
Research Article
SROBR: Semantic Representation of Obfuscation-Resilient
Binary Code

Ke Tang , Zheng Shan , Fudong Liu , Yizhao Huang , Rongbo Sun , Meng Qiao ,
Chunyan Zhang , Jue Wang , and Hairen Gui

State Key Laboratory of Mathematical Engineering and Advanced Computing, China

Correspondence should be addressed to Zheng Shan; zzzhengming@163.com

Received 12 April 2022; Accepted 25 May 2022; Published 24 June 2022

Academic Editor: Lei Zhang

Copyright © 2022 Ke Tang et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

With the rapid development of information technology, the scale of software has increased exponentially. Binary code similarity
detection technology plays an important role in many fields, such as detecting software plagiarism, vulnerabilities discovery, and
copyright solution issues. Nevertheless, what cannot be ignored is that a variety of approaches to binary code semantic
representation have been introduced recently, but few can catch up with existing code obfuscation techniques due to their
maturing and extensive development. In order to solve this problem, we propose a new neural network model, named SROBR,
which is a deep integration of natural language processing model and graph neural network. In SROBR, BERT is applied to
capture sequence information of the binary code at the first place, and then GAT is utilized to capture the structural
information. It combines natural language processing and graph neural network, which can capture the semantic information
of binary programs while resisting obfuscation options in a more efficient way. Through binary code similarity detection task
and obfuscated option classification task, the experimental results demonstrate that SROBR outperforms existing binary
similarity detection methods in resisting obfuscation techniques.

1. Introduction

In recent years, researchers have shown an increased interest
in detecting binary code similarity [1], which plays a pivotal
role in program analysis. Binary code similarity detection is
widely applied in many areas, including software plagiarism
detection, automated vulnerability discovery, and malware
identification. Existing research approaches have been inten-
sively studied, and many remarkable achievements have
been attained in this field. For example, Genius [2], Gemini
[3], VulSeeker [4], InnerEye [5], Asm2Vec [6], SAFE [7],
Mirrors [8], Codee [9], etc. all of these refer to the natural
language processing method. They use their proposed model
to embed the binary program and judge whether the binary
program is similar based on the similarity of the embedded
vectors.

Specifically, SAFE [7] draws on the natural language pro-
cessing method, uses Word2Vec [10] to generate the embed-
ding of instructions, then regards the assembly instructions as
sequences, and uses a self-attention-based neural network to
generate the embedding of binary functions. However, it did
not take the structural characteristics of the binary code into
explicit consideration and could represent the semantic infor-
mation of the binary function preferably. Order-Matter [11]
uses different models to obtain the embeddings for binary func-
tions at three levels, semantically sensitive, structural sensitive,
and order sensitive, respectively. In addition, it also defines
two graph-level tasks for evaluation. DeepSemantic [12] uses
BERT [13] model, which is the best model in the field of natural
language processing. It mainly consists of two stages: In the pre-
training stage, a general model suitable for downstream tasks is
created. In the fine-tuning stage, specific models for specific

Hindawi
Wireless Communications and Mobile Computing
Volume 2022, Article ID 4095481, 11 pages
https://doi.org/10.1155/2022/4095481

https://orcid.org/0000-0002-2043-6958
https://orcid.org/0000-0001-8390-2816
https://orcid.org/0000-0002-8387-0831
https://orcid.org/0000-0002-7291-3920
https://orcid.org/0000-0002-7985-859X
https://orcid.org/0000-0002-2941-8107
https://orcid.org/0000-0002-8871-4272
https://orcid.org/0000-0002-7456-2853
https://orcid.org/0000-0003-2752-2717
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/4095481


tasks based on the pretrainedmodel are generated. OSCAR [14]
is based on a hierarchical transformer [15] and uses LLVM IR
to capture the context information of long code sequences.
InnerEYE [5] focuses on the use of neural machine translation
models to solve the task of binary code similarity comparison
across instruction set architectures (ISA).

However, with the development of information technol-
ogy, obfuscation technology is increasingly applied to binary
programs, making binary code similarity detection more and
more challenging. Most research scholars have not con-
ducted in-depth exploration on this issue. Some researchers
have explored the effectiveness of the proposed method in
resisting obfuscation techniques, but none of them can
completely defeat it.

For instance, LoPD [16] uses a deviation-based program
equivalence checking method to evaluate whether the pro-
grams are similar and have a certain degree of obfuscation-
resilient ability. FOSSIL [17] recognizes malicious code
functions on the basis of resisting various obfuscation tech-
niques. In Asm2Vec [6], it shares the idea of PV-DM algorithm
to detect the similarity of binary programs and manifests
certain obfuscation-resilient capabilities. However, all these
methods do not provide specific solutions to existing obfusca-
tion techniques.

In order to resist obfuscation techniques better in binary
code similarity detection, we find that it is a feasible scheme
to combine natural language processing methods with graph
processing algorithms. Inspired by DeepSemantic [12] and
Order-Matters [11], we propose a new deep neural network
architecture that learns the deep semantic information of
binary functions by combining BERT (Bidirectional Encoder
Representations from Transformers) and GAT (graph atten-
tion network). Experiments have proved that it can resist the
existing binary code obfuscation technology better than the
existing models.

