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The integration of the Internet of Things (IoT) and social networks is a promising trend of network technology. However, the
diversity of social networks also poses potential risks to IoT security. Researching on the geolocation of social network users
can verify the effectiveness of location protection mechanisms adopted by service providers, as well as provide a means for
geolocating miscreants in social networks. Most current research focuses on how to infer the true location of a target within a
specific region, such as within a city, while less research has been done on how to achieve fast and accurate localization of
targets under long-range conditions. In this manuscript, an efficient localization method for LBSD users at long distances
based on dynamic adjustment of probes (DAPL) is proposed. Based on the analysis of factors that affect the accuracy and
efficiency of the target location approximation, DAPL can approach the real location sustainability of the target by dynamically
generating probe locations. By identifying abnormal fluctuations of the target’s reported distance, timely corrections of probe
location are made to improve efficiency. In experimental results for Momo, a global popular LBSD social platform with more
than 115 million active users show that even the initial probe is thousands of miles away from the target, DAPL can geolocate
the target with a success rate close to 100% (99.5%), which is much higher than 70.6% of the existing method. Only about 12
times of LBSD service queries are needed, and DAPL can geolocate 88.9% of targets within 40 meters with an average error of
22.1 meters, which has higher efficiency and approximate accuracy compared with the existing typical method.

1. Introduction

With the development of information technology, the inte-
gration of Internet of things (IoTs) and social networks has
become an important development trend [1, 2]. Global pop-
ular social platforms such as WeChat and Facebook have
released IoT platforms [3]. On the one hand, this integration
further accelerates the development of IoT. On the other
hand, the illegal behavior of malicious social network users,
such as spreading rumors and disseminating viruses, poses
a great threat to IoT security too. Broomium, a network
security company, released a survey report in 2019 which
shows that the global social network crime scale is as high
as $3.2 billion per year [4]. Research on social network user

geolocation can provide positive means for crime investiga-
tion of malicious social network users [5, 6]. Meanwhile,
the location privacy is an essential concern for both IoT
and social network security. Research on social network user
geolocation can verify whether the location privacy of social
network users is effectively protected [7–10]. In this manu-
script, we focus on an important location-based service of
social networks [11, 12], location-based social discovery
(LBSD), and explore whether the location of social network
users can be inferred based on the public services provided
by social networks. LBSD is a popular type of LBS, which
enables users to find their nearby users, thus facilitating
the establishment of social relationships among users [13].
Most of the worldwide popular mobile social platforms
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provide LBSD services such as Facebook, WeChat, Tele-
gram, and Momo. While LBSD services provide convenience
to users, there is also a risk of threatening their location pri-
vacy. Since most LBSD services do not provide API for
obtaining data, such as user text or social connections, most
current LBSD user geolocation methods utilize relative dis-
tance information to geolocate the target. Existing localiza-
tion methods for LBSD users can be generally classified
into three main types: trilateration-based, number theory-
based, and successive approximation-based method.

Trilateration model is a classical localization method
which infers the location of the target by obtaining the tar-
get’s exact distance at three known locations [14, 15]. How-
ever, in practical situations, it is not easy to obtain the exact
distance of the target user. To address this problem, Ding
et al. [16] propose an enhanced trilateration method based
on distance segments, which takes the localization results
of the target in the intersection of multiple circular regions
centered on probes’ location. The method can geolocate
and track WeChat users within the city. In papers [17, 18],
the relationship between nearby user order and their dis-
tance is studied. The upper and lower limits of the target’s
distance are delimited based on the distance of users who
are adjacent to the target in nearby user list. Then, the
target’s location is inferred using the trilateration model.
Trilateration-based method is efficient and easy to imple-
ment, which has high accuracy if the distance range can be
delimited accurately; otherwise, the localization error is
large.

The number theory-based method describes the rela-
tionship between the actual and reported distance into
mathematical models. By strategically deploying probes in
a specific area, the location of the target is calculated based
on the target’s reported distance obtained by each probe.
Xue et al. [19] analyze the feature that WeChat report rela-
tive distance between nearby users in bands and propose a
localization algorithm, which study the localization of the
target on a line, then extended it to two-dimensional space.
Based on Xue’s work, Cheng et al. [20] point out that the ini-
tial probe’s location will affect the localization accuracy of
one-dimensional method and propose a new deployment
strategy of the initial probe. Considering that the LBSD ser-
vice will confuse the nearby user’s distance, Peng et al. [21]
propose a two-dimensional localization method based on
heuristic number theory, which further improves the practi-
cality. The theoretical accuracy of number theory-based
methods is high, but it lacks of experimental verification of
the location confusion mechanism. The big difference
between the mathematical model and the actual distance
reported strategies leads to the practical accuracy is hard to
achieve the theoretical accuracy.

