryption of the miner’s private key.

Step 3. The participant decrypts the offer and chooses to
accept or deny it in his own interest. If accepted, its param-
eters and the public key will be encrypted with the miner’s
public key and then sent back to the miner.

Step 4. The miner then answers the initiator with the
information of the participant in an encryption manner.

Step 5. Then, a smart contract between the initiator and
the participant is created in both parties’ confirmation.

Step 6. The smart contract is deployed in the blockchain
framework. The miner also builds a secure channel and pro-
vides a pair of keys for data exchange of both parties.

Step 7. After receiving the parameters of the task from
the initiator (a user) via the secure channel, the participant
(a UAV) flies to the target area and performs the
identification task.

Step 8. When the task is completed, the result will be
returned to and validated by the initiator via the secure
channel. Finally, the payment is made using digital currency
according to the smart contract.

4.2. Object Detection and Object Tracking. The visual target
detection and tracking part mainly complete the subtask of
tracking and identification of specific types of targets within
the UAV field of view. Target detection is one of the key
technologies to improve the perception capability of UAVs
and is of great significance. Compared with the traditional
methods based on manual features, the deep learning
methods based on convolutional neural networks have pow-
erful feature learning and expression capabilities and
become the mainstream algorithms for target detection tasks
at present [27].
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FIGURE 3: The flow chart of the wireless signal-aerial image fusion-
based signal source identification.

Aerial photography generally has the following charac-
teristics because the imaging perspective is different from
natural scene images.

(i) Complex background
(ii) Small targets
(iii) Large field of view
(iv) Rotation

Inspired by [27], the visual target detection part adopts
the YOLO-based target detection framework [28], and on this
basis, the algorithm is optimized and adjusted based on the
characteristics of UAV data collection and the difficulties of
recognition, via the drone vehicle datasets [29] and DOTA
datasets [30], as shown in Figure 4. For the target tracking
part, the Deep SORT algorithm [31] is used to predict the
movement probability of the object and calculate the differ-
ence between the front and back frame features of the object
and then complete the continuous tracking of the target.

We perform data augmentation for both datasets of
images. Data augmentation is a technique that artificially
extends the training dataset by allowing limited data to
produce more equivalent data. It is an effective means to
overcome the shortage of training data. We mainly use
random rotation, color transformation, blurring, noise injec-
tion, and hybrid image processing to enhance the diversity
of the input data. Then, the YOLO pretraining network is
trained using the enhanced data to fine-tune the weights of
the convolutional layer parameters and migrate the object
recognition task from the ground view to the object recogni-
tion task in the UAV view.

In the overall system, the signal source identification
algorithm needs to take the visual detection result and the
corresponding object ID as input; thus, we add a tracking
algorithm in addition to YOLO’s object recognition to
ensure that each detected object corresponds to its ID. As
an algorithm commonly used in Multiobject Tracking
(MOT), Deep SORT is a detection-based tracking method
of good performance and high industrial interest. The main
process of the MOT algorithm is as follows:

(1) Given the original video frame, run a target detector
such as YOLO for detection and obtain target detec-
tion frames

(2) Take out the interested targets in all target
frames and perform feature extraction (including
apparent features and motion features)

(3) Perform similarity calculation to calculate the
matching degree between the targets in the front
and back frames (the distance between the features
belonging to the same target before and after is rela-
tively small, and the distance between different
targets is large)

(4) Associate the data, and assign the ID of the target to
each object

4.3. Binocular Depth Estimate. The binocular depth estimate
part is to complete the subtask of estimating the depth to the
identified object, i.e., the distance of a UAV equipped with a
binocular camera to the identified target object.

In this work, we choose the SGBM algorithm to estimate
the depth between objects and the camera [32]. Firstly, the
binocular disparity d measures the horizontal disparity of
the surface point on the target object between the video
frame taken by the left camera x; and the right camera xy
is estimated by energy optimization [33] as shown in

d=|x = xg- (1)

Then, the obtained disparity map is converted into a
depth map based on the relationship between disparity and
depth. Finally, the distance from the target to the camera is
extracted from the depth map. More specifically, the dispar-
ity value of each pixel is calculated with respect to the right
eye view using the left eye view as the reference. We con-
struct an energy function E(D) to estimate the optimal dis-
parity image D by minimizing the energy value using the
following equation:

BD)=3C(pD;) + 3 PI[ID, Dy =]
P qeN,

+ z P,I[|D,-D,|>1]. @
qeN,

The first term is the sum of matching cost for every pixel
in the disparity image D corresponding to the captured left
video frame. C(p, D,) is the pixel-wise matching cost func-
tion with disparity D, corresponding to the minimum cost
for pixel p. In the current implementation, the matching
cost value is calculated based on Mutual Information (MI)
[34]. The second term adds a constant penalty P; for all
pixels g in the neighborhood N, of p, if the disparity between

p and g is 1, while the third term adds a larger constant pen-
alty P, if the disparity between p and g is larger than 1.
Operator I[X] equals 1 if event X occurs; otherwise, it equals
0. Constant P, is chosen larger than P,.

