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At present, the dynamic nature and unstable network connections in the deployment environments of Wi-Fi-based smart home
devices make them susceptible to component damage, crashes, network disconnections, etc. To solve these problems, researchers
have used various fault detection methods, such as alarming when monitored fault parameters exceed the preset values, model-
based mathematical methods, device signal processing-based methods, and artificial intelligence-based methods. However,
these methods require large numbers of fault parameters, the model are complex, and their fault detection accuracy is relatively
poor. To more quickly and accurately detect faults in smart home devices and ensure the continuity of people’s daily work and
lives, this paper analyzes both the Wi-Fi traffic characteristics of smart home devices and the complexity and difficulty of
traditional fault detection methods and proposes a fault detection method based on TDD (Throughput and Delay
Distribution). This method obtains throughput and data packet delay distribution by capturing Wi-Fi communication and
sending test data. By dividing the throughput into heartbeat data and command information, we can calculate the real-time
throughput and further calculate the similarity between the real-time throughput and the throughput in database. Also, the
resulting delay distribution is compared with the probability distribution of delay in the database. When the throughput values
are sufficiently similar and the delays are all in the normal range, the smart home secure devices are functioning properly. The
experimental results show that the proposed TDD method can detect faults in household devices in real time and that it
achieves high recall and good detection accuracy in Wi-Fi communication environment.

1. Introduction

A smart home system is an intelligent, comfortable, conve-
nient, and energy-saving household environment that con-
nects various automated household appliances through
routing and network communication technologies [1]. Due
to the low cost and connectivity convenience of Wi-Fi, it
has become increasingly popular for use with smart home
devices and people can manage their appliances remotely
via their mobile phones by Wi-Fi. In this paper, we work
on methods to improve the fault detection capabilities of
smart home devices that use Wi-Fi technology as their com-
munication approach.

Due to its multiplicity of functions, unstable network
connections, dynamic deployment environments, and vul-
nerable Wi-Fi networks, smart home devices based on Wi-
Fi are prone to failure. Such problems negatively affect users’
work and lives and even can result in substantial damage. A

reliable fault detection method should be able to discover the
status of a smart home device or its components in real time
and take corresponding measures when faults occur. Conse-
quently, research on fault detection methods has become an
important issue.

The existing methods of fault detection of such devices
mainly include methods that monitor fault parameters,
methods using mathematical models, methods using signal
processing, and methods using artificial intelligence. Despite
their ubiquity, the above methods have rarely been applied
directly to smart home devices. Few researchers have worked
on fault detection for smart home devices.

In this paper, we conducted an experiment aimed at
determining which people impose the highest security
requirements on different types of smart home devices.
According to Wi-Fi traffic features, we developed a fault
detection algorithm using TDD that can detect fault prob-
lems in real time. It requires only two fault parameters but
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is able to accurately detect network faults on smart home
devices. Moreover, this method applies to the overwhelming
majority of smart home devices and does not require com-
plicated mathematical models. The main contributions of
this paper are summarized as follows.

(1) We proposed a fault detection method based on
throughput. It captures the Wi-Fi traffic between
smart home devices and smart home servers and
divides the traffic into command information and
heartbeat communication data. According to the
packet size of command information and heartbeat
communication data, the ideal throughput and real
throughput are calculated. The difference between
them exceeding a threshold is judged as faulty

(2) We proposed a fault detection method based on a
Gaussian distribution which is a further fault judg-
ment method based on the throughput-based fault
detection method. When the difference between the
ideal throughput and the real throughput is less than
the threshold, the throughput-based fault judgment
method is not sufficient to judge that the device is
fault-free, and further judgments need to be made
based on the delay. The proposed Gaussian
distribution-based fault detection method extracts
the delay of each data packet of the test communica-
tion flow and obtains the original delay probability
distribution data. After that, if the throughput of
the smart home device traffic is normal and the delay
is distributed within the normal range, it can be
judged as normal; otherwise, it can be judged as a
fault