The successive approximation-based method firstly
delineates the initial space where the target may be located
based on its reported distance obtained by the first probe;
then, the target’s real location is gradually approximated
based on the changes of the reported distance obtained by
probes whose location are adjusted continuously. Li et al.
[22] investigate the LBSD services of some popular social
platforms, WeChat, Momo, and Skout, and their location

confusion strategies. Momo and Skout users are geolocated
based on iterative trilateration, which continuously
approach the target’s true location by iteratively using trilat-
eral localization. Meanwhile, a space partition-based method
is proposed to break the limit of the minimum reported dis-
tance. Subsequent works further investigate how to improve
the localization accuracy within a specific region [23–25]. In
response to the location confusion of LBSD services, paper
[26] proposes a target localization method based on orienta-
tion identification, which estimates the orientation of the
target relative to the central probe based on the target’s
reported distance obtained by surrounding probes and then
iteratively approximates the target location. Paper [27] dis-
cusses the target localization problem when the reported dis-
tance is confused with Gaussian noise, which delimits the
small range where the target is located based on iterative tri-
lateration firstly and then estimates target’s location within
the small range based on maximum likelihood estimation.
Successive approximation-based method is more robust
which can resist the influence of random noise of LBSD.
However, this type of method focuses more on how to
improve the localization accuracy based on the premise that
the specific area where the target is located is known, while
further research is needed to achieve fast and accurate local-
ization of the target when the specific area is unknown.

In sum, most of the existing research focuses on target
localization within a specific area (e.g., within a city), while
there is a lack of effective means for localization of long-
range targets (thousands of kilometers away). Since most
LBSD social software restrict access to user profiles, the
existing social user location inferring methods, such as
text-based or social relationship-based, are not applicable
to the localization of LBSD targets [28]. To address this
problem, in this manuscript, an efficient long-range LBSD
user localization method based on dynamic adjustment of
probes (DAPL) is proposed. DAPL achieves fast approxima-
tion of the target’s real location by deploying probes dynam-
ically and improves the localization efficiency by monitoring
the abnormal change of target’s reported distance. The main
contributions of our work are shown as follows:

(i) Factors that affect the accuracy of target geolocation
under long-range conditions are analyzed, and cor-
responding solutions are given. We analyze the fac-
tors affecting the accuracy and the efficiency of
target position approximation from two perspec-
tives, respectively: maximum included angle and
minimum distance between probes. The effective-
ness of the proposed solutions is verified through
practical experiments

(ii) A long-range localization method for LBSD users
based on the dynamic adjustment of probes (DAPL)
is proposed. The proposed DAPL achieves fast
approach to the real location of the target by dynami-
cally updating probes’ location and performing trilat-
eral localization. What is more, the localization
efficiency is improved by detecting and disposing of
anomalous probe combinations. Actual experimental
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results for Momo user localization show that DAPL
has significantly higher success rate, better efficiency,
and similar accuracy compared with the typical exist-
ing method

The rest of the manuscript is organized as follows. In
Section 2, the LBSD service and existing long-range localiza-
tion methods are a briefly introduced. Section 3 introduces
basic principles and main steps of DAPL. In Section 4, we
explain and illustrate the key steps of DAPL in more detail.
Section 5 describes the real-world experiment. Finally, Sec-
tion 6 summarizes the manuscript.

2. LBSD Service and Related Work

This section provides a brief introduction to LBSD services
and the current privacy protection strategies commonly used
by service providers as well as an analysis of the shortcom-
ings of existing methods for long-range localization of LBSD
users.

2.1. Introduction of LBSD Service. The LBSD service is a kind
of popular LBS, also known as the proximity discovery ser-
vice. With this service, users can discover other users close
to the location of their mobile devices. Many mobile social
applications, such as WeChat, Momo, TanTan, QQ, Face-
book, and Telegram, provide this service to meet users’
needs for making friends. Typical scenario of the LBSD ser-
vice is shown in Figure 1.

As shown in Figure 1, when a user uses LBSD service, the
application will submit a request to the LBSD server for que-
rying nearby users. After receiving the request, the server
will screen the database that stores all the users’ location
information and response to the quarrier with location-
related information and profiles of users who are close to
the quarrier’s location. Then, the application parses out the
profile and location information (usually in form of dis-
tance) of the nearby users from the response and displays
them to the quarrier. When the application sends a request
to the server, its accurate location is obtained by calling the
embedded GPS interface of the device (e.g., WeChat and
QQ) or calling the third-party map API (e.g., Momo and
TanTan) [29].

To protect the privacy of normal users, most LBSD ser-
vices will confuse the location information (or relative dis-
tance) of nearby users. The common means of location
confusion are as follows.

Hide Coordinates. Instead of displaying the exact coordi-
nates of nearby users or their locations on the map, the
application will only display the relative distance of nearby
users. According to our investigation, rarely LBSD services
will show the exact location of nearby users

Display Distance by Segment. Instead of reporting the
precise distance of nearby users, the server will set a mini-
mum distance granularity, and the distance between users
displayed is a multiple of the minimum granularity. For
example, the minimum distance displayed by WeChat is
100 meters, for QQ and Momo is 10 meters, and for Skout
is 0.5miles

Add Random Noise. Some LBSD services add random
noise to the distances, making the distance of a same nearby
user different for multiple queries at the same location. In
this way, the displayed distance does not directly reflect the
accurate distance or narrow distance range of nearby users,
thus protecting user privacy. This is a widely used means
for distance confusion

Hide Distance. Some LBSD services will not to show dis-
tance information of nearby users and only display the nick-
name, signature, gender, and other profile information of
nearby users. For example, Grindr, a popular location based
dating App, sorts nearby users by their distance but does not
display the user’s distance on the APP page

In addition, the LBSD service adopts many measures to
prevent the service from being abused. The commonly used
measures are as follows

Limit the Query Range. The server only reports nearby
users within a specific distance from the querier. If a user
is far away from the quarrier, she (he) will not be found by
the querier. If LBSD service has this limitation, the target
cannot be geolocated by long-range localization method
because if the target is too far, his reported distance will
not be obtained by probes continuously

Restrict the Query Frequency. Some APPs will limit the
number of times an account can use the LBSD service per
day. When the number of uses exceeds the threshold, the
LBSD service will be shut down for a period of time

Set a Time Domain. The server will periodically clean the
database of user location information. When a user is no
longer active for a period of time, the server will not recom-
mend her/him to other users

Besides, some LBSD serviCes will only show the relative
distance of friends and strangers cannot be found. Typical
social platforms that provide LBSD services are shown in
Table 1.

