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Traffic anomaly detection is an essential part of an intelligent transportation system. Automatic traffic anomaly detection can
provide sufficient decision-support information for road network operators, travelers, and other stakeholders. This research
proposes a novel automatic traffic anomaly detection method based on spatial-temporal graph neural network representation
learning. We divide traffic anomaly detection into two steps: first is learning the implicit graph feature representation of
multivariate time series of traffic flows based on a graph attention model to predict the traffic states. Second, traffic anomalies
are detected using graph deviation score calculation to compare the deviation of predicted traffic states with the observed
traffic states. Experiments on real network datasets show that with an end-to-end workflow and spatial-temporal
representation of traffic states, this method can detect traffic anomalies accurately and automatically and achieves better
performance over baselines.

1. Introduction

With the yearly increase in the usage of vehicles and the
gradual expansion of the traffic network, there is a growing
demand for the detection of abnormal events in the traffic
network. We need to monitor each roadway and manage
the road which may be affected promptly after an abnormal
situation occurs. Through such effective management, traffic
congestions and accidents can be handled in time, thus
ensuring the normal operation of the traffic. In the real
world, we have multiple sites in the city set up as informa-
tion collection points to collect large amounts of time series
data for the status, speed, and other information about the
roadway. This data interacts with each other in a complex
way. For example, a traffic jam on one road will increase
the number of vehicles on other roads. The increase in traffic
on that route will further drive drivers whose destination

along it to choose other roads, which has a broader impact.
The complexity of the data on each section of the corre-
sponding traffic network has increased rapidly as cities have
developed, making previous traditional detection methods
less effective. If spatial-temporal traffic flow pattern analysis
and anomaly detection can be effectively applied, we can
detect abnormal road sections while predicting the stations
where problems may occur and then prevent and deal with
them without delay. Then, the efficiency of transportation
will also be significantly improved.

The detection of unexpected situations in road networks
is a typical complex anomaly detection problem. This type of
research detects the presence of anomalies by analyzing his-
torical data and solves them in time, thus avoiding further
undesirable effects. Classical algorithms for anomaly detec-
tion problems include constructing linear models, such as
principal component analysis (PCA) method; distance-
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based measures, such as the k-nearest neighbor (KNN)
approach; cluster-based detection, such as density-based
spatial clustering of applications with noise (DBSCAN)
method; and density-based measures, such as local outlier
factor (LOF) algorithm. These schemes determine whether
anomalies will occur by analyzing the most salient features.
Their clear and concise principles lay a good foundation
for further research and analysis. However, the situation of
traffic in the real world is often influenced by many factors.
For example, real-life traffic conditions are very strongly cor-
related in time and space, so it is essential to build a nonlin-
ear dynamic spatial-temporal model to predict anomalies in
road networks. The simplicity of the above models limits
them to more profound analysis. They cannot meet the
practical needs of prediction. With the continuous efforts
of many scholars, some methods based on graph deep learn-
ing have been developed in recent years to improve the accu-
racy of anomaly detection. Anomaly detection based on
generative adversarial networks (GAN) is a popular method
widely used in anomaly detection. This method generates
the hidden space of the network by learning and capturing
the features of the data within the hidden space. But most
of these methods are more suitable and targeted to specific
points for anomaly analysis. During the course of detecting
the anomaly event of the traffic network, we not only need
to detect the situation of the scattered individual points in
each road but also need to pay attention to the overall situ-
ation of the traffic and the interaction between the points.

The concept of a graph neural network (GNN) was first
introduced by Gori et al. in [1]. In [2], Bruna et al. intro-
duced convolution into graph neural networks, making the
effect greatly improved. In the study of graph-related prob-
lems, graph data usually contain two parts of information:
attribute information and structure information. In traffic
network anomalous event prediction, we can easily get the
attribute information of road networks, such as the passage
time of vehicles and the speed of vehicles, but what we still
lack its structural information.

To solve this problem, we proposed a novel traffic anom-
aly detection method based on graph deviation network
(GDN) models. Our method consists of four main parts:
(1) traffic information embedding. The road network is
modeled as a graph in this method, where nodes denote road
links. And the real spatial and temporal attribute informa-
tion of each node is embedded into the graph, which is the
basis for subsequent analysis. (2) Traffic state spatial-
temporal graph structure learning. The input data are some
discrete temporal data without structural information. To
understand the overall situation, we need to learn the
implicit information between nodes to determine the general
structural properties. (3) Traffic state prediction. The graph
attention model is used to predict the traffic state of each
node. A node in a graph structure is not affected by other
nodes in the same way. The graph attention mechanism
makes the prediction results more realistic by dynamically
adjusting the attention function. (4) Traffic anomaly detect-
ing. This section is responsible for explaining the deviations
to make the results more convincing. Using the learned
directed graph with different weights, we could explain

which nodes contribute to the anomalies. Graph deviation
scoring identifies and interprets deviations in the learned site
relationships in the graph. The results show that we can
obtain a model with good results by embedding the site
information and further learning the relationship between
nodes.