(3) In order to verify the effectiveness of the method in
this paper, we compare our method with the detec-
tion method based on particle swarm algorithm
and Gaussian distribution. We extract 1000 sets of
data samples of existing smart home equipment kits
in real time and carry out actual fault marking to
obtain false-positive rate and false-negative rate of
the two methods. At last, we verify the two methods
for fault detection recall ratio and accuracy ratio and
find that the proposed method in this paper has bet-
ter recall ratio and accuracy ratio

2. Related Works

As living standard has improved, the use of smart devices
has increased rapidly in daily life. However, these smart
devices introduce additional potential security risks, which
makes fault detection and diagnosis technology of smart
home devices important.

Currently, there exists four methods of fault detection of
smart home devices.

Methods that monitor fault parameters: when various
parameters exceed a threshold value, the device should
report a fault. Kim et al. [2] proposed an early fault detection
method using Laplace trend statistics to monitor fault
parameters that achieved some success. In 2016, Sahoo

et al. [3] showed that it was possible to detect faults by
reporting values that exceeded threshold parameters. How-
ever, an accurate threshold value is difficult to determine,
and this approach also lacks data comparison and
prediction.

Methods using mathematical models: in 2005, the gener-
alized parity vector (GPV) extension model was proposed by
Omana et al. [4], and a system fault detection and isolation
method based on this GPV model was demonstrated in
2007 [5]. An airplane structural fault detection method used
a numerical model to perform simulation and modeling;
Fernando et al. [6] verified the effectiveness of this method.
These types of methods can achieve real-time monitoring
with high accuracy, but they are all difficult to implement.

Methods using signal processing: a device signal process
technique based on time series analysis was proposed [7];
this technique enhanced the flags’ ability to detect signal
problems. In 2015, Qiao et al. [8] studied the signals and
processing methods used in wind turbine status monitoring
and fault detection. They comprehensively analyzed the per-
formance of this type of method. Despite the good adaptabil-
ity of this approach, it is difficult to accurately determine the
relationships between signals.

Methods using artificial intelligence: there are two types:
symbolic reasoning methods and numerical computation
methods. In [9], the authors provided a comprehensive
introduction to the fault detection field and its unsolved
problems. In [10], the authors summarized various artificial
intelligence methods and their applications in fault detection
and location. In 2016, the authors of [11] used an artificial
neural network method to detect faults which was effective
and quick. However, the symbolic reasoning method lacks
a valid expression, while the numerical computation method
performs poorly at identifying various anomalous modes.

Although the above methods are representative, they are
rarely applied in the detection of faults in smart home
devices. The authors of [12] suggested that uncertainty exists
in the monitoring and diagnosis of smart homes and fault
detection for smart home devices is important. Son et al.
[13] designed a fault diagnosis system that reverse-tracked
the network fault—an approach that was both complicated
and required large amounts of data. Ye et al. [14] proposed
a fault detection method which achieved high accuracy but
cannot detect missing events. In 2015, Hsieh et al. [15]
designed a model that could be used to locate faults. How-
ever, the modeling process was complicated, and the accu-
racy was only passable.

In addition, fault detection and diagnosis technology is
also an important academic topic that can be classified into
3 types: signal processing-based methods, mathematical
model-based methods, and knowledge-based smart detec-
tion and diagnosis methods. The common point among
these model types is that they all extract corresponding
device information, analyze it, and then use a model or algo-
rithm to achieve fault detection. Overall, we can divide the
detection method into two steps: a parameter selection and
analysis step and a model and algorithm analysis step.