Our contributions are concluded as follows:

(1) We adopt a new neural network architecture, named
SROBR, which combines natural language processing
and graph data processing. It performs well in captur-
ing the semantic information of binary functions,
while resisting the existing obfuscation methods based
on the semantic information of the functions

(2) We utilize BERT model to obtain the semantic embed-
ding of assembly instructions, so that each assembly
instruction contains richer contextual information,
whichmakes the semantic representationmore accurate

(3) We apply GAT to embed the control flow graph of
binary function. Through graph attention layer, we
could get the attention weights and update the
semantic information of the basic blocks

The remaining part of this paper proceeds as follows: Section
2 mainly introduces related work and background knowledge.
Section 3 describes the structure of our proposedmodel in detail.
Section 4 shows the results of our experiments and compares
with the baselines. Section 5 summarizes the full paper.

2. Related Work

2.1. Obfuscator-LLVM Options. O-LLVM [18] is a C/C++
compiler based on the LLVM framework and Clang toolchain.
It modifies the program logic at the intermediate representa-
tion level to increase the complexity of the binary while ensur-
ing that the semantics remain unchanged. This feature can not
only protect the copyright of the software and prevent it from
being disassembled and analyzed by others but also hide the
actual purport of the software itself, thereby to carry out mali-
cious behaviors.

There are three obfuscation options for application at
present. The SUB (Instruction Substitution) option will
replace part of the assembly instructions with equivalent code
fragments without changing the structural information of
control flow graph. The BCF (bogus control flow) option will
generate bogus control flow by adding invalid edges and nodes
of the function control flow graph. The FLA (Control Flow
Flattening) option will use a complex hierarchical structure
to reconstruct the control flow graph and fuse it into a linear
structure while ensuring that its semantics remain unchanged.

We use a simple example to intuitively exemplify the effect
of these three obfuscation options. The source code is shown in
Figure 1. Figure 2 shows the different program control flow
graph (CFG) by compiling the same source code with different
obfuscation options. Figure 1 is the CFG compiled without any
obfuscation options. Figure 1 uses the sub option, and its CFG
structure has basically not unchanged. Only some instructions
are replaced with more complex equivalent instructions.
Figure 1 uses the bcf option, of which the CFG is very different
from (a), and introduces a lot of false instruction blocks.
Figure 1 uses the fla option to completely disrupt the basic
blocks in the CFG. It is difficult to understand the semantics
of the program by using traditional reverse analysis.

2.2. Existing Approaches. LoPD [16] proposes a deviation-
based program equivalence checking method, which searches
for any dissimilarity between two programs by finding an
input that will lead these two programs to be having differ-
ently, either with different output states or with semantically
different execution paths. However, this method will consume
a lot of time and cannot be applied on a large scale, and the
results may be distorted.

FOSSIL [17] integrates a range of syntactical, semantic,
and behavioral features by using Bayesian network model,
which can recognize the functions in the open source software
for themalicious code. Besides, it has the ability to resist obfus-
cation options and compiler optimization options. But it did
not focus on the similarity of obfuscated code.

Asm2Vec [6] proposes to model the control flow graph
as multiple sequences by using random walk algorithm.
Each sequence corresponds to a potential execution trace
that contains linearly laid-out assembly instructions. Then,
these sequences are taken as input, and the PV-DM [19]
model are used for training to learn the semantic representa-
tion of the function. Converting CFG to sequences will lose
the structural information of the program, which causes this
model not capable of representing the semantic information

2 Wireless Communications and Mobile Computing



of the function completely. Although this method shows cer-
tain resistance to obfuscation options, it cannot completely
defeat the code obfuscation.

2.3. BERT. BERT [13] is currently the best performing pretrain-
ing model in the field of natural language processing. It is dif-
ferent from the traditional monodirectional language model
or the shallow splicing of two monodirectional language
models. Instead, its main architecture is a stack of transformer’s
encoders [15], each of these layers utilizes the self-attention
mechanism to learn the semantic representation of natural lan-
guage. BERT is actually a two-stage framework, including pre-
training and fine-tuning. First, it performs pretraining on a
large corpus to obtain a generalized representation and then
fine-tune it for specific tasks. A large number of experiments
have proved that this method can achieve good results and
the same in the field of assembly language analysis. For exam-
ple, Order-Matter [11] and DeepSemantic [12] have used the
BERTmodel and achieved good results. Therefore, we will also
use the BERT model to learn deeper semantic information
in the binary function to resist the obfuscation options of
O-LLVM.

2.4. GAT. Although traditional deep learning algorithms have
been applied to extract the features of Euclidean spatial data
with great success, its performance on dealing with the data
that generated from non-Euclidean spaces in many practical
scenarios is not satisfactory. This is because the graph is irreg-
ular, each graph has unordered nodes of variable size, and each
node in the graph has a different number of adjacent nodes,
which makes it difficult for existing deep learning algorithms
to deal with it. In addition, a core assumption of existing deep
learning algorithms is that the data samples are independent
of each other. However, each data sample (node) has edges
related to other real data samples (nodes) in the graph, and
this point can be used to scout the interdependence relations
between nodes.