2. Literature Review

2.1. Traffic State Prediction. Traffic state prediction is a very
critical problem in the field of transportation. When we
want to predict the situation of the traffic network, we need
to focus on the time series of the input information. Time
series data are arranged in chronological order, varying over
time and interrelated. Due to the variety of traffic variables
and the variability of traffic states on different road seg-
ments, the traffic state prediction task can be seen as a mul-
tivariate time series forecasting problem.

There are usually two categories for traffic state predic-
tion: traditional statistical methods and machine learning-
based methods. Traditional statistical approaches include
the autoregressive model (AR) [3], the moving average
model (MA) [4], and the autoregressive integrated moving
average model (ARIMA) [5] which is obtained by fusing
AR and MA. As early as [6], Williams and Hoel build a
model and forecast vehicular traffic flow as a seasonal
ARIMA process. In [7], Ghosh et al. used a random walk
model, Holt-Winters’ exponential smoothing technique,
and a seasonal ARIMA model to predict the traffic flows in
Dublin. However, realistic situations often have very com-
plex nonlinear characteristics. With the rapid development
of machine learning, especially deep learning, time series
forecasting problems have further developed. In [8], Cai
et al. built a k-nearest neighbor model for short-term traffic
multistep forecasting Lim and Zohren [9], explaining some
of the methods in which deep learning supports the decision
of time series data. This also gives more inspiration to the
development of subsequent time series forecasting problems.
A traffic forecast model based on long short-term memory
was built by Zhao et al. in 2017. In the same year, Yu et al.
formulate the problem on graphs and build the model with
complete convolutional structures, which realize a much fas-
ter training speed with fewer parameters. What is more, the
difficulty is that realistic traffic networks often have strong
spatial and temporal dependencies. In [10], Cui et al. com-
bine LSTMs and GNNs to discover the temporal and spatial
dependencies. In the same year, Wang et al. combine the
grid partition-based of local outlier factor (LOF) algorithm
and develop a grid-based LOF algorithm to detect the abnor-
mal area in Beijing. Park et al. proposed an LSTM-VAE
model replacing the feed-forward network to measure the
anomaly score and achieve better results. In 2019, Li et al.
train a GAN model with an LSTM-RNN discriminator to
compute the anomaly scores for each node. In [11], Geiger
et al. use the TadGAN model which is trained with cycle
consistency loss to allow for effective time series data recon-
struction. A computational data science approach (CDS) is
proposed in 2022. Carrera et al. also propose a
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spatiotemporal graph convolutional adversarial network
(STGAN) to model traffic dynamics in [12].

2.2. Anomaly Detection. The purpose of anomaly detection is
to identify data different from normal data and detect data
that differs from the expected pattern. Anomaly detection
also has a wide range of applications in the real world, such
as device failure detection, medical data detection, network
intrusion detection, fraud detection, and time series anomaly
detection. We usually classify anomalies into point anoma-
lies, conditional anomalies, and population anomalies.
Anomaly detection methods are also commonly categorized
into the following three types: supervised anomaly detection,
unsupervised anomaly detection, and semisupervised anom-
aly detection. The basic methods for anomaly detection
include statistics-based methods [13], linear model-based
methods [14], cluster-based detection DBSCAN [15],
distance-based methods KNN [16], density-based proximity
detection LOF [17], and integrated methods such as isolated
forests [18]. With the continuous efforts of many scholars,
some deep learning-based methods have developed in recent
years, and the accuracy of anomaly prediction has greatly
improved. A generative adversarial network (GAN) is a very
representative one. A GAN generator is used to learn the
data distribution to find the image it should correspond to
and then compare it to determine whether anomalies occur.

Road network anomaly detection can be considered as a
supervised anomaly detection task in the case of unbalanced
sample classes. We want to determine whether anomalous
conditions occur by detecting a time series of operational
states at a location at a given time. Here, anomaly detection
usually refers to a specific point, but in the anomaly detec-
tion of the road network, we need to pay attention to multi-
ple points in a whole network. Our input data do not possess
a graph structure in the traffic network prediction problem,
but only a string of discrete-time series data. The model
needs to learn implicitly and discover the relationship
between nodes by itself then use the graph attention network
to discover anomalies in the road network.

