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With the 5G millimeter wave (mmWave) application, ultradense cellular networks are gradually becoming one of the core
characteristics of 5G cellular networks. In the edge computing environment, considering load balancing among edge nodes is
beneficial to slow down the process of distributed denial of service (DDoS) attack. However, most existing studies have given
less consideration to congestion in the multiuser and multiedge server models. Someone who uses the M/M/1 model also
seems to ignore the effect of scheduling algorithms on the Markov property of the task arrival process. In this manuscript,
based on ensuring the quality of experience (QoE) for users, the G/M/1 model is introduced to the task scheduling of edge
servers for the first time to improve load balancing between edge servers. For the multi armed bandit (MAB) algorithm
framework, specific metrics are established to quantify the degree of its equilibrium. The number of users assigned to the edge
nodes and each edge node’s processing of specific tasks is taken into account. We experimentally evaluated its performance
against two baseline approaches and three state-of-the-art approaches on a real-world dataset. And the experimental results
validate the effectiveness of this method.

1. Introduction

As is known to all, user equipment (UE) has low computing
capacity. It may not efficiently solve task requests initiated
by users, while cloud services have problems such as long
transmission delays. The presence of mobile edge computing
(MEC) brings mobile computing, network storage, and con-
trol issues down from the cloud to the network edge, driving
the execution of compute-intensive, latency-critical applica-
tions on mobile devices, effectively reducing latency and
energy consumption [1–3].

There are still deficiencies in interoperability, heteroge-
neous architecture, data privacy, and load balancing in het-
erogeneous edge computing systems, which can be
considered to be compensated for by requirements such as
federated deployment and resource management [4]. Edge
servers have limited memory, central processing unit

(CPU), storage, and other resources. They generally deploy
at base stations close to user terminals, and users are guaran-
teed low latency and stable connectivity by using edge
servers [5]. The emergence of the user plane function
(UPF) separates the control plane from the user plane, mak-
ing MEC even more critical in 5G technology. The emer-
gence of the 5G millimeter wave has significantly expanded
the transmission bandwidth and reduced the transmission
delay of mobile communications, but there are also chal-
lenges such as easy loss. Increasing the density of base sta-
tions (BSs) helps to minimize losses, and thus, ultradense
cellular networks are gradually becoming one of the core fea-
tures of 5G cellular networks [6]. The deployment of large-
area and high-density BSs will bring new network security
issues. Due to the limited signal transmission range and edge
server resources, a typical IoT-based distributed denial of
service (DDoS) attack can disable most nodes in a particular
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area by continuously trying to occupy the resources of edge
nodes [7], thus paralyzing the Internet of Things (IoT)
devices in its service interval within a specific period (smart
monitors, infrared sensors, etc.) [8], causing severe social
impacts and security problems.

DDoS attack is a resource competition problem between
attackers and defenders [9], and this competition will be
more prominent in resource-limited edge service environ-
ments [8]. Based on the careful consideration of system
characteristics such as proximity constraint, capacity con-
straint, and delay constraint among edge servers [10], balan-
cing the workload among edge servers can slow down the
DDoS attack process [8], thus leaving enough reaction time
for the system and reducing the possibility of the system
being breached. We consider the load balancing problem
of edge user allocation (EUA) based on users’ quality of
experience (QoE) and establish specific metrics to quantify
the degree of balance. To more precisely quantify the QoE,
we introduce the multi-armed bandit (MAB) algorithm
framework and add nonstationary factors to the learning

mechanism to better adapt to the actual complex and vari-
able task assignment process.