In recent years, people have becomemore and more inter-
ested in the expansion of deep learning algorithms on graphs.
Successfully driven bymany factors, the researchers integrated
the ideas of convolutional networks, recurrent networks, and
deep autoencoders to define and design the neural network

structure for processing graph data, which brought up the
graph neural network.

Graph neural networks mainly include graph convolution
networks (GCN) [20, 21], graph attention networks (GAT)
[22], graph autoencoders (GAE), [23] etc. In the field of seman-
tic representation of binary codes, Qiao et al. [24] and Massar-
elli et al. [25] use GCN for semantic embedding of functions,
but considering that the CFG of functions is a directed graph,
which will cause a certain loss of the structural information.
To avoid this problem, we adopt the GAT model instead.

GAT is a spatial-based graph convolutional network. It
uses the attention mechanism to determine the weights of
neighbor nodes when aggregating feature information. The
GAT [22] introduces a self-attention mechanism in the prop-
agation process, and the hidden state of each node is calculated
in consideration of its neighbor nodes. In the internal struc-
ture of the GAT network [22], it is a simple stack of graph
attention layers. For the node pair ði, jÞ in each attention layer,
the attention coefficient is calculated as

αij =
exp LeakyReLU aT WhikWhj

� �� �� �
∑k∈Ni

exp LeakyReLU aT WhikWhk½ �ð Þð Þ , ð1Þ

whereNi represents the neighbors of node i, the input fea-
ture of the nodes is h = fh1, h2, h3,⋯,hng, hi ∈ℝF , and N , F
represent the number of nodes and the feature dimension,
respectively. The output feature of the nodes is h′ = fh1′ , h2′ ,
h3′ ,⋯,hn′g, h′i ∈ℝF′, in which F ′ is the output feature dimen-
sion.W ∈ RF′×F is the linear transformation weight matrix on
each node, and a ∈ R2F′ is the weight vector. Finally, the
Softmax function is used for normalization, and LeakyReLU
is added to provide nonlinearity.

The finally output feature of the node i is

hi′= σ 〠
j∈Ni

αijWhj

 !
: ð2Þ

Multihead attention can be applied in GAT [22] to
enhance the learning ability of the model. It applies k

Figure 1: The source code of test function.

3Wireless Communications and Mobile Computing



(a) non (b) sub

(c) bcf (d) fla

Figure 2: CFGs compiled with different obfuscation options.

4 Wireless Communications and Mobile Computing



independent attention mechanisms to calculate the hidden
state and then stitches or averages the features, such as

hi′=
��K
k=1σ 〠

j∈Ni

αkijW
khj

 !
, ð3Þ

or

hi′= σ
1
k
〠
K

k=1
〠
j∈Ni

αkijW
khj

 !
, ð4Þ

where αkij is the attention coefficient of the kth attention
head.

3. Model Design

3.1. Overview. The overall framework of SROBR is shown in
Figure 3. The model architecture SROBR is mainly composed
of three parts: The first part draws on the method of natural
language processing, takes basic blocks as input, and uses the
BERT model to obtain the instruction embedding according
to the context information of the instruction. The second part
uses feed-forward network to aggregate the embeddings of the
instructions in the basic block and uses nonlinear mapping as
the semantic representation of the basic block. The third part
uses the graph attention neural network, takes the embeddings
of the basic block as vertices, and uses the adjacency matrix of
the control flow graph as the edges to obtain the high-
dimensional vector containing the semantic information of
the entire function. SROBR can be formally described as

embddingf = LayerNorm GAT FFN 〠
i∈b
BERT ið Þ

 !
, adjf

 ! !
,

ð5Þ

where i ∈ b represents all the instructions i in the basic block b,
and adjf represents the adjacency matrix of the basic block in
the function f .

In general, SROBR takes the CFG of the binary function
as input and obtains a high-dimensional vector to represent
its semantic information. This digitized vector is proved to
be resistant to obfuscation in subsequent experiments.

3.2. Data Preprocess. Through statistics on the basic informa-
tion of our dataset, from Figure 4, we find that the number
of basic blocks does not exceed 120 in more than 99% of func-
tions. Since SROBR uses a graph neural network, too many
basic blocks will lead to a sharp increase in memory usage.
Limited by our hardware environment, we discard functions
with more than 120 basic blocks. In addition, from Figure 5,
we find that more than 99% of the basic blocks have no more
than 40 instructions, so we define the maximum number of

Feed-forward
network

BERT instruction
embedded

Function
CFG

Adjacency m
atrix

Nodes
information

Edges
information

Graph attention
network

Figure 3: The overall architecture of SROBR.

1.0 (120, 0.99)

Block numbers in a function

0.8

0.6

Ra
te

 v
al

ue

0.4

0.2

0.0
0 20 40 60 80 100

Block number
120 140 160

Figure 4: Basic block numbers.

5Wireless Communications and Mobile Computing



instructions in the basic block as 40. If the number of instruc-
tions in the basic blocks is more than 40, it will be truncated.
Through processing, the amount of parameters can be signif-
icantly reduced, so that we can learn as much semantic infor-
mation as possible while training.