Compared with the methods and detection scenarios
used in previous traffic anomaly detection, the characteris-
tics of the nodes are often homogeneous. While in the actual
situation, the road network nodes may choose different indi-
cators according to the specific condition. These results in
the structure of road networks are often heterogeneous. At
the same time, to form the road network structure, the data

need to have structural relationships. It is a difficult task to
obtain such data. This paper solves the problem of heteroge-
neity by mapping nodes into a uniform high-dimensional
space. Also, we learn the implicit relationship of the nodes
through the attention mechanism and graph deviation score
calculation.

In order to compare more clearly the differences between
the previous work and our model, we have selected some
representative work for comparison; the results are shown
in Table 1.

3. Methodology

3.1. Description of the Problem. This study formulates the
traffic anomaly detection problem as the supervised anomaly
detection task. And two-step detection method is proposed
based on the GDL model. The detection nodes distributed
in different locations of the road network will predict
whether anomalies will occur or not. However, it is usually
a difficult task to detect anomalies on roads. The traffic situ-
ation at a certain point will be correlated with other nodes in
the spatial and temporal dimensions.

(1) Spatial Dimension. Due to the nature of traffic road
connections, some traffic indicators such as passing
speed, travel time, and other important indicators
for judging traffic incidents at a station are affected
by the nodes connected. For example, when a traf-
fic accident occurs at a certain place, the traffic
flow will spread towards the surrounding nodes
due to the road closure or different, resulting in
changes in the situation of the surrounding associ-
ated nodes

(2) Temporal Dimension. When an anomaly occurs at a
node, the result is reflected in the adjacent time
dimension, both in the short-term and long-term
time frames. For example, if an actual anomaly was
detected at 10 : 00 am, the anomaly’s impact may
continue to be felt until 11 : 00 am. Sometimes the
effect may even manifest itself before the anomaly
has fully occurred. For example, an anomaly can be
detected at 9 : 55 am

Table 2 shows the notations used in this paper, and
Table 3 shows the abbreviations we used in this paper.

Table 1: Results of comparison with previous work.

Methodology Research contents
Multiple variables Data relationship
Yes No Temporal Spatial Temporal-spatial

Statistics-based method
The autoregressive integrated moving

average model (ARIMA) [6]
√ √

The local outlier factor (LOF) [19] √ √

Machine learning-based method

k-nearest neighbor (KNN) [8] √ √
Long short-term memory (LSTM) (Zhao et al.,2017) √ √

Graph convolutional network (GCN) [20] √ √
This study √ √
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3.2. Overview. We proposed a novel method for traffic
anomaly detection based on the graph deviation network
(GDN) method. As Figure 1 shows, our method consists of
four main parts:

(1) Traffic Information Embedding. The actual attribute
information of each node is embedded into the graph,
which lays the foundation for subsequent analysis

(2) Traffic State Spatial-Temporal Graph Structure
Learning. The input data are some discrete temporal
data that do not have structural information. We
need to learn the implicit information between nodes
to determine the general structural properties for
understanding the overall situation

(3) Traffic State Prediction. A point in a graph structure
is affected by other nodes differently. The graph
attention mechanism makes the prediction results
more realistic by dynamically adjusting the attention
function

(4) Traffic Anomaly Detection. This section explains the
deviations to make the results more accurate. The
results show that by embedding the site information
and further learning the relationship between nodes,
we can obtain a model with good results

In this paper, we use an unsupervised learning method.
According to its general principles, our training set is
assumed to consist entirely of normal data. Each time, the
data that we feed into the model contains data for certain
stations within a certain time window. To detect traffic
anomalies at a single station, we choose to use the number
of stations as a feature of the data. Besides, in order to input
and organize the information of all nodes simultaneously,
we extract the original timestamp information discrete-
time features and add them to the input vector.

Our data were collected from different stations in the city

during the T test period: they can be expressed as = [Ið1Þtest

,...,IðTtestÞ
test ]. We determine if an exception has occurred

through the value of output: oðtÞ ∈ f0, 1g. If at the time of
t we observe that oðtÞ = 1, this indicates that an anomaly is
occurring at this moment. Figure 2 shows the procession
of our detection network.

3.3. Traffic Information Embedding. Because our network is
heterogeneous, different nodes have different properties
and features. Therefore, if we want to reflect the information
of different nodes under the same graph structure, we need
to map the features to the same space. We use an embedding
vector to represent the features of each station:

I Ttestð Þ
test ⟶ vi, vi ∈ R

d , for i ∈ 1, 2,⋯,Nf g: ð1Þ

N represents the number of stations, d for the embed-
ding vector dimension, and vi for the ith station’s embedding
vector.