For the time being, there is relatively little research on
the load balancing problem and mainly reflected in the rela-
tively balanced number of choices of edge servers [11–13]. In
reality, in addition to the task volume of each mobile device
which may be different, there may also be performance dif-
ferences among MEC servers. Simply considering the rela-
tive uniformity of task allocation among servers may cause
the performance of high-performance servers to be wasted
and aggravate the waiting time and performance wear and
tear of less performing servers. In studies involving user task
waiting time (stay time), they are mainly divided into two
forms: computational time accrual for queueing tasks [14]
[15] [13] and the use of the M/M/1 queuing model [16]
[17]. For the latter, researchers have ignored the effect of
the scheduling algorithm on the Markov property of the
M/M/1 queuing model, i.e., subjective task scheduling that
undermines the principle of no posteriority of the task
arrival process.
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Figure 1: Ultradense cellular network topology diagram.
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Queuing systems generally consist of customers, service
desks, and queuing rules [18]. Under conditions indepen-
dent of other factors, a customer’s arrival satisfies Poisson
distribution, the service time satisfies negative exponential
distribution, and a single service desk processes the task of
the customer, those situations that can be represented by
the M/M/1 model [18–20]. A customer’s arrival is usually
independent of others, while the service desk is responsible
for solving the task requests of arriving customers. The pro-
cessing time of specific tasks is influenced by stochastic fac-
tors such as the nature of the customer’s task and the service
desk. When we use the algorithm to schedule the user
assignment process in the edge environment, customer
arrivals will no longer follow the Poisson distribution, and
continuing to use the M/M/1 model at this point seems to
deviate from reality. Regarding the G/M/1 model, the pro-
cess of customer’s arrival is not restricted, which is “general
arrival,” and the service process still follows a negative expo-
nential distribution, which considers the randomness of cus-
tomer tasks and service desks [18–20].

In the actual edge user assignment process, we reduce
the impact of the scheduling algorithm on the Markov prop-
erty of the edge server’s task arrival process by applying the
G/M/1 queuing theory model. And a nonstationary factor is
added to the MAB algorithm framework to consider the
impact of the edge server’s task processing capacity fluctua-
tion on the computation delay. In an attempt to improve

load balancing in the edge user assignment scenario to mit-
igate the DDoS attack process, we further consider factors
such as the number of tasks offloaded by edge users, possible
performance differences among edge servers, and more in-
depth consideration of the specific task processing of each
edge node. To enhance the experiment’s credibility, we used
a real dataset from the Central Business District (CBD) of
Melbourne [21] and compared it extensively with existing
studies, and the experimental results verified the effective-
ness of the algorithm. The main contributions are as follows:

(i) We attempt to improve the load balancing for edge
user allocation in edge computing to slow down the
DDoS attack process

(ii) This is the first attempt to study the EUA problem
through the MAB algorithm framework in 5G ultra-
dense cellular networks, considering the processing
of specific tasks in each edge node. The number of
users in edge nodes is no longer considered solely

(iii) This is the first attempt to introduce the G/M/1
queuing theory model to the MEC system, consider-
ing the impact of scheduling algorithms on the Mar-
kov property of the actual task arrival process. And
the performance is experimentally evaluated on a
widely used real-world dataset

The rest of the paper is organized as follows. Section 2
presents related work. Section 3 offers the system model.
Section 4 proposes the Thompson sampling nonstationary
(TSNS) algorithm. Section 5 designs experiments and evalu-
ates the algorithm’s performance, and Section 6 concludes
the paper.

2. Related Work

Currently, relatively little research has been done on DDoS
attack in edge computing, mainly in edge collaboration,
attack identification, and defense [8, 22–27]. The literature
[8] studied the DDoS attack mitigation problem in edge
computing, proved its NP-hardness, and proposed a game-
theoretic approach to solving the problem. The literature
[22] considered mitigating the DDoS attack process by bal-
ancing the incoming control plane’s total traffic and induc-
ing the attack initiator to stop the attack. The literature
[23] designed an adaptive traffic scheduling algorithm to
enhance collaboration among edge nodes and thus reduce
DDoS attack. The literature [24] developed an intrusion
detection and defense method for edge environments by
learning the original data distribution through Deep Convo-
lution Neural Network (DCNN) and building defense
through Q-network algorithm. In a software-defined net-
work (SDN), [25] established initial detection of intrusion
based on entropy and further accurate detection by inte-
grated learning, reducing communication overhead and
attack detection latency. From the perspective of smart cit-
ies, [26] on the fractional-level fusion of multimodal biomet-
rics effectively improves recognition accuracy and [27]