3.3. Instruction Standardization. We learn from the natural
language processing method to process the assemblers, in
order to avoid OOV problems, we need to standardize the
assembly instructions. In the standardization process, we first
preprocess the assembly files to remove all comments, invalid
characters, useless strings, and other unwanted content. For
every instruction, it may contain various registers, memory
addresses, variable names, immediate numbers, and other
auxiliary information. We need to make a trade-off between
the vocabulary size and the information retained.

Inspired by the normalization process in DeepSemantic
[12], we propose the following regularization rules: we stan-
dardize the registers according to their categories and numbers
of bits. For example, we replace “rax” with “reg_data_64,”
replace “edi” with “reg_addr_32,” and replace “rbp” with
“reg_pointer.” In addition, the names of the variables in the
instruction do not convey too much semantic information,

so we use “var” to replace them. For immediate numbers, we
use “imm” to replace them with. Through our instruction
standardization process, although small amount of the infor-
mation will be lost, it can significantly reduce the noise data,

(40, 0.99)

Instruction numbers in a basic block

1.0

0.8

0.6

Pe
rc

en
ta

ge
0.4

0.2

0.0
0 20 40 60 80 100

Instruction number
120 140

Figure 5: Instruction numbers.

Instruction embedding

Position embedding

Token embedding

Instruction sequence instn instn instn instn

EtnEt3Et2Et1

EpnEp3

+ +++

Ep2Ep1

Emb1Emb1 … … …

… … …

… … …

… … …

… … …

… … …

Emb1Emb1

Encoder layers

Figure 6: The structure of the instruction embedded module.

MLP layer

Block embedding

ReLU layer

Hidden layer

EinsnEins3Eins2Eins1 … … …

Figure 7: The structure of the feed-forward layer.

6 Wireless Communications and Mobile Computing



which will make SROBR learn the semantic information of the
function preferably.

3.4. Instruction Semantic Embedding. In the first step, we use
BERT to embed the instructions in the basic block to obtain
semantic information. In most papers that study the semantic
representation of assembly language, such as “Asm2Vec,” they
generate assembly instruction embedding through word2vec.
In this way, regardless of the CBOW or skip-gram method,
the generated embedding is fixed and will not be affected by
its contextual information. But in a basic block, the execution
of the current instruction may be affected by the execution
result of the previous instruction and may also affect the exe-
cution of the subsequent instruction. Therefore, we use the
BERT pretraining model to embed the current instruction
according to the context information of the instruction.

The structure of the assembly instruction embedded
module is shown in Figure 6. In this module, each instruc-
tion in the basic block is taken as input, token embedding
and positional embedding are added to educe the initial
instruction vector, and the final output is attained through
several encoder layers.

3.5. Block Semantic Embedding. Through the BERT model in
the previous section, we get the semantic embedding of the
instruction, and then we will get the semantic embedding
of the basic block. Applying the feed-forward Neural net-
work, with all the instruction embeddings in a basic block
as input, we use the fully connected layer and the nonlinear
mapping to semantically aggregate the instruction embed-
dings, so as to get the semantic information of the basic
block. The basic principle is shown in Figure 7.

In this module, we first use the fully connected layer to
map the embeddings to a higher-dimensional vector space
and then use the RELU activation function as a nonlinear
layer. Then, we use the fully connected layer to map to the
original vector space and add the vectors as the embedding
of the basic block.

3.6. Function Semantic Embedding. After getting the seman-
tic embedding of the basic blocks, we are ready to obtain the
basic block embedding at the function level. In this section,
we will use graph attention neural network for training to
obtain a vector representation containing the semantics of
the entire binary function.

Graph attention neural network (GAT) introduces a self-
attention mechanism in the propagation process, and the
hidden state of each node is calculated by paying attention
to its neighbor nodes. The control flow graph of a binary
function is a directed graph, in which each node is a basic
block. These nodes are linked by jump instructions. The exe-
cution of instructions in each basic block may be affected by
neighbor blocks.

Therefore, we propose to use the attention mechanism to
simulate the effect between blocks through attention weights,
so as to restore the semantic information of the function better,
even when the obfuscation technology is applied. Figure 8 visu-
ally shows the working principle of graph attention weights.

4. Experimental Evaluation

4.1. Dataset Collection. Like Asm2Vec [6], we also use com-
monly open source projects on github as our dataset, including
8 projects such as OpenSSL (https://github.com/openssl/
openssl), libGmp (https://github.com/libtom/libtomcrypt),
libTomCrypt (https://github.com/mirror/busybox), SQLite
(https://github.com/curl/curl), Busybox (https://rada.re/n/
radare2.html), Diffutils (http://angr.io/), Libcurl (https://rada
.re/n/radare2.html), and Zlib (http://angr.io/). Specific details
about the dataset are shown in Table 1.

There are two ways to generate assembler files from source
code. One is to compile the source code into binary files and
then use a disassembly tool (such as Radare2 (https://rada.re/
n/radare2.html) or Angr (http://angr.io/)) to analyze the bina-
ries to get the assembler files. The another one is to directly
compile the source code into assemblers. The assembler files
generated by the two methods are almost the same, but the
latter is more convenient, so we choose the second method.