2.2. Analysis of Existing Long-Range Localization Methods of
LBSD Users. As we mentioned in Introduction, most of the
existing studies focus on precise localization of LBSD targets
within a specific region. For example, the prior knowledge
that the city where the target is located is known. However,
the city-level location of LBSD users is not easy to infer.
Existing city-level location inference methods for social
users rely on the available of abundant user data, such as
social relationships and generated text of the target. This
kind of method is suitable for open social platforms such
as Twitter and Weibo [28]. Unlike Twitter and Weibo, most
LBSD service do not provide API interfaces for crawling user
data and social relationships between users are unknown,
which makes the research on localization of LBSD users
under long-range conditions is of practical significance.

By analyzing the accuracy of the reported distance of
LBSD services in Momo and Skout, Li et al. propose a
long-range target location approximation method based on
iterative trilateration (short for ITBL) [22]. The principle
of ITBL is shown in Figure 2. ITBL takes advantage of the
feature that there is no distance range limitation when
Momo and Skout provide LBSD services and uses the trila-
teration to achieve long-range target localization. Firstly,
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locations of three probes are randomly set which query the
target’s reported distance, respectively. Then, based on
probes’ location and the corresponding target’s reported dis-
tance, estimated location of the target is calculated by the
least square method [30]. Thirdly, a new probe is set at the
estimated location, which queries the reported distance of
the target again. The probe with the largest reported distance
is eliminated, and the remaining three probes are used to
geolocate the target again. The above process is performed
iteratively until the maximum distance between probes is
less than a certain threshold. Finally, the position of the
probe with the nearest distance is selected as the final result.

ITBL takes the systematic errors in reported distance
into account and uses the least square method to estimate
the trilateration results, which has low time complexity.
However, the effectiveness of ITBL depends on the smaller
distance between target’s estimated location and its true
location. If the probe in the estimated location obtains a
greater distance of the target compared with the three initial
probes, as shown in Figure 3, ITBL will continue to select
previous three probes to perform trilateration. If the target’s
reported distance obtained by these probes remains
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Figure 1: Typical scenario of LBSD service.

Table1: Typical social platforms with LBSD service.

Social platforms Number of active users (millions) Distance Minimum reported distance Random noise Restriction

WeChat 1241.6 √ 100m √ Time/range/frequency

QQ 606.4 √ 100m √ Time/range

Telegram 500 √ 1m √ Time/range

Line 220 √ 100m √ Range/time

Momo 115.5 √ 10m √ No

TanTan 26 √ 100m √ Range

Skout 10 √ 0.5mile √ No

Grindr 8 × N/A × Range

SayHi N/A √ 10m × Range

Probe

True location

Estimated location

Figure 2: Schematic diagram of geolocating method based on
iterative trilateration.
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unchanged, the algorithm will not be able to approach the
target any more, which results in localization failure. ITBL
estimates the trilateration result based on least square
method, which output a location that minimizes the square
sum of the difference between the real distance and the
reported distance. Influence of noise on the accuracy of dif-
ferent distance range is not considered, and it cannot guar-
antee that the estimated location is closer to the target.
Our practical tests also verify that ITBL has a high failure
probability, which will be introduced further in Section 4.

Different from the existing ITBL method, DAPL deter-
mines the location of probes for trilateration based on the tar-
get’s reported distance obtained by the previous probes, so the
probe distribution that may lead to failed localization can be
avoided. With the dynamic adjusting of probes’ location, the
localization success rate is effectively improved without
enlarging the time complexity and localization errors.

3. Proposed Method

In response to the fact that most existing methods study target
localization within a specific area and lack of effective target
geolocation means under long-distance conditions, a long-
range localization method for LBSD users based on the
dynamic adjustment of probes is proposed. DAPL dynami-
cally generates probe positions by reconstructing the coordi-
nate system to ensure the sustainability of the localization
process. In addition, location of probes is timely corrected
based on the change of target’s reported distance, thus avoid-
ing the increase of time overhead due to distance oscillation.

3.1. Background Knowledge. To facilitate understanding,
some background knowledge and definitions of terms
involved in the algorithm are first introduced.