To detect and diagnose faults, data and parameter selec-
tion is an essential step. In the available electronic device
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fault detection technology literature, velocity, torque, noise
level, and vibration frequency have all been used as parame-
ters [16]. Sometimes, totally different technical parameters,
such as thermal measurements and chemical analysis value,
have been used to detect the degree and character of faults.
The authors of [17] used sensor data as parameters, calcu-
lated their weighted averages, and performed data integra-
tion via the Dempster combination rule to implement
available fault detection proving that fault detection and
diagnosis can be carried out effectively. In [18], the authors
constructed a multiple feature model to detect bearing faults
that included the complex envelope spectrum, time fre-
quency, and wavelet packet analysis as parameters. This
study showed that multiple features could be combined to
optimize a fault detection system. The authors of [19] pro-
posed a multiple-feature-based layered dynamic fault detec-
tion method that extracted features via a differential-based
feature extraction method and observed their dynamic
trends. Then, based on these observations, a layered detec-
tion standard was proposed. Parameter selection can directly
influence the final fault detection result (FDR). Thus, our
goal is to create a detection method that is both simple
and accurate.

Model and algorithm analysis methods include numeri-
cal analysis, mathematical model analysis, and various artifi-
cial intelligence algorithms, such as neural networks. The
authors of [20] used a standard partial least squares
approach to detect device faults that divided parameters into
two parts, related and unrelated, and then designed a corre-
sponding testing statistic to provide useful fault diagnosis
information. This method achieved a high FDR; however,
the parameter division requirement was difficult to imple-
ment and involved a complicated algorithm. Recently, many
fault detection methods have chosen Gaussian distribution
functions to analyze feature parameters [21–24]. A Gaussian
distribution is also called the normal distribution function.
Its distribution curve clearly shows a peak point, and the
curve is bilaterally symmetrical based on the axis of the peak
point [22]. The authors of [21] proposed a Gaussian process-
model-based fault detection method that used a type of non-
linear regression algorithm. The classical regression algo-
rithm always produces a forecasting probabilistic model by
applying Gaussian modeling according to prior parameters
and post conditions. The Gaussian modeling process in this
method employed the maximum likelihood estimate, which
complicated the process. In [24], the authors used distrib-
uted computing technology to form a Gaussian mixture
model that reduced the number of required feature parame-
ters and achieved better fault detection; however, it requires
many iterative computations. For devices whose feature
parameters do not have a Gaussian distribution, many
researchers have used Gaussian fitting to perform data pro-
cessing [25, 26]. In addition, some researchers in industrial
fields have adopted machine learning methods to detect
faults, among which neural networks are the most com-
monly used [27, 28]. In [27], the authors extracted the
important feature parameters by using mathematical analy-
sis, used them to train an artificial neural network, and then
applied the artificial neural network to classify faults. They

demonstrated the reliability of their method through the
experiments in [27].

According to the above related work, fault detection
technology needs to select the appropriate number of
parameters or data and then establish a related model or
perform calculations using an algorithm [17–19]. Inspired
by the above work, our work focuses on establishing an eas-
ily formed method with limited parameters and a simple
algorithm to perform fault detection. To achieve smart home
fault detection, we propose a new fault detection method
suitable for smart homes. This method dynamically captures
data packets between smart home devices and home routers,
uses throughput and delay as parameters and Renyi cross-
entropy and Gaussian distribution for the model and algo-
rithm, and finally achieves an effective and accurate smart
home fault detection method.

3. Framework of the Developed Method

In this study, we developed a fault detection method for Wi-
Fi-based smart home devices that uses Throughput and
Delay Distribution. Figure 1 shows a flowchart of the pro-
posed scheme. To implement this method, we first captured
Wi-Fi traffic between the router and each smart home secure
device. By classifying and identifying the traffic information,
each smart home device can be recognized by a method that
combines the port number and PPLD [29]. Based on the
data packet size, the probability of each data flow, and the
acknowledge packet to server for each data flow, heartbeat
data can be distinguished from command information. In
addition, a marked probe data packet was sent to the smart
home devices to statistically estimate the data packet delay
distribution. By comparing the resulting delay distribution
with the probability distribution of delay in the database
(which contained a probability distribution image of delay
generated using large amounts of data flow record under
both normal and abnormal network conditions), network
problems in smart home devices could be detected. To calcu-
late the throughput during a certain period under the pre-
mise of a strict heartbeat cycle, the sizes of the heartbeat
and command information packets were determined; then,
the throughput calculated in real time was compared with
that in the database and the similarity between them was cal-
culated using Renyi cross-entropy. When the throughput
values are sufficiently similar and the delays are all in the
normal range, the smart home secure devices are function-
ing properly. In contrast, when the heartbeat packets do
not match the regular pattern (that is, a large difference
exists between the calculated frequency and the historical
frequency) or the frame delay failed to meet the require-
ments, then the smart home secure device is experiencing a
fault, and further detection is needed.