Require:Cmax, B⟶∞, δ = 1, η = 0, σ
1: forsi ∈ Sdo
2: Generate uniformly distributed random variables λi, μi, ζi
from [0,1)
3: ifμi ≤ λithen
4: μi ↔ λi
5: end if
6: Ci,n = δððaj/BÞ + ðl j,i/vÞ + ð1/μið1 − ζiÞÞÞ + η · κ · ϕi,n
7: end for
8: Generate normally distributed random variables αi, βi
with (1, 0.5)
9: while t ≤ Tdo
10: forsi ∈ Sdo
11: θi ⟵ Betaðαi, βiÞ
12: end for
13: sjðtÞ⟵ argmax θi∀si ∈ S
14: nj = nj + 1
15: Generate uniformly distributed random variable U from
[0,1)
16: cj,t = −ln ð1 −UÞ/μjð1 − ζjÞ
17: rj ′ = 1 − p = 1 − ðcj,t/cmaxÞðp ≤ 1Þ
18: rj ⟵ r j + σðr j ′ − r jÞ
19: μj ⟵ μj + ðrj ′/njÞ

20: ðαk, βkÞ =
ðαk, βkÞif sjðtÞ=k
ðαk + r j, βk + 1 − rjÞif sjðtÞ = k

(

21: t = t + 1
22: end while

Algorithm 1: Thompson sampling nonstationary (TSNS).
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proposed a data encryption technique applicable to the IoT,
etc.

The low latency of edge computing is fundamental for
users to execute resource-intensive and latency-sensitive
applications on edge devices. It is a crucial factor affecting
the QoE of user experience [4]. In the study of resource allo-
cation for computational offloading, with the goal of latency
optimization, [28–31] schedule computational tasks through
a Markov decision process, [14, 32, 33] consider game the-
ory to obtain the best strategy for task offloading, and [11,
12, 34–39] consider algorithms such as reinforcement learn-
ing to solve problems related to resource allocation. The lit-

eratures [13, 15–17] introduced the MAB algorithm
framework to learn online to adjust task allocation in real
time. Among them, only the literatures [11–14, 34] consider
the load balancing problem of edge servers from the per-
spective of resource allocation.

The literature [14] proposed a decentralized learning
algorithm from a game-theoretic perspective, considering a
relatively uniform number of users allocated across edge
servers. However, the experimental design with the same
upper bound of acceptable cost for users may deviate from
reality. From the perspective of on-edge computing, [11]
transformed the offloading and load balancing problem into

+
−

Leaflet (https://leafletjs.com) | Data by © OpenStreetMap (http://openstreetmap.org), under ODbL (http://www.openstreetmap.org/copyright).
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Figure 2: Dataset for Melbourne’s Central Business District.
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a mixed-integer nonlinear programming problem and chan-
ged the problem into two subproblems for optimization. The
literature does not seem to consider the effect of the waiting
factor, and the possible case of multiple tasks appearing at
the same node is not further explored. It is only described
from a collision perspective. The literature [34] introduced
fiber-wireless (Fi-Wi) technology to enhance the signals of
vehicular edge computing networks (VECNs), which in turn
use software-defined networking (SDN) to achieve load bal-
ancing. The literature considers the possibility of task assign-
ment locally, at the edge nodes or in the cloud. Still, the
impact of the coverage of the signaling edge nodes may be
neglected in the selection process of the offload servers,
and task processing at the edge nodes seems to lack consid-
eration of congestion factors. The literature [39] utilized
multipath TCP to increase application throughput and used
reinforcement learning-empowered multipath manager to
address the buffer congestion problem further. In the litera-
ture [12], on the premise of determining the set of optional
edge service nodes for each mobile device users (MDUs),
the situation of the user devices to be assigned to each edge
node and their computational capabilities were considered
comprehensively, and new devices were assigned to the edge
server with less computational pressure accordingly. The
algorithm design process seems to ignore the influence of
congestion factors within the edge nodes, and the optimal
edge server may deviate from the actual scenario only in
terms of transmission and computation delay; i.e., there
may be a large waiting delay after the task arrives at the
redistributed edge node. In addition, there may be a signifi-
cant task assignment delay. Uncertainty decision-making is
an essential challenge in machine learning, and the MAB
algorithm is a common framework for solving this problem,
where each MEC server is considered an arm [40]. The liter-
ature [13] proposed a utility table-based MAB algorithm
with online learning to adjust the workload allocation in real
time and update the feedback signal after task allocation
through the utility table to determine the optimal solution.
The literature mainly considers load balancing from cloud-
edge collaboration and gives less consideration to task allo-
cation among edge servers.