Probe: it is essentially social accounts whose location is
known. A probe obtains the distance of the target by query-
ing the LBSD service. Depending on the difference of loca-
tion determination, probes are divided into anchor probes
and generated probes. The location of the anchor probe is
set randomly at the beginning of localization process or cal-
culated from the previous round of trilateration. The loca-
tion of the generated probe is generated based on the
anchor probe’s location, which is on the axis of the coordi-
nate system with the anchor probe as the origin

Reported Distance: the distance of nearby users is dis-
played by the LBSD service, which is related to the actual
distance. But the existence of systemic noise makes the
reported distance to be inaccurate

Potential Area: the potential area is the smallest geo-
graphic area where the target may be located, which is deter-
mined by prior knowledge. It should be noted that our work
discusses target localization when the location-related prior
knowledge of the target (e.g., provincial location) is
unknown. If the potential area of the target is known, the
method proposed in this manuscript is still valid and will
perform better

Anomalous Probe Combination: when three probes are
used for iterative trilateration, the localization process may
be interrupted due to conditions such as probe location dis-
tribution and reported distance confusion. When this condi-
tion happens, the combination of three probe locations is
called the anomalous probe combination. A typical

Probe

True location

Estimated location 

P1

P2 P3

d1

de

d2

d3

d
e
 > max (d1,d2,d3)

Figure 3: Schematic diagram of failed geolocation.

5Wireless Communications and Mobile Computing



anomalous probe combination is that when the estimated
location of trilateration is farther away from the target than
the three probes, if the same three probes with the smallest
reported distance of the target are selected to perform
next-round trilateration, the same situation will appear again
and the geolocation procedure will be interrupted. If we
want to achieve the continuous approximation of the real
location of the target, the anomalous probe combination
should be discovered and deciphered in time

Distance Oscillation: distance oscillation refers to the
phenomenon that in the process of geolocating the target,
the target’s reported distance queried by the anchor probe
gradually increases for several rounds of trilateration, and
then, the anchor probe gradually converges to the target.
The distance oscillation phenomenon is caused by the large
difference between the estimated and the actual location of
the target, which can significantly enlarge the time con-
sumption. In our method, we mitigate distance oscillation
by inverting the coordinates of the generated probes

Least Square Method: Least square method (LS for short)
is a kind of statistical method. By minimizing the square
sum of errors, LS can find the best matching function of data
[31]. It is widely used in the field of sensor node positioning
[30, 32, 33]. Setting the location of probe pi is ðxi, yiÞ, and
the real position of the target is ðx, yÞ. di represents the dis-
tance of the target obtained by probe pi. Due to the existence
of systemic noise, di is not accurate. Error equation vi can be
expressed as

vi = xi − xð Þ2 + yi − yð Þ2� �1/2 − di, i = 0, 1,⋯,N , ð1Þ

where N represent the number of probes. The purpose of
the least square method is to find X that minimizes the
square sum of vi, that is

LSð Þ: min
X

〠
N

i=0
vi
2� �
: ð2Þ

The error equation vi is nonlinear constraints, which
should be converted to the form of linear equation based
on its Taylor expansions, as shown in the following:

vi = li,mið Þ δx, δy
� �T + di0 − di, i = 0, 1,⋯,N , ð3Þ

where li = ðx0 − xiÞ/di0, mi = ðy0 − yiÞ/di0, and di0 =
½ðxi − x0Þ2 + ðyi − y0Þ2�

1/2
. So, the constraints above can be

expressed in the following matrix form:

V =AX + b: ð4Þ

In equation (4), V = ðv1, v2,⋯, vNÞ, and X = ðδx , δyÞT
represents the deviation of the real position of the target

from ðx0, y0Þ, b = ðd10 − d1, d20 − d2,⋯, dN0 − dNÞ
T
, and

A =

l1 m1

l2 m2
⋯

lN mN

0
BBBB@

1
CCCCA: ð5Þ

The solution of LS is X = ðATAÞ−1ðATbÞ, and the final
evaluation result of the target location is X̂ =(X0 + X)

The LBSD user localization problem can be regarded as
the problem of finding the optimal solution under distance
constraints. More clearly, on the basis of the location of mul-
tiple probes and the imprecise distance between the target
and the probes are known, we want to infer the accurate
location of the target. For nonlinear objective function, New-
ton method or quasi-Newton method can also be used to
estimate the least square optimal solution [34].

3.2. Basic Principle and Main Steps of DAPL. In this manu-
script, DAPL, a LBSD user geolocation method based on the
dynamic adjustment of probes, is proposed. We analyze the
location obfuscation strategies in typical LBSD services and
point out anomalous probe combination and distance oscilla-
tion problems in existing methods, which lead to low success
rate and high time complexity. To address this, we alleviate
the anomalous probe combination problem by introducing
generated probes and solve the distance oscillation problem
by inverting the coordinates of generated probes.

The basic principle of DAPL is shown in Figure 4, which
mainly consists of two parts: target location approximation
and probe location correction. The first part uses multiple
rounds of trilateration to geolocate the target. In each round
trilateration, the location of probes is determined by contin-
uously reconstructing the coordinate system and the inter-
mediate result in each round is estimated by the least
square method. The second part identifies the anomalous
probe combinations in each round of trilateration by moni-
toring the change of target’s reported distance obtained by
the anchor probe. The coordinates of generated probes are
adjusted if the abnormal change of target’s reported distance
appears, so as to avoid the distance oscillation phenomenon
and improve the efficiency.

The main steps of DAPL are as follows.

Step 1 : Initial probe generation. Firstly, an initial anchor
probe P1 is deployed at a randomly selected location within
the potential area, whose location is noted as L1. If the
potential location area of the target is unknown, the initial
anchor probe’s location is randomly selected globally. Then,
the initial anchor probe queries the LBSD service to obtain
the target’s reported distance, which is noted as R1.