The significance of the embedding layers is reflected in
which it turns our sparse matrix into a dense matrix by some
linear transformations, and this dense matrix characterizes
all the sites with some typical features. This dense matrix
not only represents the one-to-one correspondence between
the dense matrix and individual features; in fact, it also con-
tains a large number of intrinsic relationships between nodes
and nodes. Meanwhile, the result of variant 2 in the part of
ablation experiments shows that the module of embedding
layer is necessary. When remove this module, the accuracy
is decreased by 36.99%. The detection rate is decreased by
8.45% while the false alarm rate is increased to 39.14%. By

Table 2: Notations used in this paper.

Symbol Description

I T testð Þ
test Data of different stations at the moment of T test

vi The station’s embedding vector ith

Mij
Adjacency matrix donates the relationship

between node i and node j

Ri The candidate relation node set of i

eji
The similarity between the embedding

vector of the node i and
the embedding vector of its candidate node j

gi tð Þ The score of the nodes through the
graph attention mechanism

ai,j The attention coefficient

Erri tð Þ Error value of the site i at the time t

As tð Þ A smoothed score will be used to decide
on an exception has happened or not

Table 3: Abbreviation used in this paper.

Abbreviation Full name

PCA Principal component analysis

KNN k-nearest neighbor

DBSCAN
Density-based spatial clustering of

applications with noise

LOF Local outlier factor algorithm

GNN Graph neural network

GDN Graph deviation network

AR Autoregressive model

MA The moving average model

ARIMA
The autoregressive integrated

moving average model

LSTMs Long short-term memory

GDL Geometric deep learning

GCNs Graph convolutional network

GAT Graph attention networks

IQR Interquartile range

SMA Simple moving average

OCSVM The one-class support vector machine

HBOS The histogram-based outlier detection

COPOD Copula-based outlier detector

IFOREST Isolation Forest
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comparing the performance of variant 2 with the proposed
model, the importance of the traffic information embedding
module is emphasized.

3.4. Traffic State Spatial-Temporal Graph Structure Learning.
After we get the node embedding vectors, we will use the vi
to learn the graph structure learning.

The data we use is originally some time series
sequences and do not have connections between nodes.
However, we want to understand whether there is a rela-
tionship between nodes as well as the magnitude of the
influence in the model of anomaly detection in the road
networks. Therefore, we will learn the implicit relationship
between sites during the training process by designing a

structural framework. Eventually, we will obtain a directed
graph representing the connections between different sites
through learning. In this directed graph, the nodes repre-
sent the sites where we collected information, and the
edges represent the dependencies between them. The con-
nection between the two sites represents the information
collected at one site that will be used for training at the
second site. We represent this directed graph by the adja-
cency matrix M, where Mij represents the existence of
directed edges from node i to node j, which means that
the two sites have a spatial correlation. We use Ri to rep-
resent the candidate relation node set of i.

Ri ∈ 1, 2,:⋯ ,Nf g \ if g ð2Þ

Node information embedding Graph attention

Graph structure learning

Stations

Input

MLPs

Output

Embedding
ai

aj,1 hj,1
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hj,4
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Figure 1: Methodology of traffic network anomaly detection.
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Figure 2: Process of traffic network anomaly detection.
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To understand the dependencies between the sites, we cal-
culate the similarity between the embedding vector of the node
i and the embedding vector of its candidate node j ∈ Ri:

eji =
vi
Τvj

vik k ⋅ vj
�
�
�
�
for j ∈ Ri, ð3Þ

Mji = j ∈ TopK eji : k ∈ Ri

� �� �� �
: ð4Þ

We first compute the normalized dot product with a nor-
malized layer between the embedding vector of the sensor i
and the candidate relation j ∈ Ri. Then, we will choose the
index of the Topk values of the input (i.e., normalized dot
product) and select them as the most important K node
related to node i. The user determines the value of k by the
desired degree of sparsity. The process of computing the dot
product and selecting the Topk nodes will exceed in each
batch during every epoch. Finally, we will get the adjacency
matrix M which denotes the implicit relationship between
the station nodes.

3.5. Traffic State Prediction. Previously, we used the module of
Topk, and our model can learn the graph structure of the road
node proximity implicit in the data by calculating the dot prod-
uct of the embedding vector. After that, we get an overall corre-
lation topology. A specific node and the road junctions
associated with it do not have precisely the same situation in
the traffic road network. The usual situation is that when an
accident occurs at a certain location, the impact of that point
will spread to the surrounding nodes with different degrees.