As we know, the DDoS attack problem is currently a hot
topic of research in network security, and relatively little
research has been conducted from the perspective of edge

computing. In edge computing, considering the load balan-
cing of edge user allocation, we make the first attempt to
study the EUA problem in 5G ultradense cellular networks
through the MAB algorithm framework, focusing on the
processing of specific tasks at each edge node. We made
the first attempt to introduce the G/M/1 queuing theory
model into the MEC system, considering the impact of the
scheduling algorithm on the Markov property of the actual
task arrival process.

3. System Model

In the ultradense cellular network scenario, in the edge user
allocation process, as in Figure 1, we use si ∈ S to denote the
set of MEC servers and ui ∈U to represent the set of user
devices. In edge computing, in addition to service requests
from regular users, DDoS attack can launch frequent task
requests to the edge server by controlling multiple IoT
devices in the service range. Considering the influence of
the scheduling algorithm on the Markov property of the
resource allocation process, we assume that the task arrival
process follows a general distribution and the service time
follows a negative exponential distribution. Since each
MEC server has different task arrival and service capacity
and there is no restriction on queue length and task origin,
the task offloading process can be represented by the G/M/
1 queueing theory model. We denote by ζi the task arrival
impact factor per unit time of server si, which can be
obtained by solving the scheduling process and by μi the
average service rate of server si. Every time a task assignment
is made, the average service rate of the selected server is
updated by a nonstationary method.

We consider Ci,n to denote the cost of processing task n
for server i and Di,n and Ei,n to denote the corresponding ser-
vice latency and energy consumption. Therefore, Ci,n is com-
puted as follows:

Ci,n = δ ·Di,n + η · Ei,n: ð1Þ

In the formula, δ and η, respectively, represent the
weight of delay and energy consumption in the cost, δ + η
= 1.

We understand that in 5G ultradense cellular network
architecture, the physical distance between microcell BSs is
typically between 100 and 200m [6]. The delay can be fur-
ther subdivided into transmission delay, propagation delay,
waiting delay, and computation delay. The sum of the wait-
ing and computation delays is the delay of the task staying in
the system. The signal strength decreases from the central
node in all directions [5]. We may assume that the effective
signal coverage of each edge node is 200m (edge servers
beyond the signal range can be selected, but the selection
cost is relatively high [5]), and on this basis, we consider
the limited nature of each user when selecting an edge
server. And since the physical distance li,j of the computing
task from the user end ui to the edge node sj generally does
not exceed 200m, its actual propagation delay will be at the
microsecond level. We usually use the ratio of task volume aj

Table 1: MEC servers.

Parameter s1 s2 s3 s4 s5
μ 0.4250 0.8865 0.6233 0.9485 0.9973

ζ 0.0735 0.7655 0.2477 0.8558 0.9471

Parameter s6 s7 s8 s9 s10
μ 0.7121 0.9000 0.8639 0.6185 0.8444

ζ 0.9921 0.0281 0.9425 0.4937 0.3638

Parameter ...... s122 s123 s124 s125
μ ...... 0.7192 0.9712 0.1817 0.3955

ζ ...... 0.8388 0.2631 0.6614 0.4781
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to channel bandwidth B to express the transmission delay. In
the ultradense cellular network structure, the case of transi-
tion node forwarding tasks is basically nonexistent; i.e., the
transmission delay of tasks will also be close to a subtle level.
According to the queuing theory [18–20], the stay time T
obeys the distribution PfT ≤ tg = 1 − e−μð1−ζÞt , whose average
stay time is 1/ðμð1 − ζÞÞ, and the actual stay time of each
task can be randomized by the distribution function. We
use κ to represent the energy consumption influencing factor
that comprehensively considers power, signal-to-noise ratio,
and other factors. Let ϕi,n denote the task size of task n in
server si, and the energy consumption is Ei,n = κ · ϕi,n [41,
42]. Further, we can get the following formula:

Ci,n = δ
aj
B

+
l j,i
v

+ 1
μi 1 − ζið Þ

� �
+ η · κ · ϕi,n, ð2Þ

where aj denotes the number of tasks to be processed by user
device uj, which in general is equal to ϕi,n. B is the channel
bandwidth, and aj/B is the transmission delay. l j,i denotes
the physical distance between user device uj and edge node
si. v indicates the propagation speed of the task in the chan-
nel, which is generally equal to or slightly less than the speed
of light, and l j,i/v is propagation delay.