Step 2 : Establish the coordinate system. A Euclidean coordi-
nate system is established with L1 as the origin, and probes
P2 and P3 are set on the coordinate axes whose locations
are (R1/2, 0) and (0, R1/2), which are recorded as L2 and
L3, respectively. If L2 and L3 are outside the potential area,
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the coordinates of P2 and P3 are set to crossover points of
the coordinate axes and the potential area. The reported dis-
tances of the target obtained by P2 and P3 are recorded as R2
and R3, respectively.

Step 3 : Estimate the target’s position. With L = fLij1 ≤ i ≤ 3g
and R = fRij1 ≤ i ≤ 3g as parameters, the LS method is used
to calculate the estimated location of the target, which is
noted as Le. Objective equation f is formulated as

f Xð Þ = 〠
m

i=0
Tdis Li, Xð Þ − Rið Þ2, ð6Þ

where TdisðP1, P2Þ represents the actual distance between
two points P1 and P2. Since complex operations are required
to calculate the distance based on latitude and longitude, it is
difficult to convert the objective equation f into matrix form.
So, the optimal value X corresponding to the minimum of
the objective equation f is calculated by using Newton’s
method [34].

Le =min
X

f Xð Þ: ð7Þ

The anchor probe is deployed at position Le, and the
anchor probe queries the target’s reported distance Re.

Step 4 : Anomalous probe combination identification and
probe location correction. After Re is acquired, Algorithm 1
is utilized to verify whether the probe for trilateration is an
anomalous combination. The algorithm takes L, R, Le, Re,
and the threshold ϵ as inputs and outputs the execution code
of the next step and a list containing the estimated position
of the target in the coordinate inversion process and the cor-
responding target’s reported distance.

Step 5 : Target localization. If the code that returned by Step
4 is 1, it means that the threshold value ϵ is achieved in the

process of coordinate inversion and the localization is suc-
cess. The location of probe which obtains minimum target’s
reported distance is output as the final localization result.

If the code that returned by Step 4 is 2, it indicates that
the anomalous probe combination still exists after three
times of coordinate inversion. The output EL contains esti-
mated results of target position EL½i�½0� obtained by different
combinations of probe coordinates and the corresponding
reported distance of the target EL½i�½1�. EL½i�½0� correspond-
ing to the smallest EL½i�½1� is selected as the final result of
this round of trilateration, and the anchor probe is set at
EL½i�½0�, as shown below, then jumping to Step 2.

L1 =
EL i½ � 0½ � EL i½ � 1½ � =min EL j½ � 1½ �ð Þj ,

0 ≤ j < len ELð Þ

( )
: ð8Þ

If code return by Step 4 is 0, it indicates that after Step 3,
the target’s reported distance obtained at the estimated posi-
tion is greater than the maximum reported distance
obtained by the three probes. The probes are treated as
anomalous probe combination. Generated probes have per-
formed coordinate inversion in Step 4, and the estimation
result is successfully obtained which is closer to the target.
Then, the location of the anchor probe is updated as below,
and jump to Step 2.

L1 = EL i½ � 0½ � i = len ELð Þ − 1jf g: ð9Þ

In the above process, how to dynamically set the probes
and cope with the anomalous probe combination are the key
of DAPL, which will be introduced in detailed in Section 4.

4. Target Location Approximation Based on
Dynamic Adjustment of Probes

As introduced in Section 2, most LBSD services obfuscate
the reported distance to protect user privacy. Existing

Initial Anchor probe

Anchor probe 2

Anchor probe 3

Anchor probe N

Terminate geolocation
process

Monitor reported distance

Output result

Fallback probe
combination

Coordinates inversion of
generated probe

Original coordinates

Anchor probe

Generated probe

Estimated location

True location

Reported distance

Final result

Probe
location

Reported
distance

Probe location correctionTarget location approximation

Threshold
reached

Abnormal
combination

X-axis reverse

Y-axis reverse

Double reverse

Anchor probe
N-1

Figure 4: Diagram of the proposed method.
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literature states that the randomness of the reported distance
in most LBSD services increases as the reported distance
increases [18, 23, 26]. This situation should be taken into
account when geolocating a target at a long distance, so as
to the selection of probes’ location can contribute to a con-
tinuous approximation of the target’s true location.

4.1. Improving Localization Success Rate by Reestablishing
the Coordinate System. Trilateration is a classical localization
method with high efficiency. Existing LBSD user localization
method based on iterative trilateration can achieve fast
approximation of the target’s true position at long distances,

but it is susceptible to reported distance obfuscation adopted
by the service provider. Existing studies show that in most
LBSD services which do not restrict the query range, the sys-
temic noise in the reported distance increases with the actual
distance [22, 26, 27]. When users are thousands of kilome-
ters apart, there may be tens or even hundreds of kilometers
of errors in the reported distance. Meanwhile, when users
are within a few kilometers of each other, the error range
of the reported distance may be hundreds of meters. When
the least square method is used to estimate the target loca-
tion without considering the variability of such systematic
errors over different distance ranges, there is a possibility