Block5 embedding

Block3 embedding

Block2 embedding

𝛼21𝛼12

𝛼23

𝛼32

𝛼63

𝛼24
𝛼42

𝛼36

𝛼35𝛼53

𝛼52𝛼25

Block1 embedding Block1 hidden (h1)

Block2 hidden (h2)

Block4 hidden (h4)

Block3 hidden (h3)

Block6 hidden (h6)

Block5 hidden (h5)

Block4 embedding

Block6 embedding

Figure 8: Graph attention weights propagation process.

7Wireless Communications and Mobile Computing

https://github.com/openssl/openssl
https://github.com/openssl/openssl
https://github.com/libtom/libtomcrypt
https://github.com/mirror/busybox
https://github.com/curl/curl
https://rada.re/n/radare2.html
https://rada.re/n/radare2.html
http://angr.io/
https://rada.re/n/radare2.html
https://rada.re/n/radare2.html
http://angr.io/
https://rada.re/n/radare2.html
https://rada.re/n/radare2.html
http://angr.io/


Then, we use the four obfuscation options of O-LLVM
to compile, including non, sub, f la, bcf (non means that
the obfuscation option is not used, and the source code is
compiled normally). In this way, we can get the initial data-
set, in which there are four binary functions with different
obfuscation options for each source code.

When we conduct an in-depth research on the obtained
dataset, we find that because some functions are too simple,
regardless of whether it is obfuscated or not, the correspond-
ing assemblies are exactly the same. Given that these functions
may interfere with our subsequent model training, we just fil-
ter them. At last, we get more than 11000 functions for each
obfuscation option.

4.2. Model Training. In this section, we apply our dataset to
train the model. In SROBR, we use triple loss and stochastic
gradient descent to pretrain.

In order to explore the effect of hyperparameters on the
training effect of the model, we train the proposed model
with different dimensions and compare the training results,
as shown in Figures 9 and 10. From Figures 9 and 10, we
can see that the training effect of the model gradually gets
better with the increase of the dimension, but when the
dimension reaches 768, the effect of the test loss is worse
than that of the dimension 512. Therefore, we choose 512
as the dimension of the model.

In addition, in BERT module, we use 12 encoder layers, 8
attention heads, and dropout set 0.1. In GAT module, we use
8 graph attention layers, with dropout set 0.1 and alpha set
0.2, then we perform LayerNorm on the output. The main
hyperparameters we set are shown in Table 2.

4.3. Evaluation. We use two tasks to evaluate our model. The
first one is the binary similarity comparison task. In a round
of comparison, we randomly sample 100 functions from all
datasets as the current test set and randomly select a function
from the current test set as the objective function. Then, we
compile each function in the current test set without the
obfuscation option to obtain the corresponding unobfuscated
assembly functions as our set of search functions. At the same
time, we compile the objective function with the specific
obfuscation option to obtain the corresponding assembly
function, as the target function. We use our pretrained model

to obtain the semantic embedding vectors of these functions,
and compare the similarity between the target function and
each function in the search function set according to the vec-
tor, and sort according to the similarity. Here, we use Euclid-
ean distance as the similarity criterion. We assume that the
vectors of the two functions are f1 = fx1, x2, x3,⋯, xng and
f2 = fy1, y2, y3,⋯, yng respectively. Then, their Euclidean
distance can be expressed as follows:

d =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
〠
n

i=1
xi − yið Þ2

s
: ð6Þ

dim = 128 test loss
dim = 256 test loss
dim = 384 test loss

dim = 512 test loss
dim = 768 test loss

Testing loss curve in different dimensions of BERTGAT model.

100

80

60

Lo
ss

40

20

0
1008060

Epoch
40200

Figure 10: Testing loss in different dimensions of SROBR model.

100

dim = 128 train loss
dim = 256 train loss
dim = 384 train loss

dim = 512 train loss
dim = 768 train loss

Training loss curve in different dimensions of BERTGAT model.

100

80

80

60

60
Epoch

Lo
ss

40

40

20

20
0

0

Figure 9: Training loss in different dimensions of SROBR model.

Table 1: Detailed description of our dataset.

Function
numbers

Block
numbers

Instruction
numbers

OpenSSL 11384 221564 1477384

LibGmp 8760 187600 1087912

LibTomCrypt 2088 54972 436844

SQLite 1464 29732 174616

Busybox 200 4264 21108

Diffutils 632 12252 63820

LibCurl 180 3936 23968

Zlib 728 16488 97784

Total 25436 530808 3383436

8 Wireless Communications and Mobile Computing



The second one is the task of obfuscating options classifi-
cation. We add a linear mapping on the basis of the original
pretraining model and map the semantic embedding vector
obtained previously to the obfuscating option label category.
After fine-tuning the model, we use this model to classify the
obfuscation options of the binary code.

4.3.1. Binary Function Similarity Comparison Task. In the
binary code similarity comparison task, we evaluate SROBR
according to the similarity ranking.