Traditional GCNs usually have significant limitations for
such task requirements. GCNs cannot adjust the neighbor
weights (cannot specify different weights to different nodes
in a neighborhood) based on the feature attributes of the
nodes. This limits the ability of the model to capture the rel-
evance of spatial information, resulting in poorer predictions
in practice. Therefore, we use the mechanism of graph atten-
tion by computing the nodes and using the critical nodes j
∈Mji = fj ∈ Topkðfeji : k ∈ RigÞg which we learned by Topk
to compute the similarity function πði, jÞ.

gi tð Þ = vi ⊕Wxi
tð Þ, ð5Þ

π i, jð Þ = LeakyReLu aΤ gi
tð Þ ⊕ gj

tð Þ
� �� �

: ð6Þ

Here, our formulation differs from the standard formu-
lation of GAT in the paper. In order to use the embedding
vector in a batter way, we have chosen a sliding window
using xi ∈ R that denotes the feature of the node’s input.

The sliding window control is used to select a fixed size
time range of data as an input to predict the result at the next
time point. Here, the time t is defined as xi:

xi
t It−window, It−window+1,⋯, It−1
h i

: ð7Þ

RðiÞ = fjjMij > 0g is the adjacency matrixMij that repre-
sents the topology through what we have learned, which is

also the set of nodes that are adjacent to node i. W ∈ℝd×w

denotes the weight matrix of the linear transformation layer
shared by all nodes of our model for feature enhancement of
the input nodes. vi donates the embedding vector of node i.
⊕ represents a stitching operation on the transformed
features.

Thus, the gi here can combine the transformed features
with the embedding vector we learned, which may improve
the effectiveness of the attention mechanism. For the final
activation function, we chose the general LeakyReLu as the
nonlinear activation to compute the attention coefficient.

After calculating the correlation coefficient, we used soft-
max to normalize the correlation coefficient and obtained
the attention coefficient ai,j.

ai,j =
exp π i, jð Þð Þ

∑k∈N ið Þ∪ if gexp π i, jð Þð Þ : ð8Þ

The softmax function converts a vector of K real values
into a vector of K real values that sum to 1. The K input values
to the vector can be positive, negative, zero, or greater than 1,
but softmax converts them to be between 0 and 1, so the con-
verted values can be interpreted as probabilities. If one of the
inputs is small or negative, softmax turns it into a small prob-
ability, and if the input is large, it turns it into a large probabil-
ity, but always stays between 0 and 1. This property is exactly
satisfied by the properties of the weighting calculation.

The GAT obtains a score for each neighboring node by
calculating the degree of correlation between them, but this
score can have a large variation. Softmax is useful here
because it converts the calculated correlation score into a
normalized probability distribution, and the converted result
is distributed between 0 and 1 depending on the size of the
score, which can be considered as the importance of each
node, i.e., weighting values. Based on the above consider-
ations, we chose to use the softmax function.

Finally, we aggregate our computed attention coefficients
to obtain new features for the output of each node which
incorporate the information we have learned from the
neighborhood nodes. Here, the activation function we chose
to use is ReLu.

outputi = Re Lu 〠
j∈R ið Þ+1

ai,jWxj

 !

: ð9Þ

3.6. Traffic Anomaly Detection. To make the model more
accurate, we hope to understand the anomalies of the rela-
tionship and the reasons why the anomalies exist. So we cal-
culate the anomaly scores for each site and combine them to
get a single anomaly score for each time tick. This allows the
user to specify which sites are uncommon. The anomaly
score is calculated by comparing the expected behavior at
moment t with the observed behavior. Error value Err of site
i at the time t can be expressed as follows:

Erri tð Þ = si
tð Þ − ŝi

tð Þ
	
	
	

	
	
	: ð10Þ
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Since different stations have different characteristics,
their deviation values can vary considerably accordingly.
We robustly normalize the error values for each site to avoid
one site being overly influenced by other sites.

ai tð Þ =
Erri tð Þ − ~μi

~σi
, ð11Þ

where ~μi and ~σi are the median and interquartile range
(IQR) across time ticks of the ErriðtÞ values, respectively.
IQR is defined as the spread difference between the 75th
and 25th percentiles of the data. We chose median and
IQR rather than mean and standard deviation. IQR
enhances the accuracy of dataset statistics by dropping lower
contribution, outlying points. And so as the median will
reduce the affection of the outliers which means better
robustness. The work [21] shows that they have better
robustness in the event of anomalies.

We use the max function to aggregate the sites to calcu-
late the overall anomaly at moment t.

A tð Þ =max
i

ai tð Þ: ð12Þ

To suppress sudden changes in values, we use a simple
moving average (SMA) [22] to generate a smoothed score
AsðtÞ. If AsðtÞ exceeds a fixed threshold, the time stamp t will
be marked as an exception. Here, we set the threshold to the
maximum value of AsðtÞ on the validation data.