Input: L, R, Re, Le, ϵ
Output: execution code.
1 code =0; //Initial value of execution code.
2 EL = ðLe, ReÞ; //List of Le to be evaluated.
3 i=1; //Times of coordinate inversion.
4 axis =X;
5 ifRe ≤ ϵthen://Judge whether the localization is successful.
6 code =1;
7 break; //End the localization.
8 end.
9 whileRe >max ðRÞdo://Detect anomalous probe combination.
10 ifi ≥ 3 then://All coordinate inversions are tried.
11 code = 2;
12 break; //End inversion process.
13 end.
14 if axis == X then://Invert coordinates of x-axis generated probe.
15 L2 = (−R1/2, 0);
16 Le = LS(L, R); //Estimate target location based on new probes.
17 update Re; //Obtain target distance at the evaluation location.
18 EL.append((Le, Re));
19 i= i + 1;
20 axis = Y;
21 continue; //Verification.
22 end.
23 else.
24 if axis == Y then://Invert coordinates of the probe on the y-axis.
25 L2 = (R1/2, 0);
26 L3 = (0,−R1/2);
27 Le = LS(L, R); //Estimate target location based on new probes.
28 update Re; //Obtain target distance at the evaluation location.
29 EL.append((Le, Re));
30 i= i + 1;
31 axis =XY.
32 continue; //Verification.
33 end.
34 else.
35 L2 = (−R1/2, 0); //Invert coordinates of 2 generated probes.
36 L3 = (0,−R1/2);
37 Le = LS(L, R); //Estimate location based on new probes.
38 update Re; //Obtain target distance at the evaluation location.
39 EL.append((Le, Re));
40 i= i + 1;
41 continue; //Verification.
42 end.
43 end
44 return:EL, code.

Algorithm 1: Dispose of anomalous probes combinations based on coordinate inversion.
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that the estimated location is farther from the target com-
pared with probes. In such case, the existing ITBL method
will continuously select the previous three probes to geolo-
cate the target, resulting in localization failure. Therefore, it
is necessary to update the probe positions after each round
of trilateration to ensure the sustainability of localization.

The location obfuscation strategy used by the LBSD
server is unknown for normal users. If we want to realize a
reasonable combination of probes’ location, it is more prac-
tical to manage it from the perspective of the probe deploy-
ment. Based on an intuitive idea, we analyze the deployment
of probes that may affect the success rate of trilateration in
terms of two factors: interprobe distance and interprobe
pinch angle.

Interprobe Angle: when three points are on a straight line
and three circles are drawn centered on the point, respectively,
the graph is symmetric about the straight line. It is known
from the basic principle of trilateration that there will be at last
two estimation results that satisfy the least square constraints.
The probability is high that the distance between two possible
estimation results is greater than the maximum reported dis-
tance of the target obtained by probes. To avoid this situation
and facilitate the calculation, we reestablish the coordinate sys-
tem to redefine the probe location for the next round of trila-
teration. With the anchor probe as the center, generated
probes’ location is selected in its due north and due east direc-
tions, respectively, and the maximum angle between the three
probes is 90°. Thus, the problem of high localization failure
rate caused by too large maximum angle can be avoided.
The maximum included angle between the probes is shown
in Figure 5. Obviously, the maximum angle between the
probes θ is between 60° and 180°

Interprobe Distance: the distribution of probes’ location
can greatly affect the efficiency of target geolocation. When
we want to geolocate the target from a long distance, the tar-
get’s reported distance obtained by the initial anchor probe
is more than thousands of kilometers. At this time, if the dis-
tance between probes which performing trilateration is
small, the geolocation result is more vulnerable to the confu-
sion of the reported distance, which will lead to a farther dis-
tance between the estimated location and target’s real
location, as shown in Figure 6(a). When the anchor probe
is close to the target and the generated probe is far away
from the target, since the confusion of the reported distance
is stronger with the distance increases, the distance between
the target’s real location and the estimated location may also
be farther than the anchor probe, as shown in Figure 6(b).
Both these situations can have a significant negative impact
on geolocating efficiency. Therefore, based on empirical
values from actual tests, we determine the coordinates of
the generated probe based on the target’s reported distance
obtained by the anchor probe

By reestablishing the coordinate system and determining
the coordinates of the generated probe based on targets’
reported distance acquired by the anchor probe, the problem
of localization failure due to distance confusion in long-
range conditions can be effectively avoided. In Section 5,
the effectiveness of our method in terms of localization suc-
cess rate will be verified based on practical tests.

4.2. Improving Localization Efficiency by Probe Coordinate
Inversion. By reestablishing the coordinate system and con-
trolling probe position distribution, the success rate of local-
ization can be improved. However, abnormal probe
combinations may still exist, which may lead to a decrease
in geolocation efficiency due to the increase of LBSD service
query. A countermeasure deals with the reduced efficiency
based on the inversion of probe coordinates is proposed.

When the estimated position of a round of trilateration
is farther from the target, a possible reason is that the gener-
ated probe is farther from the target than the anchor probe,
which may lead to distance oscillations and increase the time
consumption. If it is found that the target’s reported distance
obtained by the anchor probe is greater than the maximum
reported distance of the target in previous round of trilatera-
tion, it means that there is still an abnormal probes combi-
nation in previous round of trilateration. In this case, the
coordinates of the generated probe are inverted, as shown
in Figure 7. As we mentioned before, in previous round of
trilateration, the coordinates of generated probes which
recorded as B and C are determined in due north and due
east of the anchor probe which recorded as A. If the abnor-
mal probe combination is detected, the position of one gen-
erated probe is inverted. The point in the coordinate system
that is symmetrical to the origin (anchor probe) is taken as
the new location of generated probe B′. Then, probe B′
queries the target’s reported distance again and the trilatera-
tion is performed again based on probes A, B′, and C.