The delay distribution for the probe data packets in this
method is analyzed by a delay probability distribution graph
formed by the improved Gaussian distribution algorithm.
Therefore, the methods are divided in the following two
ways: throughput-based fault detection and Gaussian
distribution-based fault detection. These methods are used
to construct the fault detection method based on TDD
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(Throughput and Delay Distribution) proposed in this
paper.

3.1. A Fault Detection Method Based on Throughput. A Wi-
Fi communication-based smart home system is composed of
various smart home devices. These devices communicate
with their corresponding server via a Wi-Fi router. By
observing the Wi-Fi traffic between devices and servers, we
discovered that the traffic could mainly be divided into two
types: command information and heartbeat communication
data. The command information usually consists of the
AWAY_FROM_HOME and AT_HOME commands; the
former involves activating all connected detectors to provide
security surveillance, and the latter involves deactivating
detectors because the owner is home. The command infor-
mation packet has an appropriate constant size. There are
two different types of heartbeat communication data. One
occurs during device startup procedures, while the other
occurs during device communications. These data are peri-
odic and have a small constant size. The startup heartbeat
appears only when the device first connects with its server.
The periodicity of the heartbeat data suggests that such mes-
sages are sent periodically; thus, their absence provides an
approach for detecting faults. The heartbeat interval can eas-
ily be obtained from the captured network data labeled as
heartbeat period in Table 1. Considering packet losses, a
multiple of the heart period is used. For instance, if the cap-
tured heartbeat data time interval does not match a multiple

of the heart period in Table 1, we can infer that the corre-
sponding device is faulting. The throughput-based fault
detection method depends on the condition of heartbeat
data periodicity and requires abundant experimental data
to form a comprehensive database. Table 1 shows the con-
structed database for a smart home device named KERUI
used in our experiment.

To calculate the throughput T over a time interval, real-
time traffic and data flow at a random unit time are required.
After classifying the data flows in this time interval as either
command information or heartbeat data, based on the size
of the command information packets and heartbeat data
packets in the database, an ideal throughput T ′ can be
obtained for the selected time interval. Then, we use the α-
(when α = 0:5) order Renyi cross-entropy method from
[30] to compare T with T ′, as follows:

R = I0:5 TT ′
� �

= 2 log2
ffiffiffiffiffiffiffiffiffi
TT ′

p
: ð1Þ

To compute the similarity, we first grab many data
packets from/to the same smart home device. Each captured
data stream can be acquired at any per unit time; Tiði = 0,
1, 2⋯ Þ and the corresponding Tiði = 0, 1, 2⋯ Þ are stored
in the database. Then, the corresponding Ri is calculated
by Formula (1), and the absolute value of Ri with the largest
probability is chosen as the critical value η. Finally, η is
selected as an appropriate threshold judgment criterion; that
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Figure 1: Flowchart of the proposed method.
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is, when jRj ≥ η, the smart home device is experiencing some
fault. In addition, to further judge whether a device is faulty,
we use a Gaussian distribution to compare the data packet
delay.

3.2. A Fault Detection Method Based on a Gaussian
Distribution. The improved fault detection method proposed
in this paper is based on the Gaussian distribution function.
By collecting abundant probe packets sent to Wi-Fi-based
smart home devices, including normal network status and
abnormal network status and then acquiring the delay for
all the data packets and calculating their probabilities, we
can obtain an initial delay probability distribution. Further-
more, by sampling all the delay experimental data using
Gaussian fitting, we can obtain a Gaussian fitting function
of the overall delay probability distribution and then store
the probability distribution curve in the database. The
Gaussian fitting we use is described as follows.