Based on the mapping between disparity and depth
value, the depth image according to the left-view video
frame can be evaluated. The depth information of the
surface point on the target object using disparity value is
computed as follows:
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FIGURE 4: Two datasets for UAV object detection: (a) from drone vehicle datasets; (b) from DOTA datasets.
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where b is the baseline of the binocular camera and f is the
camera focal length.

To obtain the distance between the target object and the
camera, the bounding box of the object in the video frame
needs to be computed based on the object detection and
tracking algorithm. The pixels within the bounding box are
sampled at an interval of 2 to 5 pixels, and the depth value
is indexed from the corresponding depth map. The average
depth value of the sampled pixels is then used to represent
the actual distance from the object to the camera.

4.4. Fusion Object Detection. So far, we have found a number
of suspicious objects distributed in the area, which are simi-
lar in appearance. Suppose that only one of them is the real
object which is communicating with the outside world at a
fixed wireless frequency band, and we need to identify it.
Some existing works utilize a wireless network between
UAVs and objects to help localization [35, 36]. However,
in both cases, the information of the target is known before-
hand. The wireless connection is only used to transmit data,
power, and arrival of time for distance calculation. To this
end, the proposed method utilizes a UAV equipped with a
binocular camera to obtain the distances between the object
and the UAV at some measurement points of the trajectory,
by applying binocular depth estimation after using deep
learning-based target detection. At the same time, the
received power is obtained utilizing the UAV onboard
SDR. As shown in Figure 5, the UAV moves simultaneously
along the path until the desired data has been collected.

Let S denote the set of objects that the UAV detected in
the flight area. Arbitrarily select an object s € S and take it as
the source target sending signals. Then, let the received
power p, measured by the UAV at position #n be as same
as p,, (assume that only s is the transmitting signal and note
that s is anonymous to the UAV) and the distance estimated

(par ) podp P avdw)
o =
= =i
object s

FI1GURE 5: Problem formulation of signal source identification.

by binocular depth estimation at position #n be d,. The two
types of data collected during the flight have a correspon-
dence such that the received power from the object s
measured at N positions constitutes a vector p,, and the
binocular depth estimated distance of the object s measured
at N positions constitutes a vector d, as shown in

d, = [dsl’dSZ’“"dsi"“’dSN]T’ (4)

S

ps:[psl’pSZ"”’psi"”’psN]T' (5)

Consider that the received wireless signal power satisfies
the path loss log-normal shadowing model [37].

d
p=p,—10alg — + X, (6)
dy

where p is the received power in dB at distance d from the
object, p,, is the received power in dB at distance d, from the
object, a is the path loss exponent, and X, is the
environment-dependent shadow fading coefhicient which obeys
the Gaussian distribution with zero mean and variance o”.

To determine whether object s is sending signals, the
distance vector d; and power vector p, of object s can be
substituted into the path loss log-normal shadowing model
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to determine if they match the model well. In the case that
the parameters p, and « in the log-normal model are
unknown, they (when s is assumed to be the target object)
need to be calculated first. By utilizing maximum likelihood
estimation, the procedure for evaluating the parameters of
the path loss log-normal shadowing model for object s is
as follows.

Let the reference distance d;, in the path loss log-normal
shadowing model be equal to 1 m, implying that p, is the
received power at a reference distance of 1 m. Since p is sub-
ject to Gaussian distribution with mean p, — 10« lg d and
variance o2, we can define the following likelihood function:

pO’ a0 H exp {_ [psn ~ (pO

- 10alg dmnz}

2no 202

(7)

Taking the likelihood function logarithmically, we can
obtain

In L(po, a, 02) =NIn

1 _ i msn B (PO — 10« lg dsn)]2 )
n=1

202
(8)

Then, to calculate the maximum likelihood estimate of
the parameters, we can derive equation (8) and find p, «,
and o2, such that the partial derivatives are zero, i.e.,

Z [psn

8lnL IchIgd )]

=0, )

olnL & [P — (P — 10alg d,,)]
=lgd,, sn 0 sn =0, (10)
oa n; o?
olnL 1 1
Jo 2 0-2 Z[Psn (po_lo‘xlgdsn)] =0.