Whether the target is located in any quadrant of the
coordinate system, by inverting the coordinates of generated
probes, it is possible to make probes for performing trilatera-
tion in a reasonable combination. So that the distance oscil-
lation phenomenon can be detected and avoided in time,
and the efficiency loss in the localization process can be
reduced. Results of practical experiments also verify the
effectiveness of our method, which will be described in detail
in Section 5.

5. Experiment and Analysis

To verify the effectiveness of proposed DAPL, we conduct
practical experiments based on Momo platform and com-
pare the experimental results with the existing methods. It
should be noted that because there are few existing studies
on long-distance geolocation of LBSD users, we select the

60°𝜃

Figure 5: Schematic diagram of maximum included angle between
probes.
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most typical existing method based on iterative trilateration
for comparison [22].

5.1. Experiments Settings. Momo is a popular LBSD applica-
tion with hundreds of millions of active users worldwide
which has the characteristics of unlimited query times and
query range. So, it is a very suitable social platform to verify
the proposed method. The experimental environment is

shown in Table 2. We use the computer (CPU: Intel Core
i7-7700, RAM: 16GB) that runs the Android simulator
Nox player. Nox player can provide the virtual location
function and can arbitrarily modify the location of most
mobile apps, including Momo. Appium, an automatic test
tool, can realize the automatic operation of software, such
as startup, click, drop-down, and return. The least square
method is realized by the optimize function in the SciPy
package in Python, and the BFGS function is selected to cal-
culate the optimal solution of the least square.

Based on the above experimental environment, the
experiment lasted about 10 months. The experiment settings
are shown in Table 3. Only two different Momo accounts are
used for the experiment, one as a probe and the other as a
target. Firstly, by setting the location of the simulator, the
location of the target is set in any area of Heilongjiang Prov-
ince at the northernmost of China, and the longitude and
latitude of the target are recorded. Then, the probe’s coordi-
nates are randomly set in other provinces 3000-6000 kilome-
ters away from the target. To verify the target geolocating
effect of DAPL in long-distance conditions, the distance

P1 P2

P3

Probe
Estimated location

(a) Undersize interprobe distance

P1

P2

P3

Probe
Estimated location

True location

(b) Excessive interprobe distance

Figure 6: Abnormal distribution of interprobe distance.

A B

C

Anchor probe

Generated probe

True location

d1

d2

d3d'
3

d'
2

B'

C'

Figure 7: Schematic diagram of generated probe coordinate
inversion.

Table 2: Experimental environment.

Items Setup

Social platform Momo

CPU Intel Core i7-7700 3.60GHz

RAM 16GB

Operating system Windows 10 X64

Mock location Nox player V7.0.0.8

Android version Android 6.0.0

Automated testing tools Appium

Least square solution Python/SciPy/optimize/BFGS
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between probes and the target is set more than 3000 km,
which is greater than the geographical range of most coun-
tries. The distance from the equator to the South and North
Poles is about 6000 km, which is “long-range” enough. Even
the target is geolocated globally, we can find a location
within 6000 km from the target through a few queries. For
this reason, we set the location of probes in the geographic
area of 3000-6000 km to the target. The geolocating results
are compared with the target’s real location to calculate the
geolocating error, and the query times to LBSD service in
the geolocating process are recorded. DAPL only needs one
anchor probe’s position as input, and the probes’ positions
needed in the subsequent geolocating process are generated
by the initial anchor probe. In contrast, the existing ITBL
will randomly generate three initial probe positions and then
perform geolocating. ITBL method ends geolocating when
the maximum distance between probes is less than the
threshold and selects the location of the probe closest to
the target among the three probes as the geolocating result.
The DAPL method ends the positioning when the reported
distance of the target obtained by the probe is less than the
threshold and selects the location of the probe correspond-
ing to the minimum reported distance as the final result.
Within a certain range, the smaller the threshold is, the
higher the geolocating accuracy. Because the selection of
thresholds of the two methods is different, based on the intu-
itive idea, in order to ensure similar accuracy, the threshold
of ITBL method should be greater than that of DAPL
method. In this manuscript, we set the thresholds of the
two methods to 50 meters and 20 meters, respectively.

We have geolocated the target 5000 times in the real
environment. It should be noted that Momo will set a time
limit for location information update. More clearly, after a
user queries the distance information of nearby people,
server will lock the user’s location status for a period of time.
When the user moves to another location during this period

of time and queries the nearby people again, the server still
returns the distance of the nearby people queried by the user
at the previous location. After a large number of tests, we
found that the time limit is about 1 minute. However, we
can effectively shorten the time limit by killing the applica-
tion and then restarting it, and the limit can be reduced to
about 20 seconds.

5.2. Experimental Results and Analysis. The effectiveness of
DAPL is analyzed from three aspects: success rate, geoloca-
tion accuracy, and service query times.

5.2.1. Geolocation Success Rate. In order to unify the stan-
dard, when the method fails to reach the preset threshold
after more than 200 times of LBSD service query, it is regard
as a failed geolocation. Under actual conditions, it will take
several hours to carry out 200 times of service query since
Momo provide no API to accelerate the process. During this
time period, if the target user updates his location, the previ-
ous queries will be invalid, which will affect the practicability
of the method.