To measure the QoE more specifically, we introduced
the MAB algorithm framework. An upper bound on the cost
is chosen as Cmax, and we assume that the cost as a percent-

age of the given threshold is p. The reward after each selec-
tion can be calculated as follows:

Ri,n = 1 − pð Þ · 1 C≤Cmaxð Þ, ð3Þ

where 1 is the indicator function.

4. Algorithm Design

The MAB model is a simple but compelling algorithmic
framework that can make decisions over time in uncertain
situations [43]. It simulates an agent, learning new knowl-
edge to optimize selection decisions.

We know that considering load balancing in the edge
environment is beneficial to slow down the DDoS attack pro-
cess [8, 22]. We use the MAB algorithm framework to bal-
ance the limited task processing latency and cost and
offload the tasks to each MEC server as evenly as possible.
Each MEC server can be considered an arm of varying
nature, and each selection of the arm can be rewarded and
cost accordingly. This property is unknown to the task
assignor, so we may call it an implicit property. As the num-
ber of selections increases, the resource allocation of edge
servers will become more rational, and the number of tasks
processed per unit time will improve. In addition, consider-
ing the complexity and variability of the actual task arrival
and processing, the server’s performance may also change
with the increasing number of selections, and we introduce
a nonstationary factor.

Cost distribution in each method
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Figure 5: Boxplot for the cost distribution.
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To reduce useless exploration and increase the explora-
tion of the arm with larger pairwise differences, we consider
applying the improved Thompson sampling to the MAB
algorithm. In the Thompson sampling algorithm, the payoff
value of each action follows a beta distribution, with α and β

as prior probability parameters. All the arms will generate a
random number as payoff value through beta distribution
according to their prior probability parameters whenever a
selection is made. The system will select the arm with the
largest payoff value. The probability distribution law of
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Figure 7: Continued.
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Bernoulli distribution and the probability density of beta dis-
tribution are as follows:

p xð Þ = θx 1 − θð Þ1−x, x = 0, 1, ð4Þ

p θð Þ = Γ α + βð Þ
Γ αð ÞΓ βð Þ θ

α−1 1 − θð Þβ−1, θ ∈ 0, 1½ �, ð5Þ

where the two refer to the distribution of returns and the dis-
tribution of the parameter θ of the return distribution. ΓðzÞ
satisfies the formula

Γ zð Þ =
ð∞
0
xz−1e−xdx, R zð Þ > 0: ð6Þ

We assume that there are S edge servers, and T tasks are
processed in a certain period of time. Each selection will
update the distribution. When action k is selected, the return
is subject to a Bernoulli distribution with parameter θk.The
probability of returning 1 is θk, and returning 0 is 1 − θk, θ
= ðθ1, θ2, θsÞ. In round t, select the action at ∈ f1, 2, sg will
receive a return rt ∈ ð0, 1Þ. Assuming that θk are indepen-
dent of each other, the prior distribution obeys betaðαk, βkÞ
, and the posterior distribution obeys betaðαk + rt , βk + 1 −
rtÞ.

p θkð Þ∝ θαk−1k 1 − θkð Þβk−1, ð7Þ

p θk rtjð Þ∝ θrtk 1 − θkð Þ1−rtθαk−1k 1 − θkð Þβk−1 = θαk+rt−1k 1 − θkð Þβk+1−rt−1:

ð8Þ
For each selection made, the parameters of the posterior

distribution of the selected arm will be calculated based on
its return values. The posterior distribution of the last round
can be used as the prior distribution of the next round, and
the parameter update rule of the posterior distribution beta
is [44]