(11)

After calculation, we can obtain the following estimates
for p,, &, and o*:

P, =p+10ad,,, (12)
N 10(lgd,, —d p

a _ anl < ( g 7sn) (Zpsn P) , (13)

Zn:l (lgdn _dsn)
Z [psn - 10« lg d )] > (14)

where
1 N

p=_—_ 15
p anlpsn’ ( )

_ 1 Y
=_)Y1] . 16
dSl’l Nr; gdsn ( )

Using the parameters obtained from the maximum like-
lihood estimation p;, and @, we can obtain the fitted value of
the received power p,, according to equation (6) as

ﬁm=130—10a lgdsn' (17)

To measure the extent to which object s conforms to the
path loss log-normal shadowing model, we choose the mean
squared error (MSE) of the fitted received power and the
measured received power as the metric. Then, the MSE of
object s is defined as

1Y
MSES = N Z (Psn _psn)z' (18)
n=1

After the UAV detects all objects in the flight area, it
compares the MSE of all objects and identifies the object
with the smallest MSE as the source target, i.e.,

Source target = arg min ¢MSE_. (19)

In summary, the fusion-based signal source identifica-
tion algorithm is shown in Algorithm 1.

4.5. Hardware Implementation. We also build a testbed to
evaluate the system performance. The hardware component
list is described in Table 1.

The experiment system consists of two major parts, the
air system and the ground system, as seen in Figure 6. The air
system contains various UAVs (in our case, hexacopter
UAVs loaded with Raspberry 4Pi B model, which links the
binocular camera and the SDR by a USB cable and commu-
nicates with the ground system through Wi-Fi). The ground
system includes a laptop with a discrete GPU, in which the
costly computations are conducted, and a Wi-Fi AP to
connect all devices through wireless communications. The
laptop is also responsible for simulating the miner in the
blockchain network. We use smartphones to play the role
of the initiator. All tasks are launched from smartphones.
The UAV system is shown in Figure 7. The Raspberry Pi 4
and SDR are mounted in the UAV, and the camera is tied
in angle to the ground.

5. Result and Analysis

We used semiphysical simulation to verify the effectiveness
of the fusion algorithm. First, we used SDR on the ground
to collect power data at different positions, and then, we cal-
culated the path loss coefficient of the actual channel and the
received power at a reference distance of 1 m by linear
regression. As shown in Figure 8, the object was a USRP
B210 device from Ettus Corp, and diagrams for transmitting
were written in GNU Radio software. The waveform of the
signal was a periodic sine waveform, and the transmitter
frequency was set to 907 MHz-927 MHz, the power was set
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Output: signal source target

1. while UAV keeps flying do

if new object s’ is detected then
do S =S u{s?}

end if

for sin S do

© NN WD

if d and p is valid then

9. update d and p to the end of d; and p;
10. end if

11. end for

12. if data achieves certain amounts then
13. target = None

14. forsin S do

15. calculate p, and @ of object s

16. calculate MSE,

17. update target by comparing MSE

18. end for

19. end if

20. end while

Input: objects set S=@, initiate corresponding distance data vector d =@, power data vector p.=0

obtain current power p from SDR measurement

obtain current distance d of object s from binocular depth estimate

ArLcoriTHM 1: Fusion-based signal source identification.

TaBLE 1: Hardware components.
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FIGURE 6: Experiment system architecture. The dashed double
arrow lines show the communications between devices.

to 1W, and the transmitting gain of the antenna was
50dB. The object was placed at 1.7m from the ground
to simulate the signal propagation in the air as high as
possible. We measured the data at each 1m interval on
the ground, and the distance range from the source was
from 1m to 30 m. The experiment was repeated 10 times,

and the total received power values were obtained for 300
locations. Figure 9 shows the measured power and dis-
tance. After calculation, we obtained p,=-28.91dBm, «
=3.581, and 0® =23.49.

5.1. Security Analysis. In our system, all participants and
initiators are assumed to be semihonest nodes. Based on this
assumption, we are going to analyze the security objectives
in this section.

5.1.1. Anonymity between Initiators and Participants. To
hide the identities of both the initiator and participants, we
use the ring signature proposed by Rivest et al. [38]. The ring
signature can hide the real signer. And if the asymmetric
encryption function is used in the signature, the security of
the signature can be enhanced. The ring signature in our sys-
tem is based on the asymmetric encryption function.

5.1.2. Data Security. All data segments are encrypted with
the receiver’s public key; without the receiver’s private key,
the attacker cannot crack the cryptosystem and obtain the
encrypted data segments. At the same time, the key
exchange and data communication are through the secure
channel created by the miner, which enhances the security.