Table 4 shows the success rate of the two methods when
geolocating Momo users. ITBL successfully geolocates 3529
Momo targets, and the comprehensive success rate is about
70.6%. By comparison, the proposed DAPL geolocates
4976 Momo targets successfully, whose comprehensive suc-
cess rate is 99.5%, which is much higher than ITBL. Accord-
ing to the distance between the target and the initial probe,
the whole geolocating process is divided into three catego-
ries, 3000-4000 km, 4000-5000 km, and greater than
5000 km, respectively. The geolocation success rates in dif-
ferent distance ranges are discussed, respectively. For ITBL,
the geolocation result is classified according to the distance
of the farthest of the three probes. It can be seen from the
table that under different categories, the success rates are
similar for both two methods and the distance between the

Table 3: Experimental settings.

Items Setup

Probe distribution 3000-6000 km from the target

Targets’ location Random distribution in Heilongjiang Province, China

Target quantity 5000

Threshold for ITBL 50m

ϵ for proposed DAPL 20m

Experimental time February 2021 to November 2021

Table 4: Comparison of geolocation success rate.

Method Items 3000-4000 km 4000-5000 km 5000-6000 km Totally

Proposed DAPL

Target number 1373 2031 1596 5000

Successful number 1369 2020 1587 4976

Successful rate 99.6% 99.5% 99.4% 99.5%

ITBL [22]

Target number 317 1757 2926 5000

Successful number 224 1272 2033 3529

Successful rate 70.7% 72.4% 69.5% 70.6%
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target and the initial probe has limited influence on the geo-
location success rate.

In order to verify the factors affecting the geolocation
success rate discussed in 4.1, we make statistics on the max-
imum included angle and distance distribution of the initial
probe combinations with geolocating failure of ITBL, and
the results are shown in Figure 8. Figure 8(a) shows the dis-
tribution of the maximum included angle between the initial
probes in the case of geolocating failure. As we discussed in
Section 4, the maximum included angle between the initial
probes ranges from 60° to 180°. It can be seen from the figure
that when the maximum included angle is greater than 120°,
the proportion of failed geolocation increases significantly.
Figure 8(b) shows the distribution of the relationship
between the maximum interprobe distance and the maxi-
mum target’s reported distance (d in the figure) obtained
by the initial probes. When the distance between the probes
is too large or too small (<0:25 ∗ d or > d), the proportion of

failure cases is higher. Experimental result verifies that the
analysis of the factors affecting the geolocation success rate
in Section 4.1 is reasonable to a certain degree.

5.2.2. Geolocation Accuracy. For all successfully geolocated
targets, the minimum error, the average error, and the
median error of DAPL are 0.19m, 22.1m, and 21.7m,
respectively, which are 0.45m, 23.8m, and 20.6m, respec-
tively, for the ITBL. Figure 9 shows the distribution of geolo-
cating errors. From the figure, the proposed DAPL method
has similar geolocating accuracy performance compared
with ITBL, both of which can geolocate about 80% of the tar-
gets within 40m, which is enough to determine the target’s
location in a very small range.

When the threshold is smaller, the two methods both
can get higher accuracy. However, a smaller threshold will
increase the time cost. Our work focuses on how to geolocate
the target in long-distance conditions, rather than achieving
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higher precision regardless of cost. Therefore, we believe that
the two methods are commensurate in geolocating accuracy.

5.2.3. Service Query Times. Service query times are the num-
ber of times LBSD service is used in the geolocating process,
which reflects the time consumption performance of the
method. To ensure the fairness of the experiment compari-
son, we do not consider cases of failed geolocation and only
compare the consumption of query times in the case of suc-
cessful geolocation. The results are shown in Figure 10. The
average number of queries of DAPL is about 11.4 times,
which is lower than 13.2 times of ITBL. The fastest geoloca-
tion requires only 7 queries of service of DAPL. Because the
number of successfully geolocated targets by DAPL is more,
if only 3529 targets with the best performance in DAPL are
considered, as represented by the top part in the figure, our
method has better performance.

Although DAPL will add new probes in each round of
trilateration which will need more queries to the server, the
more reasonable combination of probe positions of DAPL
will help to approach the real position of the target faster.
Therefore, it has better efficiency performance in general.

In summary, the proposed method can achieve reliable
and accurate geolocation of Momo target users under long-
distance conditions. Compared with the existing method
based on iterative trilateration, it can effectively improve
the success rate, reduce the time consumption, and have
similar accuracy.

6. Conclusion

In this manuscript, an efficient localization method for
LBSD users at long distances based on dynamic adjustment
of probes (DAPL) is proposed. DAPL achieves continuous
approximation to the target’s location by reestablishing the
coordinate system and adjusting probes’ location dynami-
cally. In this process, the distance oscillation phenomenon

is avoided based on coordinate inversion of the probe to
ensure the efficiency. The actual experiment based on Momo
shows that the proposed method achieves nearly 100% geo-
locating success rate for the target without knowing the
potential area information of the target. At the same time,
compared with the existing representative method, it has less
time overhead and higher success rate on the premise of
ensuring the positioning accuracy. The motivation of our
work is to verify whether the malicious social network users
can be geolocated based on the public service provided by
the social platforms. The actual experiment shows that the
current location protection mechanism adopted by service
providers cannot prevent the user’s real location from being
inferred. On the premise of ensuring the service quality, spa-
tial confusion and other privacy enhancing mechanisms
need to be used to increase the random confusion of
reported distance [9, 35, 36]. In the future work, we will
put more effort into the probability of distance oscillation
caused by different location confusion mechanisms and the
corresponding countermeasures.
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