αk, βkð Þ =
αk, βkð Þ if at ≠ k,
αk + rt , βk + 1 − rtð Þ if at = k:

(
ð9Þ

We use the reward Ri,n of the edge nodes after perform-
ing the task processing as the QoE measure for the corre-
sponding users. As we analyzed above, the propagation
delay and transmission delay under delay segmentation is
at the microsecond level, which is negligible compared to
the task’s computation delay and queuing delay. In contrast,
the task processing energy consumption is a weak user expe-
rience. To simplify the model, we set η = 0 and δ = 1, and the
channel bandwidth is infinite concerning the task volume
and mainly considers the average stay time of the task in
the system. After each selection, we add a nonstationary util-
ity learning mechanism [45].

Qi,n =Qi,n−1 + γ Ri,n −Qi,n−1ð Þ, ð10Þ

where γ represents the learning rate in the selection process;
i.e., the greater the γ, the greater the importance of the actual
reward, and the greater the degree of learning in calculating
the utility reward. The updated utility reward is used as the
reward value. In particular, after each selection, the average
service rate of the selected service desk is optimized to sim-
ulate the effect of random factors in the user assignment
process.

μi,n+1 = μi,n +
Ri,n
n

: ð11Þ

The arm with the largest parameter θ is considered dur-
ing each selection, and the calculated reward of the actual
choice is used to update the posterior distribution parame-
ters beta. The corresponding regret value is

R Tð Þ = 〠
T

t=1
C atð Þ − 〠

T

t=1
C∗
t at ∈ Sð Þ, ð12Þ

where at represents the edge server selected for time t and
CðatÞ is the corresponding cost of the currently selected
server. C∗

t denotes the minimum value of the corresponding
cost of each edge server at time t.

The specific idea of the TSNS algorithm is represented in
Algorithm 1 in an ordered manner. Each user assignment is

(f) UCB

Figure 7: Relationship between edge nodes and user devices.
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made that the corresponding service time and stay time are
calculated according to the G/M/1 queuing theory model.
Service time is an essential statistic for measuring load bal-
ancing. Stay time can be used to calculate rewards and, in
turn, utility rewards.

We learn and record the specific situation after each task
assignment through the MAB algorithm framework, includ-
ing the actual cost and reward after each user assignment
and the actual task processing latency of edge nodes, which
can measure QoE and load balancing more precisely and
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Figure 8: Accumulated computation time in each edge node.
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effectively. The specific experiments are described in detail
in Section 5.

5. Performance Evaluation

In this section, we conducted extensive experiments to eval-
uate the TSNS algorithm based on a real-world dataset from
the CBD of Melbourne (e.g., Figure 2). The excerpted dataset
contains 125 service base stations and 816 random users. We
model the difference in task volume between users using a
normal distribution with mean 10 and variance 2, in which
the ratio of the random number to the mean is used as the
weight of the effect of task volume on processing latency
and use this as the basis for a series of experiments.

5.1. Preferences. Combining the ideas of the Monte Carlo
method, we conducted an experimental design. First, we
record and calculate the average stay time as the initial prop-
erty of the corresponding service desk, in which the average
service rate and the task arrival impact factor per unit time
are solved by a uniform distribution in the interval [0,1), as
in Table 1 (the experiment contains but is not limited to
the parameters given in Table 1). Based on the nature of
queuing theory regarding the G/M/1 model, we obtain the
distribution function of the task sojourn time and consider
randomizing the essential stay time of the current task at
the selected server by the distribution function. For each
user’s specific task, we assume that it satisfies a normal distri-
bution with a mean of 10 and a variance of 2. The ratio of the
random value to the mean is used as the influence of the stay
time for the specific task. That is, for each task assignment,
the corresponding edge server randomizes the corresponding
sojourn time for calculating the reward and, in turn, the util-
ity reward. The calculated utility rewards are used to update
the parameters of the posterior distribution beta, which in
turn affects the next round of task assignment.

Regarding the initial prior distribution corresponding to
each server in the TSNS algorithm, it is considered random-
ized out through a normal distribution with a mean of 1 and
a variance of 0.5. In each task assignment process, the poste-
rior distribution will be used as the prior distribution corre-
sponding to the following selection, and the parameters θi
will be randomized through the prior distribution. Then,
the server with the largest parameters will be selected for
the task processing.