5.2. Performance of Semiphysical Simulation. We first placed
the objects randomly in an area with the size of 30 m x 40 m,
generated the coordinates of the objects, and selected an
object as the source target. After that, we generated a
sequence of N coordinates at uniform intervals of 1m
according to the distance to the object. This sequence is
the coordinate sequence of the simulated flight path of the
UAV. Then, according to the measured channel parameters,
the source distance was substituted into the path loss log-
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FIGURE 8: Experiment system implementation: (a) USRP B210; (b) GNU radio block diagrams.
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Ficure 9: Distance versus power.

normal shadowing model to generate the corresponding
measured power value. Next, for all objects, the distance
was calculated based on the coordinates of the UAV flight
path and the distance of the object coordinates. Noting that
the UAV flight passed through N points, we set up an object
distance vector with a size of N, as well as a power vector.
Figure 10 shows the identification accuracy of the proposed
fusion method under different numbers of potential objects.
When the number of objects is 2, the accuracy decreases
slightly with the increase in experimental rounds and finally
reaches a stable value about 70%. When the number of

objects is 3, the accuracy also decreases slightly with the
increase in experimental rounds and then increases gradu-
ally until it is stable at about 53%. We attribute this small
fluctuation to the influence of random factors. In the above,
we mentioned that objects were randomly placed in the area,
and the signal source was randomly selected; a Gaussian
noise would also be added when using the log-normal sha-
dowing model to generate the received power at different
distances, which would affect the discrimination of objects
and then the accuracy. The reason for the decrease in accu-
racy against the number of objects is that, within the limited
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FIGURE 11: Sensitivity under different distance errors.

area, the increase in the number of objects will also increase
the possibility that they have similar distance to the UAV,
and thus, the trend of distance versus power change between
them tends to be similar.

5.3. System Sensitivity Analysis. Figure 11 shows the sensitiv-
ity of the fusion method regarding the change of parameters
and the depth distance error obtained by the binocular
vision in the log-normal model. o is the variance of the
noise mentioned above. The variance indicates the stability

of the channel or the received signal-to-noise ratio to a
certain extent. To explore the influence of variance on the
accuracy of the method, we selected three synthetic and one
measured values for experimental simulation. Here, the
number of objects was set to 3, the distance between objects
was 5 m, the number of experiments was 2000, and the num-
ber of distance-received power pairs collected for each exper-
iment was 30. The horizontal coordinate was the variance of
the distance error for each measurement in square meter.
The four curves indicate the detection accuracy of the fusion
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FIGURE 12: Experiment results: (a) two umbrellas detected; (b) the depth graph; (c) successfully distinguishing the signal source (see the red

anchor box).

algorithm when the variance of the shadow fading is set to 5,
10, 15, and 23.48, respectively, while the distance error
increases from 0 to 4.0 meters.

When the variance is small, in another word, when the
signal-to-noise ratio is high, the discrimination accuracy of
the method is high. When o2 is equal to 5, the channel is
ideal and the accuracy is close to 1.0. With the gradual
increase in variance, the accuracy also begins to decline.
When o? exceeds 15, the accuracy begins to decline signifi-
cantly. It is preliminarily inferred that the value of 15 should
be a critical point of the method. Also, when the distance
error increases, the accuracy decreases gradually. The calcu-
lation shows that when the distance error is 4, it will be 2m
different from the real distance in extreme cases. When the
object spacing is 5m, the error will greatly reduce the accu-

racy. In practice, the distance error estimated by binocular
vision is around 1 m, so the accuracy of this method is high
enough in real-world applications.

5.4. Physical Experiment. We also launched the UAV to the
air to verify our system. The experiment was held on a
lawn, and the objects were simply 3 umbrellas, each was
placed 3m away from the other. The whole system
worked well, when the 3 umbrellas were in the sight of
the camera. By controlling the moving path of the UAV,
we got some data. Despite those limitations, the accuracy
was very close to the simulation result. Figure 12 shows
the setup of the experiment and the real-time output of
the system.
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6. Conclusion

In this paper, we proposed a signal source identification
algorithm to distinguish the target by a blockchain and
UAV-enabled system. We used binocular cameras to detect
candidate objects and corresponding distances. With the mea-
suring of the received signal strength and mobile edge com-
puting, finally, we used fused object identification techniques
to determine the real target object. Blockchain and smart con-
tract technologies were adopted to organize UAVs and users,
aimed at providing reliability and security. The accuracy of
discrimination could reach 70% for 2 objects and 53% for 3
objects in a semiphysical simulation. The real-world experi-
ment showed the feasibility of the system, and the perfor-
mance was close to that in the semiphysical simulation.

Regarding future directions for this work, first, satellite
positioning (such as GPS and BeiDou) can be utilized to give
precise location information of the signal source after iden-
tification. Second, only one signal source is considered in
this paper; the method will be extended to support multiple
signal sources in the future work.
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