We conduct experiments with three obfuscation options
(sub, f la, bcf ) separately. In each experiment, we perform
1000 rounds of the previously mentioned comparison experi-
ments to ensure the stability and robustness of the model.
Through the model, we are able to gain function vectors rep-
resenting its semantic information. By comparing the vector
of the target function with each function vector in the search
set, we can rank the functions in the search set according to
the similarity. Here, we use p@n to measure the accuracy of
the model. The p@n represents the probability that the target
function ranks n in the search function set. In particular, we
take n as 1, 3, and 5 tomeasure the pros and cons of the model.

In our experiments, we choose Asm2Vec [6] and SAFE
[7] as our benchmark models. Tables 3, 4, and 5, respec-
tively, correspond to the similarity comparison results of
the obfuscated binary functions and normal binary func-
tions. From the results, we can find that SROBR performs
significantly better than SAFE and Asm2Vec in most cases.
Howerver, in the bcf option, the Asm2Vec model is slightly
better than SROBR, which may be due to the introduction
of false basic blocks in the fake control flow confusion tech-
nology, which has an impact on the GAT module and causes
a slight decrease in accuracy, the random walk algorithm in
Asm2Vec just has a certain resistance to it.

4.3.2. Obfuscation Option Classification Task. In the task of
obfuscation options classification, we use the previously
trained model as a pretraining model and add a linear map-
ping on this basis, as our classification model:

Classify =MLP embeddingf
� 	

, ð7Þ

where embedding f represents the embedding vector
obtained by the pretraining model of the function f .

Then, we can fine-tune it by using our labeled dataset.
Experiments have proved that high accuracy can be achieved
after slight training.

We perform four classification tasks on four options.
The training effect of the classification model is shown in
Figure 11. From this figure, we can see that after 12 epochs
of training, the classification accuracy has reached more
than 95%. When the training reaches 20 rounds, the accu-
racy gradually stabilizes at around 98.7%. From Table 6,
we can observe the accuracy, recall, and f1-score for each
classification option.

From Table 6, we can find that the classification model
achieves satisfactory results, which has been pretrained previ-
ously. From the perspectives of accuracy, recall, and f1-score,
our model is able to capture the internal features of different
obfuscation techniques well for accurate identification.

4.4. Ablation Experiments. For the sake of exploring the con-
tribution of each part in SROBR to the overall model frame-
work, we perform extensive ablation experiments, replacing
the BERT or GAT module with other layers in the model
framework, respectively. Then, we conduct the same training
for each model variant and compare the model effects based
on the results to analyze the role of each module.

Specifically, we will replace BERT module with linear
layer or RNN models and replace GAT module with other

Table 2: Hyperparameter settings.

Parameter Value Parameter Value

Dimension of embeddings 512 Feed-forward network hidden size 1024

Number of encoder layers 12 Learning rate 0.0001

Number of attention heads 8 Dropout 0.1

Number of graph attention layers 8 Alpha 0.2

Number of graph attention layers 8 Epochs 100

Table 3: sub obfuscation option.

Model p@1 p@3 p@5

SAFE 0.255 0.427 0.540

Asm2Vec 0.824 0.950 0.977

SROBR 0.903 0.980 0.993

Table 4: bcf obfuscation option.

Model p@1 p@3 s p@5

SAFE 0.117 0.241 0.337

Asm2Vec 0.802 0.912 0.949

SROBR 0.701 0.878 0.982

Table 5: fla obfuscation option.

Model p@1 p@3 p@5

SAFE 0.105 0.240 0.341

Asm2Vec 0.165 0.279 0.357

SROBR 0.690 0.881 0.940

9Wireless Communications and Mobile Computing



graph neural networks. Since LSTM excels in multiple
domains [26–28], we choose it as a comparative experiment.

For all variant models, we train them in the same way.
Then, we use the trained model to evaluate on the test set.
For each variant, we use three obfuscation options, with
the same method in Section 4.3.1 to compare its accuracy

according to p@1. The results are shown in Table 7. From
the results, we can clearly see that in terms of antialiasing
ability, the BERT model is significantly better than the linear
model and the recurrent neural network, and the GAT mod-
ule is better than GCN.

5. Conclusion

In this paper, we propose a novel neural network structure
SROBR for obfuscated code to obtain the semantic embedding
representation of binary functions. It mainly contains three
submodules. The first submodule uses BERT module to cap-
ture sequence information to generate instruction embed-
dings. The second submodule aggregates the instruction
embeddings in basic block through FFN to obtain the embed-
ding of the basic block. The third submodule gets the struc-
tural information of the function through basic blocks and
the adjacency matrix, thereby obtaining the semantic vector
of the entire function.

Through extensive comparative experiments on our data-
set, we have proved that the proposed model can better deal
with the obfuscation options of O-LLVM. However, other
obfuscation options are not used for verification, which can
be further done as our future research direction.

Data Availability

Our dataset can be available from the GitHub repositories,
which mainly includes 9 projects, such as OpenSSL
(https://github.com/openssl/openssl), libGmp (https://
github.com/sethtroisi/libgmp), libTomCrypt (https://github
.com/libtom/libtomcrypt), SQLite (https://github.com/sqlite/
sqlite), Busybox (https://github.com/mirror/busybox), Coreu-
tils (https://github.com/coreutils/coreutils), Diffutils (https://
www.gnu.org/software/diffutils/), Libcurl (https://github
.com/curl/curl), and Zlib (https://github.com/madler/zlib).