Suppose that di is the delay of a data packet, pi is the
probability distribution of di, pmax is the peak value of the
Gaussian curve, dmax is the peak argument, and S is two
times the variance. Then, we can describe a random set of
data ðdi, piÞði = 1, 2, 3⋯ Þ using the Gaussian function as
follows:

pi = pmax × exp −
di − dmaxð Þ2

S

" #
: ð2Þ

Using the Gaussian function presented in (2), to solve
the values of pmax, dmax, and S, we take the natural logarithm
from both sides of Equation (2), and the result is as follows:

ln pi = ln pmax −
d2max
S

 !
+
2didmax

S
−
d2i
S
: ð3Þ

In Formula (3), by letting ln pi = yi, ln pmax − d2max/S = x0,
2dmax/S = x1, and −1/S = x2, we can rewrite (3) into the fol-
lowing polynomial fitting function:

yi = x0 + x1bi + x2d
2
i : ð4Þ

By applying all the experimental data ðdi, piÞ to (4), we
obtain the following:

y1

y2
⋯

yn

2
66664

3
77775 =

1

1
⋯

1

b1

b2
⋯

bn

b21

b22
⋯

b2n

2
66664

3
77775

x0

x1

x2

2
664

3
775: ð5Þ

Formula (5) can be more simply notated as Y = BX.
Based on the least squares principle, we can obtain a gener-
alized least squares solution of a metric X consisting of the
fitting constants x0, x1, and x2 as follows:

X = BTB
À Á−1

BTY : ð6Þ

By applying Formula (6) to Formula (3), we can obtain
the values of pmax, dmax, and S and, consequently, the Gauss-
ian function described in Formula (2). Then, we can draw
the Gaussian distribution curve for this function and store
it in the delay distribution database for use in judging
whether a real-time probe data packet meets the delay
requirement, which helps in diagnosing fault problems.

From a large number of original data packets, we can
obtain the number of packets n that follow the normal delay
of this device and the number m that have an abnormal
delay. Thus, the fault rate pl is pl =m/ðm + nÞ. Entering this
pl into the Gaussian function in Formula (2), we obtain the
range of di, namely, the abnormal delay range for this device.
Subsequently, if the delay of a data packet obtained in a time
unit from probe traffic captured in real time is located in the
abnormal delay range under the premise of normal packet
loss and filtered retransmission, we can conclude that the
smart home device is experiencing a fault. Otherwise, when
jRj in Formula (1) meets jRj < η (namely, the throughput
during a time unit is normal), we can conclude that the
smart home device is functioning normally.

4. Experiments

4.1. Experience Design. Smart home security systems use sen-
sor techniques, infrared techniques, fuzzy control tech-
niques, and so on. Subdevices of smart home security
devices usually include door sensors, window sensors, infra-
red probes, smoke detectors, and gas detectors. The deploy-
ment layout in a home environment is shown in Figure 2.

Table 1: A database for a smart home device named KERUI.

Packet ID Type Protocol Data size (byte) Heart period (s)

1 Command request information MQTT 231 —

2 Command response information MQTT 305 —

3 Start of heartbeat request MQTT 46 —

4 Start of heartbeat response MQTT 67 —

5 Heartbeat request communication TCP 2 49

6 Heartbeat response communication TCP 2 49
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Figure 2: Home deployment layout.

Figure 3: Captured data packets in the monitoring mode.

Figure 4: Captured data packets in the monitoring mode.
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Smart home security devices include both Wi-Fi receiv-
ing and sending modules. Controlling terminals such as
smart cellphones can be used to control security devices
via home Wi-Fi-connected or through cellular network
devices and then further control the connected subdevices

further. For our experiment, we chose the following home
security devices: CHUANGO, ANJUBAO, and KERUI.