4. Experiments

4.1. Datasets. The incident logs conclude 13759 congestion
logs, 1139 accident logs, 74 road construction logs, and 3
lane closure logs. The dataset for this experiment comes
from Beijing and is a series of data collected in a natural traf-
fic environment. Figure 3 shows the distribution of the
anomalies according to the dataset. Before predicting anom-
alies in the road network, we have two requirements for the
input training data: (1) it is required to be clear which sta-
tion the data describes, and (2) the data needs to be tempo-
rally coherent. We need to perform a preprocessing
operation on the raw data to meet these requirements. The
time-stamped features of the original data are extracted
and added to the original ID features, so that even if the data
are completely disrupted, we can ensure that the sequence of
the time series is not broken.

4.2. Evaluation Metrics. Here, we use the three metrics of
detection rate, false alarm rate, and accuracy to evaluate
and compare the baseline model with our modified model.

Detection Rate = TP
TP + FN

, ð13Þ

False AlarmRate =
FP

FP + TN
, ð14Þ

Accuracy =
TP + TN

TP
+ TN + FP + FN: ð15Þ

The definitions of FN, FP, TN, and TP are as follows:

(1) FN (false negative): the sample is judged to be nega-
tive, but it is a positive sample in fact

(2) FP (false positive): the sample is judged to be posi-
tive, but it is negative

(3) TN (true negative): the sample is judged as negative,
and in fact, it is also a negative sample

(4) TP (true positive): the sample is judged to be positive
and is positive in fact

With these metrics, we can estimate which models have
better results.

4.3. Comparison Methods. We compared the model pro-
posed in this paper with the state-of-the-art methods
(SOTA) for anomaly detection, together with some previous
studies on anomaly detection using the baseline model as a
comparison of the results. The models and methods include
the following.

4.3.1. Linear Model

(1) OCSVM. The one-class support vector machine [23] is
different from the traditional SVM model. OCSVM is suit-
able for classification problems where there is only one type
of sample or where there are two types of samples, but the
number of samples of one type is much less than the number
of the other type. The anomaly detection problem is typical
of the latter. The samples can be classified as either normal
or abnormal. Furthermore, the number of normal samples
is much larger than the number of abnormal samples. When
we try to make a judgment on a sample, if the features

Figure 3: Kernel density map of traffic anomaly distribution.
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extracted from that sample do not match the features of the
normal case included in the classifier, we can conclude that it
is an abnormal case.

4.3.2. Proximity-Based

(1) LOF. The main idea of the local outlier factor method is
to assign a degree of outlier to each data example within a
certain range [24, 25]. The outlier factor is the average of
the ratio of the local reachability density of a point to the
local reachability density of its neighboring nodes. If this
ratio is closer to 1, it means that the densities between the
two nodes are similar, and they may jointly belong to a clus-
ter; if this ratio is much larger than 1, it means that the den-
sity of the node is much smaller than the density of its
neighboring points. The node is most likely to be an
anomaly.

(2) HBOS. The histogram-based outlier detection assumes
the independence of features and scores the records in linear
time. It is less accurate but has superior computational speed
compared to multivariate methods [26]. This method
divides the sample into multiple intervals according to the
characteristics. The probability of outliers is higher in inter-
vals with a small sample size.

4.3.3. Probabilistic Model

(1) COPOD. The algorithm of copula-based outlier detector
not only does not need to calculate the distance between
samples but also does not need to adjust the parameters. It
has the advantages of high speed as well as low cost of run-
ning [27]. The COPOD method calculates the degree of the
anomaly in each dimension and then finds the average
anomaly in overall dimensions. This method evaluates the
anomalies by estimating the tail probability of each point.

(2) IFOREST. The algorithm of isolation forest is a fast
anomaly detection algorithm based on integrated learning,
which uses a binary tree to slice and dice the data. The depth
of the data points in the binary tree reflects the “sparseness”
of the data [28]. We determine the degree of the anomaly of
the data by estimating the anomaly score. The shorter the
average path’s length of the data in multiple trees, the more
likely the data is anomalous.

(3) LSTM-VAE. LSTM-VAE [29, 30] replaces the feed-
forward network in a VAE with LSTM to take advantage
of LSTM and VAE. It can measure reconstruction error with
the anomaly score.

(4) MAD-GAN. MAD-GAN [31] trains a GAN model with a
LSTM-RNN discriminator to compute the anomaly scores
for each node.