First, we assume that the learning parameter σ = 0:5 and
the cost upper bound Cmax = 20. During the selection pro-
cess of the simulated edge servers, we obtained the upper
quartile (Q3), median, and lower quartile (Q1) of the corre-
sponding cost distribution for each method. We calculated
the maximum observed value of the upper edge by Q3 +
1:5 ∗ ðQ3 −Q1Þ [46]. Subsequently, we averaged the upper
edge observations for all methods and calculated an approx-
imate cost upper bound of 10. Further, we compared the
average reward profile under different learning parameters
and obtained the average profile after removing the anoma-
lous profile σ = 0. In multiple experiments, the larger the
parameter σ, the better the distribution of the average
reward might be, and σ = 0:4 basically fluctuates up and
down around the average curve, as shown in Figure 3. We
simulated the user assignment process under different
parameters and obtained the variance comparison among
the edge nodes, as shown in Figure 4. To balance the load sit-
uation of the server, we might as well set it as the experimen-
tal parameter. Comparison of cost distribution among
methods for the upper cost bound Cmax = 10 and learning
parameter σ = 0:4 is shown in Figure 5.

5.2. Algorithm Performance. We determine the cost upper
bound and learning parameters through the above experi-
ments. Subsequently, we will examine the performance of
the TSNS algorithm in terms of user QoE and load balancing
by comparing it with classical methods and related work.

0 100 200 300 400

𝜀-greedy

UCB

TSNS

UBL

LBCO

MTOTC

Variance situation in each method

Figure 9: Load profile in each edge node.
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(i) Improved ε-greedy: the edge node with the highest
utility value is explored or selected with a certain
probability. After the algorithm is improved, ε keeps
getting smaller, and the exploration probability
keeps decreasing as the number of selections
increases

(ii) UCB: all optional but not yet selected edge servers
are first explored. Subsequently, the edge node with
the largest utility value is selected, and the utility
value is updated after each selection

(iii) UBL [40]: based on the improvement of the general
greedy algorithm, the utility value of the selected
edge node is updated after each selection. If the
same edge server is selected twice in a row, the util-
ity value of the corresponding server is updated to a
temporary value

(iv) LBCO [35]: first, determine the number of mobile
devices offloaded to each edge node, consider the
different available uplink data rates of the user-
side devices and the computing power of the edge
nodes, calculate the upload and service times for
each task, obtain the set of edge nodes available to
the users, calculate the corresponding times, and
force each user to select the optimal edge node for
the task

(v) MTOTC [27]: each user has partially selectable edge
nodes, and the selection probability of all selectable
nodes is summed to 1. The stochastic congestion
game with incomplete information is performed
based on the careful consideration of each user’s
task type and different task volumes. When the
probability of all users selecting an edge node is 1
or the probability within an acceptable error range
is greater than the set value, the game stops, and
the corresponding edge node is the final choice of
users

We evaluated the methodology from two main
perspectives.

(i) QoE: the metric is expressed in terms of the average
reward earned by users after uninstalling a task and
is necessary for measuring service quality

(ii) Load balancing: this metric compares the total num-
ber of tasks ultimately served by each edge service
but specifically considers the cumulative computa-
tion time for task processing in each service. This
manuscript’s load balancing degree is the primary
metric to measure DDoS attack mitigation

In Figure 6, by computing the actual reward after each
selection, we obtain a graph of the evolutionary trend of
the average reward for each algorithm and, in turn, represent
it as the evolutionary trend of the QoE. First, the algorithm
was compared with the TS algorithm, which is based on
the M/M/1 queuing model and the classical algorithms

(improved ε-greedy and UCB) within the framework of the
MAB algorithm. We find that the algorithm with the G/M/
1 model will significantly outperform the case with the M/
M/1 model in terms of QoE performance, having more sig-
nificant advantages and potential. The algorithm that uses
the M/M/1 model is similar to the UCB algorithm but signif-
icantly lower than the improved ε-greedy algorithm and the
TSNS algorithm. Subsequently, during the comparison with
related work, we found that the UBL, LBCO, and MTOTC
algorithms reach their QoE peaks relatively quickly and are
largely stable. In contrast, the TSNS algorithm suffers from
a slow learning ascent. However, as the user assignment pro-
cess continues, the TSNS algorithm outperforms the other
algorithms in terms of QoE overall.