To test the fault detection method proposed in this
paper, we conducted the following experiments. Step I
involved capturing data packets between the security device
and router, as shown in Figures 3 and 4. This step involved
into 2 stages. In the first stage, we captured many data
packets from security devices operating normally, while in
the second stage, we captured data packets of devices with
various failure statuses. Step II involved calculating statistics
from the above data packets. In this step, we extracted the
heartbeat period, the controlling commands, and other data
based on a concrete machine recognition algorithm as
shown in Figure 5. The extraction rules included the time
interval of the heartbeat signal and the payload size. This
step is important because it contributes to calculating T
and T ′. Step III involved sending a large number of probe
data packets to the smart home security system. Similar to
Step I, during this step, we captured two types of probe data
packets that were in both normal state and various failure
states. We marked the data packets in the failure states
before mixing them with the normal data packets. Finally,
the delay of data packets and a change curve were obtained.
Step IV combined Steps I and II: we repeated Step I and Step
II simultaneously and repeatedly. After obtaining the
required data packets, we extracted data according to a time
unit. Using this large amount of experimental data, we were
able to validate the fault detection ability of our method.

4.2. Experience Results. The fault detection method for Wi-
Fi-based smart home devices in this study was based on
massive Wi-Fi traffic (including both normal and abnor-
mal). We first analyzed a large amount of captured Wi-Fi
traffic to obtain information about the connected smart
home security devices. A flowchart of the Wi-Fi traffic anal-
ysis process is shown in Figure 6. Then, we further analyzed

Machine learning
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Data storage
component

Build a Linux server

Store the CAP data packets

Output control commands and heartbeat data
to the CSV file

Identify control commands and heartbeat data
based on the rules in the chain table field

Access the CAP file stored in the host
chain table and the server chain table

Read the CSV file to obtain the
device host IPData read

component

Data processing
component

Data output
component

Figure 5: Automatic machine recognition module.
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Capture packets
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Y
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Y

Analysis packets

Get the original
information of the packets

Flow to the proxy server

Get SSID

Get information on
smart home devices

End

Figure 6: Flowchart of Wi-Fi traffic analysis.
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the captured data flows of the smart home security devices.
Figure 7 shows the distribution of the numbers of KERUI
data packets over a time period. The numbers in black rep-
resent all the packets over a specific time period, while the

numbers in red represent only the packets from the KERUI
smart home device.

After analyzing the traffic of this smart home device
using the machine learning module, we filtered and marked
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Figure 7: The distribution of the number of data packets within a given time period.
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Figure 8: Heartbeat distribution during a selected time period.
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Figure 9: Control command distribution during a selected time period.
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Table 2: Comparison of experimental results of the TDD method.

Smart home
device

The TDD method

FNR FPR
Actual fault ratio

(%)
Detected fault ratio

(%)
Recall ratio

(%)
Accuracy ratio

(%)
Detection time

(s)

CHUANGO 0.0791 0.0609 92.75 93.44 97.84 93.58 1.40

ANJU BAO 0.0764 0.0597 93.00 93.86 98.07 93.46 1.49

KERUI 0.0865 0.0535 92.00 93.84 97.36 92.10 1.34

Table 3: Experimental results of TDD compared with another method.

Smart home device
The TDD method (%)

FNR FPR Recall Accuracy (%) Detection time (s)

CHUANGO 7.91 6.09 97.84 93.58 1.40

ANJUBO 7.64 5.97 98.07 93.46 1.49

KERUI 8.65 5.35 97.36 92.10 1.34

Smart home device
Detection method based on particle swarm optimization and Gaussian distribution (%)

FNR FPR Recall Accuracy (%) Detection time (s)

CHUANGO 1.42 43.39 96.98 87.91 1.40

ANJUBAO 2.31 49.53 98.37 87.63 1.48

KERUI 0.54 50.39 97.14 88.09 1.35
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all the packets and then distinguished heartbeat packets
from control command packets. Figure 8 shows the heart-
beat distribution during the selected time period. From
Figure 8, we can determine whether a heartbeat distribution
matches the regular pattern. Figure 9 shows the distribution
of control commands in this period of time. Control com-
mands occur much less frequently and are irregular. There-
fore, the throughput over a time unit is calculated and
compared with stored values in a database to determine
whether a fault exists.