4.4. Experimental Setup. Our models are built in a Python
environment with PyTorch version 1.10.1 and PyTorch
Geometric Library version 2.0.3. They are also deployed on
Intel(R) Xeon(R) Gold 6278C CPU @ 2.60GHz and NVI-
DIA Tesla T4 graphics cards.

4.5. Hyperparameter. We use an Adam optimizer with a
learning rate of 0.001 to achieve the optimization. The
model is trained for up to 100 epochs, and we use an early
stopping technique. We populate each node as a 32-
dimensional vector and use a k value of size 6 in the Topk
module. The number of hidden cells is set to 128, the batch
size is set to 32, and the sliding window size is set to 48. We
use 80% of the data as a training dataset, and the remaining
20% is selected as the validation set. After confirming the
selection of these crucial hyperparameters, we use the grid
search method to perform the search process. The specific
range of variations of the hyperparameters is the batch size,
slide windows, embedding dim, and Topk.

The best combination of parameters is obtained after the
search, as shown in Table 4. The parameter embedding dim
represents that we reflect the features of the nodes into a
space of 32 dimensions. And we use the LeakyReLu as the
activation function when computing the weights. And the
best number of the neighbors we select is 6.

4.6. Results. In Table 5, we show the performance of our
GDN method and the baselines on detection rate, false alarm
rate, and accuracy on the dataset from Beijing. The results
show that the GDN method has a value of 0.9749 and
0.9701 on detection rate and accuracy, which is better than
other baseline experiments. The value of the false alarm rate
is 0.0251, which is significantly lower than other baseline
experiments. Meanwhile, we also compare the results with
some state-of-the-art methods including LSTM-VAE and
MAD-GAN. We can find that our model is equivalent in
terms of accuracy and detection rate and has a better perfor-
mance on FAR. These results show that our method has a
superior prediction result.

4.7. Ablation Experiments. Ablation experiments are
deployed as sensitivity analysis for the major modules of
the proposed model. Three variants are implemented by
gradually removing a certain module of the proposed
model:

(1) Variant 1. This variant is implemented by removing
the Topk module of the proposed model to investi-
gate the importance of the learned traffic graph
structural representations. The Topk module helps
the proposed model to filter out the nodes with high
scores of interconnections and figure out which
nodes may have a relationship. After removing the
Topk module, all nodes in the graph are associated,
which means a complete static graph. The data in
the table shows a significant decrease in the accuracy
of the model, which indicates that selective joins in
the graph structure make the model less bloated
and thus improve the performance

(2) Variant 2. To scrutinize the effectiveness of the traf-
fic information embedding module, this variant is
implemented by excluding the embedding module
of the proposed model. The embedding mechanism
helps the proposed model to find nearby neighbors
in the space and reduces the amount of data needed
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for training. After we remove the embedding layer
and substituted with gðtÞ =Wxi, the detection rate
and the accuracy become worse. This indicates that
the presence of embedding layer helps to learn the
relationship between nodes in the graph attention
mechanism

(3) Variant 3. To explore the importance of the atten-
tion module, this variant is implemented by remov-
ing the attention mechanism of the proposed
model. The attention mechanism helps the proposed
model to show the closeness of the relationships
between nodes and how they affect each other. When
we set the weight of all nodes to 1 (all nodes have
equal weight), the new model does not work as well
as the original model. The result shows that it is cru-
cial to use the attention mechanism to assign weights
according to the closeness or detachment of the
nodes

All variants of the proposed model are tested on Beijing
dataset to investigate the optimal architecture of the pro-
posed model. The results are shown in Table 6.

The model we used is obtained by fusing several mod-
ules. In order to verify what contribution each module
makes to the proposed model, we dynamically adapt the
method we want to confirm while keeping the other
methods unchanged. The specifics of the changes in the
results give us ideas of the role played by the method.
Table 4 shows the results obtained by the ablation experi-
ments. The performance of the variants on all metrics can
be discussed in comparison with the proposed model. For
variant 1, the accuracy is decreased by 47.98% while the
false alarm rate is increased to 49.97%. Although the
detection rate is improved, both the false alarm rate and
the accuracy are declined at the cost. By comparing the
performance of variant 1 with the proposed model, we
verify the necessity to learn the traffic graph structural
representations. For variant 2, the accuracy is decreased
by 36.99%. The detection rate is decreased by 8.45% while
the false alarm rate is increased to 39.14%. By comparing
the performance of variant 2 with the proposed model,
the importance of the traffic information embedding mod-
ule is emphasized. For variant 3, the accuracy is decreased
by 15.85%. The detection rate is decreased by 16.09%
while the false alarm rate is increased to 18.36%. By com-
paring the performance of variant 3 with the proposed
model, the effectiveness of the integration of the attention
module is demonstrated. Taken together, the Topk mod-
ule, the embedding layer, and the attention mechanism
all make unique contributions to our model. They are
fused to help our model achieve better results.