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This work was supported by Natural Science Foundation of
China under Grant no. 61802435.

References

[1] I. U. Haq and J. Caballero, “A survey of binary code similarity,”
ACM Computing Surveys, vol. 54, no. 3, 2021.

[2] Q. Feng, R. Zhou, C. Xu, Y. Cheng, B. Testa, and H. Yin, “Scal-
able graph-based bug search for firmware images,” in Proceed-
ings of the ACM Conference on Computer and Communications
Security, Vienna, Austria, 2016.

[3] X. Xu, C. Liu, Q. Feng, H. Yin, L. Song, and D. Song, “Neural
network- based graph embedding for cross-platform binary
code similarity detection,” in Proceedings of the ACM Confer-
ence on Computer and Communica- tions Security, pp. 363–
376, Dallas Texas USA, 2017.

Fine-tune the classification model

0.9

Ac
cu

ra
cy

0.5

504030
Epoch

Train accuracy
Test accuracy

20100

0.8

0.7

0.6

Figure 11: Fine-tune the classification model.

Table 6: Classification results for three obfuscation options.

Precision Recall f1-score

Non 0.97 0.98 0.95

Sub 0.98 0.95 0.96

Fla 1.00 1.00 1.00

Bcf 1.00 0.99 1.00

Table 7: Experimental results of model variants.

options
sub bcf flaaccuracy

Variants

Linear+GAT 0.785 0.675 0.651

LSTM+GAT 0.759 0.577 0.531

BiLSTM+GAT 0.838 0.676 0.682

BERT+GCN 0.852 0.608 0.648

SROBR 0.888 0.701 0.694

Linear+GAT removes the BERT module, and the instruction vector is
embedded only by random initialization. It is used to explore the role of
the BERT module.
LSTM+GAT uses LSTM instead of BERT to generate the instruction
embeddings in the basic block, which is used to compare the effects of
BERT and RNN.
BiLSTM+GAT uses BiLSTM to further explore the pros and cons of
recurrent neural networks and BERT.
BERT+GCN replaces the GAT module with GCN without using attention
weights.

10 Wireless Communications and Mobile Computing

https://github.com/openssl/openssl
https://github.com/sethtroisi/libgmp
https://github.com/sethtroisi/libgmp
https://github.com/libtom/libtomcrypt
https://github.com/libtom/libtomcrypt
https://github.com/sqlite/sqlite
https://github.com/sqlite/sqlite
https://github.com/mirror/busybox
https://github.com/coreutils/coreutils
https://www.gnu.org/software/diffutils/
https://www.gnu.org/software/diffutils/
https://github.com/curl/curl
https://github.com/curl/curl
https://github.com/madler/zlib


[4] J. Gao, X. Yang, Y. Fu, Y. Jiang, and J. Sun, “Vulseeker: a
semantic learning based vulnerability seeker for cross-
platform binary,” in Proceedings of the 33rd ACM/IEEE Inter-
national Conference on Automated Software Engineering,
pp. 896–899, Montpellier France, 2018.

[5] F. Zuo, X. Li, P. Young, L. Luo, Q. Zeng, and Z. Zhang, “Neural
machine translation inspired binary code similarity compari-
son beyond function pairs,” in Proceedings 2019 Network and
Distributed System Security Symposium, San Diego, California,
2019.

[6] S. H. H. Ding, B. C. M. Fung, and P. Charland, “Asm2Vec:
boosting static representation robustness for binary clone
search against code obfuscation and compiler optimization,”
in 2019 IEEE Symposium on Security and Privacy (SP),
pp. 472–489, San Diego, California, 2019.

[7] L. Massarelli, G. A. Di Luna, F. Petroni, R. Baldoni, and
L. Querzoni, “SAFE: self-attentive function embeddings for
binary similarity,” in Detection of Intrusions and Malware,
and Vulnerability Assessment. DIMVA 2019, R. Perdisci, C.
Maurice, G. Giacinto, andM. Almgren, Eds., vol. 11543 of Lec-
ture Notes in Computer Science, pp. 309–329, Springer, Cham,
2019.

[8] X. Zhang,W. Sun, J. Pang, F. Liu, and Z. Ma, “Similarity metric
method for binary basic blocks of cross-instruction set archi-
tecture,” in Proceedings 2020 Workshop on Binary Analysis
Research, San Diego, California, 2020.

[9] J. Yang, C. Fu, X. Y. Liu, H. Yin, and P. Zhou, “Codee: a tensor
embedding scheme for binary code search,” IEEE Transactions
on Software Engineering, p. 1, 2021.

[10] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean,
“Distributed representations of words and phrases and their
compositionality,” in Proceedings of the 26th International
Conference on Neural Informa- tion Processing Systems - Vol-
ume 2. NIPS'13, pp. 3111–3119, Red Hook, NY, USA, 2013.