Then, we extracted the delays in all the packets and cal-
culated the frequencies of different delays. The results are
shown in Figure 10.

According to the least squares method, we fitted the
result into a Gaussian curve, as shown in Figure 11.

The probability distribution shown in Figure 11 is from
the delay probability distribution database to determine the
existence of faults from data packet delays. Using this data-
base information, we can calculate the delay range when
the fault occurs in a smart home device. Therefore, live cap-
tured data packets can be assessed using this method to
determine faults in smart home devices.

Accuracy can be represented by the false-negative ratio
(FNR) and false-positive ratio (FPR). True positives (TP)
are the number of normal packets classified as positive; true
negatives (TN) are the number of abnormal packets classi-
fied as negative; false positives (FP) are the number of abnor-
mal packets classified as positive; and false negatives (FN)
are the number of abnormal packets classified as negative.

FNR =
FN

TP + FN
,

FPR =
FP

FP + TN
:

ð7Þ

To verify the effectiveness of the method, we used exist-
ing smart home devices and captured 1000 groups of data
sets, marked as normal or abnormal. Then, we calculated
the FNR, FPR, recall ratio, and accuracy ratio as described
above. The results are shown in Table 2. To verify the perfor-
mance of the TDD method, we employ the fault diagnosis
method based on particle swarm optimization and Gaussian
distribution in [30] to compare with our method. The com-
pared results of FPR, PNR, recall ratio, and accuracy ratio
are shown in Table 3.

The results in Table 2 show that the fault detection
method using TDD is able to detect faults that occur in
smart home devices in real time. Furthermore, the fault
probabilities obtained during the experiment are close to
the actual fault rates in the original samples.

From the results in Table 3, the FPR of the method based
on particle swarm optimization and Gaussian distribution is
much higher than the FPR of our method, although the FNR
of our method is slightly higher. To detect faults within
smart home devices, we need to detect the fault data flow
as accurately as possible, so we need the FPR value to be as
low as possible. Meanwhile, the FN represents normal data
flows detected as faults by mistake. Therefore, in order to

detect faults comprehensively, FN cases must have little
influence on the target of the fault detection methods.
According to Table 3, the accuracy ratio of our method is
approximately 6% higher than that of the method based on
particle swarm optimization and Gaussian distribution.
The results of the PSO and Gaussian method and those of
our method are almost the same regarding detection time
and recall ratio. Therefore, the performance of the PSO
and Gaussian method is not as good as that of our method
with regard to FPR and the accuracy ratio.

5. Conclusions and Future Work

In this paper, we developed a fault detection method for Wi-
Fi-based smart home secure devices based on TDD. The
TDD method captures real-time data traffic and then iden-
tifies smart home devices and their heartbeat and control
command packets. If a device’s heartbeat pattern matches a
regular pattern, then we can detect faults from the through-
put. In addition, probe data packets are marked and trans-
mitted; then, faults can be detected by calculating the delay
distribution of the data packets. Eventually, these results
are combined to classify whether faults exist within the
smart home devices. The proposed TDD method does not
require a large number of characteristics, such as fault
parameters or signals but can still detect real-time faults
within smart home devices. The experimental results show
that the method can detect smart home device faults in real
time. In addition, the method has high recall and accuracy
ratios.

In future work, we plan to add more relevant factors for
detecting faults within smart home devices. In addition, the
value of each factor should be verified from a multidimen-
sional viewpoint to improve the accuracy ratio of the fault
detection method and reduce the FNR and FPR values. In
addition, as a method that detects faults using live network
data flows, specific errors on the devices should be further
analyzed according to the flow state. The corresponding
warning information will also be addressed in future work
because such messages can improve safety and comfort
when using smart home devices.
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