4.8. Interpretability of Model

4.8.1. Embedding Layer. In our modified model for anomaly
problem detection in road networks, we used an embedding
vector layer to encode all the heterogeneous stations to map
the embedding vector into a 2D space, using the distance
metric to represent the relationship between different sta-
tions. Here, we use the t-SNE to reduce the dimension and

Table 4: Optimal combination of hyperparameters.

Variable Value

Learning rate 0.001

Batch size 32

Epochs 100

Optimizer Admn

Activation function LeakyReLu
Embedding dim 32

Topk 6

Slide windows 48

Table 5: Results of anomaly detection compared with baseline
models.

Method Accuracy
Detection

rate
False alarm

rate

LOF 0.80 0.89 0.09

IFOREST 0.83 0.80 0.08

OCSVM 0.82 0.84 0.08

HBOS 0.87 0.31 0.03

COPOD 0.82 0.82 0.08

LSTM-VAE 0.97 0.97 0.03

MAD-GAN 0.91 0.35 0.16

GDN (the selected
model)

0.97 0.97 0.02

Table 6: Results of ablation experiments.

Model Detection rate False alarm rate Accuracy

GDN 97.49% 2.51% 97.01%

Variant 1 99.96% 49.97% 50.46%

Variant 2 89.25% 39.14% 61.13%

Variant 3 81.80% 18.36% 81.63%

node_1
node_2
node_3

...

Figure 4: A plot of the node embedding vector encoded by the
model. Different colors denote each class. We used the t-SNE and
DBSCAN to achieve the dimensionality reduction and clustering.
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use the DBSCAN to cluster all the nodes. We visualize the
vectors in Figure 4. We compute the similarity of geographic
locations by Euclidean distance to cluster geographically
similar sites together. The nodes with a similar embedding
vector will be clustered together. Nodes in the same class
of clusters may be at connected road junctions or have sim-
ilar traffic flow conditions in the road network.

4.8.2. Attention Mechanism for Association between Nodes.
The model we transformed is based on the graph structure.
Our model learns a latent network structure and represents
the directed graph. The magnitude of the interaction
between associated nodes is not the same. With the different
weights in the attention mechanism, we can get a clearer pic-
ture of the degree influenced by the surrounding nodes by
assigning different degrees of correlation to adjacent nodes
based on the graph structure obtained from Topk learning.
Figure 5 shows the predicting situation. When an anomaly
is detected at the target location, the weight of attention
can be seen as a distribution of the diffusion influence of
the node to the surrounding area. Through this distribution,
we can understand the critical location of the road. When
the real anomaly occurs, we can carry out different sparing
measures according to this distribution.

5. Conclusion

In this paper, we proposed an automatic traffic anomaly
detection method. We can understand whether stations
relate to each other or not and the closeness of the relation-
ship by embedding the data collected from stations in the
graph and learning from graph structure. Based on this, we
predict the traffic road anomalies and correct the model by
deviation scores. Experiments on real datasets show that
using the GDN model to predict traffic anomalous events
outperforms the baseline model. Our model is interpretable,
facilitating user understanding and further in-depth
research.

However, there are still some limitations to the applica-
tion of our model as evidenced by the following: (1) Because
of the graph network structure, it has the disadvantage of
being computationally intensive. The long training time of
the model makes it difficult for applications in light or
real-time scenarios. (2) Our model models multivariate tem-
poral sequences and uses the relationships between potential
graph structures between learning nodes to make predic-
tions. We ignore the influence of the structure on the road
network roads under real conditions, i.e., the influence of
known prior knowledge such as road topology and weather
on the model. However, this influence may have a huge
impact on further improving the model.

For future study, the proposed method can be further
developed from the following perspectives: (1) modeling
the heterogeneity of road network topology. The current
model considers multivariate traffic time series heterogeneity
by learning hidden relationships between different time
series as a graph. The road network topology contains boun-
tiful auxiliary information, such as road class and geometry.
Integrating the heterogeneity regularizer of road network
topology into the current model may help improve the per-
formance of traffic anomaly detection. (2) Forecasting the
traffic state and anomalies simultaneously. The proposed
model is trained by taking anomaly detection as an optimi-
zation objective. Collaborative training for traffic state pre-
diction and anomaly detection modules can broaden the
model applications in intelligent transportation systems.
(3) Considering that we are using an unsupervised learning
training method, we can change the architecture of the
model or design some online training methods to achieve
better performance.

Data Availability

The data used to support the findings of this study are
included within the article.
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