[11] Z. Yu, R. Cao, Q. Tang, S. Nie, J. Huang, and S. Wu, “Order
matters: semantic-aware neural networks for binary code sim-
ilarity detection,” in Proceedings of the AAAI Conference on
Artificial Intelligence, pp. 1145–1152, New York, 2020.

[12] H. Koo, S. Park, D. Choi, and T. Kim, “Semantic-aware binary
code representation with bert,” 2021, https://arxiv.org/abs/
2106.05478.

[13] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT:
pre-training of deep bidirectional transformers for language
understanding,” 2018, https://arxiv.org/abs/1810.04805.

[14] D. Peng, S. Zheng, Y. Li, G. Ke, D. He, and T.-Y. Liu, “How
could neural networks understand programs?,” in Interna-
tional Conference on Machine Learning, pp. 8476–8486, 2021.

[15] A. Vaswani, N. Shazeer, N. Parmar et al., “Attention is all you
need,” Advances in Neural Information Processing Systems,
pp. 5999–6009, 2017.

[16] J. Ming, F. Zhang, D. Wu, P. Liu, and S. Zhu, “Deviation-based
obfuscation-resilient program equivalence checking with
application to software plagiarism detection,” IEEE Transac-
tions on Reliability, vol. 65, no. 4, pp. 1647–1664, 2016.

[17] S. Alrabaee, P. Shirani, L. Wang, and M. Debbabi, “FOSSIL: a
resilient and e_cient system for identifying FOSS functions in
malware binaries,” ACM Transactions on Privacy and Security,
vol. 21, no. 2, pp. 1–34, 2018.

[18] P. Junod, J. Rinaldini, J. Wehrli, and J. Michielin, “Obfuscator-
LLVM – software protection for the masses,” in 2015 IEEE/

ACM 1st International Workshop on Software Protection,
pp. 3–9, Florence, Italy, 2015.

[19] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean,
“Distributed representations of words and phrases and their
compositionality,” Advances in neural information processing
systems, vol. 26, pp. 1310–4546, 2013.

[20] T. N. Kipf and M. Welling, “Semi-supervised classification
with graph convolutional networks,” 2016, https://arxiv.org/
abs/1609.02907.

[21] Y. Huang, M. Qiao, F. Liu, X. Li, H. Gui, and C. Zhang, “Binary
code traceability of multigranularity information fusion from
the perspective of software genes,” Computers & Security,
vol. 114, article 102607, 2022.

[22] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio,
and Y. Bengio, “Graph attention networks,” 2018, https://
arxiv.org/abs/1710.10903.

[23] W. L. Hamilton, R. Ying, and J. Leskovec, “Representation
learning on graphs: methods and applications,” 2017, https://
arxiv.org/abs/1709.05584.

[24] M. Qiao, X. Zhang, H. Sun et al., “Multi-level cross-
architecture binary code similarity metric,” Arabian Journal
for Science and Engineering, vol. 46, no. 9, pp. 8603–8615,
2021.

[25] L. Massarelli, G. A. Di Luna, F. Petroni, L. Querzoni, and
R. Baldoni, “Investigating graph embedding neural networks
with unsupervised features extraction for binary analysis,” in
Proceedings 2019 Workshop on Binary Analysis Research,
pp. 21–24, San Diego, California, 2019.

[26] L. Lv, Z. Wu, J. Zhang, Z. Tan, L. Zhang, and Z. Tian, “A vmd
and lstm based hybrid model of load forecasting for power grid
security,” IEEE Transactions on Industrial Informatics, p. 1,
2021.

[27] L. Zhang, C. Xu, Y. Gao, Y. Han, X. Du, and Z. Tian,
“Improved dota2 lineup recommendation model based on a
bidirectional lstm,” Tsinghua Science and Technology, vol. 25,
pp. 712–720, 2020.

[28] L. Zhang, Z. Huang, W. Liu, Z. Guo, and Z. Zhang, “Weather
radar echo prediction method based on convolution neural
network and long short- term memory networks for sustain-
able e-agriculture,” Journal of Cleaner Production, vol. 298,
2021.

11Wireless Communications and Mobile Computing

https://arxiv.org/abs/2106.05478
https://arxiv.org/abs/2106.05478
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1609.02907
https://arxiv.org/abs/1609.02907
https://arxiv.org/abs/1710.10903
https://arxiv.org/abs/1710.10903
https://arxiv.org/abs/1709.05584
https://arxiv.org/abs/1709.05584

	SROBR: Semantic Representation of Obfuscation-Resilient Binary Code
	1. Introduction
	2. Related Work
	2.1. Obfuscator-LLVM Options
	2.2. Existing Approaches
	2.3. BERT
	2.4. GAT

	3. Model Design
	3.1. Overview
	3.2. Data Preprocess
	3.3. Instruction Standardization
	3.4. Instruction Semantic Embedding
	3.5. Block Semantic Embedding
	3.6. Function Semantic Embedding

	4. Experimental Evaluation
	4.1. Dataset Collection
	4.2. Model Training
	4.3. Evaluation
	4.3.1. Binary Function Similarity Comparison Task
	4.3.2. Obfuscation Option Classification Task

	4.4. Ablation Experiments

	5. Conclusion
	Data Availability
	Conflicts of Interest
	Acknowledgments