We can find that all algorithms in the MAB algorithm
framework fluctuate to some extent at the operation begin-
ning, especially during the first 100 edge user assignments.
Because properties, such as the service rate of all servers,
are unknown to the algorithm in the MAB framework at
the beginning, the quality of user assignment could be grad-
ually improved through continuous selection. Considering
the influence of stochastic factors in the actual task arrival
and processing process, server performance may also change
with time; we introduce a nonstationary factor in the algo-
rithm improvement; i.e., after each task assignment, a
reward is calculated based on the task processing process,
and the service rate of the edge servers is updated based on
the reward.

In experiments, we count the specifics of user selection
of edge nodes in different methods and represent them as
Figure 7. We can see that large numbers of clusters form
the representation graph for each method. The centers of
the clusters represent edge servers, while the ends represent
users, and the connecting lines between them represent their
selection relationships. The size and density of the clusters
can reflect the uniformity in selecting edge nodes by users.
Among them, UBL, LBCO, and improved ε-greedy algo-
rithms mainly focus on choosing some fixed edge nodes,
and fewer edge nodes connect more users. In contrast, the
TSNS, MTOTC, and UCB algorithms can distribute edge
users more evenly, and the number of users served by each
edge node is similar.

However, since the task volume of tasks to be processed
by different users and the computational capacity of edge
nodes vary, we also need to discuss the task processing of
each edge node more specifically.

As in Figure 8, we count the work of each edge server
between methods. Where the vertical coordinate represents
the accumulated computation time of each edge server,
which is expressed as the degree of load, ideally, the degree
of load should be essentially similar between edge servers,
although there are some fluctuations. This figure shows
more intuitively that the load within the UCB, TSNS, and
MTOTC algorithms are relatively homogeneous, compared
to other algorithms, with slight fluctuations basically around
a certain level. To quantify this balance’s level more con-
cretely, the changes in stay time are calculated and subse-
quently expressed as the variance. As shown in Figure 9,
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we can conclude that the TSNS algorithm has some advan-
tages in load balancing compared with other algorithms.
This advantage is beneficial in resource-limited edge envi-
ronments, facilitating the mitigation of DDoS attack pro-
cesses and, in turn, reducing the probability of system
breaches.

6. Conclusion

In this paper, to slow down the DDoS attack process in edge
computing, we have focused on the EUA problem in a 5G
ultradense cellular network scenario and considered improv-
ing the load balancing of edge servers while guaranteeing the
QoE. To quantify the QoE, we have introduced the MAB
algorithm framework and added nonstationary factors to
the learning mechanism. Considering the effect of schedul-
ing algorithms on the Markov property of the task arrival
process, we have introduced the G/M/1 queueing theory
model to EUA for the first time. We have focused on pro-
cessing specific tasks in each edge server and conducted a
series of experiments on real-world datasets, which verified
the strength and potential of the algorithm in the target
scenario.

In future research, in the context of non-orthogonal
multiple access (NOMA) for 5G networks, we will consider
more general cases of load balancing of edge demand
response under the impact of latency and energy consump-
tion. And we will slow down the process of DDoS attack in
edge computing by pursuing load balancing of edge servers.
First, we will specifically consider the number and perfor-
mance of physical machines installed in each edge server
and further consider the specific processing process after
tasks reach edge servers; subsequently, we will combine
cloud-edge collaboration and collaboration among edge
nodes to set the threshold to determine whether users need
to receive cloud services; more importantly, we will consid-
ering the performance of the algorithm in three aspects:
mobile users, edge infrastructure providers, and edge service
providers, considering the QoE, system energy consump-
tion, and DDoS attack mitigation, to make the model more
generalized, etc.

Data Availability

The data used to support the findings of this study is cited in
the article and can be viewed via the link https://github.com/
swinedge/eua-dataset.
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